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Polyamines interact with different molecular targets to regulate a vast range
of cellular processes. A network of enzymes and transport systems is crucial
for the maintenance of polyamine homeostasis. Indeed, polyamines after
synthesis must be distributed to the various tissues and some intracellular
organelles. Differently from the well characterized enzymes devoted to
polyamine synthesis, the transport systems are not unequivocally identified or
characterized. Besides some ATPases which have been identified as polyamine
transporters, much less is known about solute carriers (SLC) involved in
the transport of these compounds. Only two SLCs have been unequivocally
identified as polyamine transporters: SLC18B1 (VPAT) and SLC22A4 (OCTN1).
Transport studies have been performed with cells transfected with the cDNAs
encoding the two and other SLCs or, in the case of OCTN1, also by in vitro assay
using proteoliposomes harboring the recombinant human protein. According to
the role proposed for OCTN1, polyamines have been associated with prolonged
and quality of life. This review provides an update on the most recent findings
concerning the polyamine transporters or the prediction of the putative ones.
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1 Introduction

Spermine, spermidine and putrescine are the most abundant polyamines in mammals,
representing ubiquitous and essential molecules for human cell metabolism [for a complete
list of important polyamines see (Rieck et al., 2022)]. Polyamines are organic polycations
with at least two charged groups responsible for non-specific interactions with negatively
charged macromolecules. Site-specific, orthosteric, allosteric interactions and covalent
binding with different molecular targets have been reported as well (Zimmermann et al.,
2023) explaining the different functions performed by polyamines which are involved in
the regulation of a vast range of cellular processes (Luo etal., 2023; Vrijsen et al., 2023)
as well as in health-protection effects (Madeo et al., 2018; Nilsson and Persson, 2019).
Very importantly, the homeostasis of polyamines requires a network of enzymes and
transport systems (Vrijsen et al., 2023). Indeed, polyamines do not only originate from
cell biosynthesis but also from the diet and the gut microbiota. Therefore, from the gut,
polyamines are distributed to the tissues via the bloodstream and then taken up in cells
by specific transporters (Vrijsen et al., 2023). The concerted action of the enzymes and
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transporters which is dictated by different kinetic properties
together with different tissue localizations, allows polyamines
to reach different levels in different tissues. Dysregulation
of polyamine homeostasis strongly associates with human
diseases (Azfar etal., 2022). Most of the literature addresses the
interest towards these molecules in cancer and nervous system
physiology/pathology. Several oncogenic pathways led to the
dysregulation of polyamine metabolism: elevated polyamine
levels are necessary for transformation and tumor progression
(Casero etal., 2018). Ornithine decarboxylase 1 (ODC), the
rate-limiting enzyme of polyamine synthesis, is transcriptionally
activated by the oncogene MYC. Inhibiting ODC activity largely
reduces polyamine synthesis and the incidence of colorectal cancer
supporting the role played by polyamine in cancer (Du and Han,
2021). Very recently a polyamines’ ferroptosis-sensitizing effect has
been described (Bi et al., 2024). Polyamine transport activity exists
in several human colorectal cancer cell lines; however, large gaps
in the knowledge concerning the precise molecular mechanisms
of mammalian polyamine transport exist (Corral and Wallace,
2020). Indeed, polyamine transporters are still referred to as, the so
called, “Polyamine Transport System (PTS)” even though different
molecular entities are involved in transport. Polyamine transport
mediated by membrane transporters is attributed mainly to the
activity of P-type ATPases (Azfaretal, 2022) and only in part
to SLCs. ATP13As have recently been addressed (Croucher and
Fleming, 2023; Houdou et al., 2023; Mu et al., 2023; van Veen et al,,
2023; Liuetal, 2024) and new strategies for studying polyamine
transport have been set up, such as the employment of fluorescent
polyamine probes (Vanhoutte etal., 2018). SLC22A4 (OCTNI)
and SLC18B1 (VPAT) are the best acknowledged transporters
for polyamines. Filling this gap is very important since the
SLC superfamily is currently positioned at the centre of novel
pharmacological targeting strategies and drug development. This
review provides an update on the SLC-mediated transport of
polyamines (Table 1).

2 Solute carriers (SLCs) and
polyamine transport

The SLC superfamily is the largest group of membrane
transporter proteins. It includes 65 subfamilies with more than
500 members (Pizzagallietal., 2021). They are responsible for
the transport of a wide array of endogenous molecules and
drugs and play a crucial role in human pathologies. Accordingly,
the list of SLC transporters expressed in different tumors
includes polyamine transporters (Bharadwaj et al., 2024). The SLC
polyamine transporters known to date are localized to the plasma,
lysosomal and mitochondrial membranes (Toninello etal.,, 1992;
Moriyama et al., 2020). Indeed, in mitochondria, polyamines may
play a role in regulating energy metabolism and mitochondrial
gene expression; thus, they must enter within these organelles
(Toninello et al., 1992; Grancara et al., 2014). The SLC superfamily
includes the majority of polyamine transporters. The transport
process is strongly regulated: when polyamine concentration
decreases, transport increases. Moreover, the transporter activity
is regulated by a feedback mechanism based on the immediate
synthesis of antizyme which is a protein that blocks polyamine
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uptake in the presence of increased intracellular levels of
polyamines (Lian etal, 2022; Lodeserto etal., 2022). The SLCs
involved in polyamine transport are so far considered putative
except for SLC18B1 and OCTNI1 which are the sole validated
polyamine transporters (Pochinietal,, 2012; Hiasaetal., 2014;
Masuo et al., 2018; Moriyama et al., 2020). The state of the art on
individual polyamine SLCs is reported. SLCs which mediate the
transport of arginine, thus being indirectly involved in polyamine
homeostasis are also mentioned.

2.1 SLC3

SLC3A2 has been identified as the key transporter involved in
polyamine uptake in neuroblastoma (Gamble et al., 2019). However,
SLC3A2 has not an intrinsic transport activity but it mediates the
trafficking of other transport proteins to the cellular membrane
(Fotiadis et al., 2013; Scalise et al., 2021). SLC3A2 is a glycoprotein
which forms heterodimers with various members of the SLC7
family. Therefore, it is important to identify the component of the
heterodimers with SLC3A2 responsible for polyamine transport
activity. Both the components of the heterodimer can be effective
therapeutic targets (Khan et al., 2021; Eom et al., 2022).

2.2 SLC6

Computational analysis revealed that spermidine has a high
affinity for SLC6A4 (5-HTT, SERT), the sodium-dependent
serotonin transporter and SLC6A2 (NET), the sodium-dependent
noradrenaline transporter (Shen et al., 2023). Cellular thermal shift
assay revealed spermidine binding to SLC6A4 in pancreatic acinar
cells. Moreover, a further member of this family, SLC6A14 (ATB%"),
was revealed to be one of the main transporters responsible for
arginine transport, and was found overexpressed in colorectal cancer
(Karunakaran et al., 2011; Du and Han, 2021).

2.3 SLC7

SLC7A1 and A2 (CAT1 and 2, system y*) are sodium
independent arginine transporters (Jungnickel et al., 2018; Hobbach
and Closs, 2020; Du and Han, 2021). CAT2 exists in two isoforms,
CAT-2A and -2B, which differ in their affinity for arginine. L-
arginine uptake in macrophages has been attributed to CAT2B
(Chaturvedi etal,, 2010). Both CAT1 and CAT2 are widely
expressed in rat and human brains. Thus, they would play a
role in neurodegenerative disorders (Bernstein etal., 2020). The
blood-brain barrier (BBB) has been reported to be impermeable to
polyamines (Weiss et al., 2023). Consequently, the brain depends on
the activity of CAT1 for the transport of arginine which is used for
polyamine biosynthesis in the brain (Rieck et al., 2022). Arginine
uptake and its catabolism to spermidine would be involved in
controlling erythroid differentiation (Gonzalez-Menendez et al.,
2023). CAT1 would be involved in aortopathy progression
(Forteetal., 2018). Putrescine, the monoacetylspermidines
and diacetylspermine are all substrates for SLC3A2/Y*LAT
(Saulnier Sholler et al., 2015). Monocytes/macrophages express
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TABLE 1 Putative substrates of polyamine SLC transporters and transport mechanisms.

Gene/Protein  Putative PA (Substrate) Localization of PA Mechanism References

transport in
normal/cancer tissues

SLC6A2/NET Spd ND (Computational analysis) Sodium dependent cotransport Shen et al. (2023)
SLC6A4/5-HTT Spd pancreatic acinar cells Sodium dependent cotransport Shen et al. (2023)
SLC6A14/ATB** Arg Low level in normal Sodium and Chloride dependent Karunakaran et al. (2011), Du

tissues/Breast, Colorectal, cotransport and Han (2021)
Cervical cancer
SLC7A1/CAT1 Arg, Put, Spd Aorta, NT, RPE, BM/Colorectal Uniport Kaneko et al. (2007), Grossi et al.
cancer (2014), Forte et al. (2018), Du and
Han (2021), Rieck et al. (2022),
Gonzalez-Menendez et al. (2023)
SLC7A2/CAT2 Arg, Agm Macrophages, NT Uniport Chaturvedi et al. (2010),
Molderings and Haenisch (2012),
Bernstein et al. (2020)
SLC7A6/y"'LAT2 Put, Arg Fibroblasts, Retinal pigment Uniport Saulnier Sholler et al. (2015),
epithelial cells/Caco-2 cells, N Rotoli et al. (2020)
SLC7A7/y"'LAT1 Put, Arg Monocytes-macrophages/Caco-2 Uniport Saulnier Sholler et al. (2015),
cells, N Rotoli et al. (2020)
SLC12A8A/CCC9a Arg, Spm B and Lung cancer Chloride dependent cotransport Daigle et al. (2009),
Moriyama et al. (2020),
Zhang et al. (2021), Zheng et al.
(2023)
SLC18B1/VPAT Spm, Spd NT, A, P K, T, L, B, mast cells, Proton dependent antiport Hiasa et al. (2014), Takeuchi et al.
macrophages, (2017), Fredriksson et al. (2019),
MEG-01 and platelets Park et al. (2019), Moriyama et al.
(2020), Uehara et al. (2024)
SLC21/0OATP4C1 Arg K Uniport Taghikhani et al. (2019)
SLC22A1 Spm,Agm, Spd K,NT, L Uniport Grundemann et al. (2003),
Nies et al. (2011), Winter et al.
(2011), Sala-Rabanal et al. (2013),
Schophuizen et al. (2013),
Akanuma et al. (2017),
Morris et al. (2017)
SLC22A2 Spm, Agm, Put,Spd K,NT,L Uniport Grundemann et al. (2003),
Nies et al. (2011), Winter et al.
(2011), Sala-Rabanal et al. (2013),
Schophuizen et al. (2013),
Higashi et al. (2014),
Akanuma et al. (2017),
Morris et al. (2017), Cunha et al.
(2022)
SLC22A3 Spm, Agm, Spd K,NT Uniport Grundemann et al. (2003),
Nies et al. (2011),
Sala-Rabanal et al. (2013),
Schophuizen et al. (2013),
Higashi et al. (2014),
Akanuma et al. (2017),
Morris et al. (2017)
SLC22A4 Spd,Spm K, I, NT, IC, A/Colorectal cancer Uniport Pochini et al. (2012), Masuo et al.
(2018), Ben Mariem et al. (2024),
Pochini et al. (2024)
SLC22A6/0AT1 Spd/Spm K Uniport Ahn etal. (2011), Liu et al. (2016)
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TABLE 1 (Continued) Putative substrates of polyamine SLC transporters and transport mechanisms.

Gene/Protein  Putative PA (Substrate)

Localization of PA

Mechanism References

transport in
normal/cancer tissues

SLC22A16/CT2 Spd T, BM/Testicular cancer, Lymphoma Uniport Aouida et al. (2010)
SLC22A18 Spd Melanocytes — Brito et al. (2022)
SLC43A1 Put, Spd VSMC Uniport Grossi et al. (2014)
SLC44A1/rCTL1 Put BRB Uniport Tega et al. (2023)
SLC47A1/MATE1L Agm KL Proton dependent antiport Winter et al. (2011), Higashi et al.
(2014)

Agm, Agmatine; Arg, Arginine; Spd, Spermidine; Spm, Spermine; PA, Polyamine; Put, Putrescine; A, Airway; B, Bladder; BM, Bone Marrow; BRB, Blood/Retinal Barrier; K, Kidney; I, intestine;
IC, Immune cells; L, Liver; N, Neuroblastoma; ND, not determined; N'T, nervous tissue; P, Placenta; RPE, Retinal pigment epithelial cells; T, Testis; VSMC, vascular smooth muscle cells.

high levels of SLC7A7 (y'LAT1) which would be the main
responsible for arginine transport and SLC7A6 (y'LAT2) in
fibroblasts (Rotoli et al., 2020). In polarized epithelia, such as renal
and Caco-2 cells (basolateral side) the system y*L would mediate
arginine efflux in exchange with leucine and sodium (Rotoli et al.,
2020). In melanocytes, SLC7A1 has been found downregulated by
spermidine treatment. It would represent a strategy to maintain ideal
cytosolic levels and avoid cytotoxic effects (Brito et al., 2022). In this
context, spermidine has been reported as a promising compound
for the treatment of hypopigmentation disorders supporting the
stability of melanogenesis-related proteins.

24 SLC12

SLC12A8 belongs to a large family including 9 isoforms
(Moreno et al., 2023). It is linked to certain cancers (Zhang et al.,
2021), but the precise role of SLC12A8 in this context is unknown
(Zheng et al., 2023). The splice variant SLC12A8A (CCC9a) was
shown to be responsible for polyamine transport (Daigle et al,
2009; Zahedi et al., 2019). Very recently, the role of SLC12A8 as a
polyamine transporter has been questioned (Sekhar et al., 2022).

2.5 SLC18

SLCI8B1 (VPAT) is
transporter, performing a H*/polyamine antiport (Hiasa et al., 2014;
Moriyama et al., 2020). It is mainly localized to endomembrane

a polyspecific widely distributed

organelles relying on an H' gradient created by V-ATPases.
His-tagged VPAT was expressed in insect cells, purified, and co-
reconstituted. Two different substrate binding sites were identified
for spermine and spermidine, respectively (Hiasaetal, 2014).
Interestingly, acetylcholine is also a substrate (Moriyama et al.,
2020), transported with low affinity as previously found for another
SLC polyamine transporter (Pochinietal, 2012). The agmatine
transport remains to be characterized (Moriyama etal., 2020).
SLC18B1 localizes with synaptic vesicles in neurons and synaptic-
like microvesicles in astrocytes (Hiasa et al., 2014). It has been found
responsible for the vesicular storage of spermine and spermidine in
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novel secretory granules that differ from histamine- and serotonin-
containing granules and is involved in the vesicular release of these
polyamines from mast cells (Takeuchi et al., 2017). Accordingly, the
human megakaryoblastic cell line MEG-01 and platelets express
VPAT (Uecharaetal., 2024). The polyamine transport has also
been explored in vivo employing the knock-out mouse model
which was characterized by reduced polyamine content in neurons.
Defects in learning and memory were observed (Fredriksson et al.,
2019). In the field of diagnostics, SLC18B1 has been shown
to be responsible for the transport of a novel optical imaging
probe, CDgl6 (Fredriksson etal., 2019), which could be used as
a diagnostic tool for inflammation (Park et al., 2019).

2.6 SLC22

This family includes several members which are or may be
polyamine transporters mediating the transport of anions, cations
or zwitterions across the plasma or some intracellular membranes
(Pizzagalli et al., 2021; Jamshidi and Nigam, 2022).

2.6.1 SLC22A1-3

SLC22A1-3 (OCT1I, 2 and 3) are organic cation transporters;
they play roles in several human pathologies (Nies et al., 2011). Both
human and rodent OCT2 and OCT3 are expressed in neurons and
glial cells. On choroid plexus epithelial cells, a minor contribution
of OCT3 to spermine elimination from the cerebrospinal fluid
has been described. At the blood-brain barrier (BBB) and
blood-cerebrospinal fluid (CSF) barrier (BCSFB) transporters
different from OCTs, have been suggested (Akanuma et al.,, 2017).
Transport of agmatine by the rat and human OCTs isoforms OCT2
and OCT?3 has been demonstrated in HEK293 (Grundemann et al.,
2003); whereas in human glioma SK-MG-1 cells, it has been
suggested that it is very unlikely that OCTs and OCTNs would
be involved in agmatine transport (Molderings and Haenisch,
2012). HEK293 transfected with hOCT1 or hOCT2 ¢cDNA have
been employed to assay B HJagmatine and [3H]putrescine transport
(Winter et al., 2011); hOCT2 was identified as a transporter for
agmatine. OCTs spermidine transport activity has been measured
in Xenopus oocytes expressing mammalian (mouse, rat) OCTs
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(Sala-Rabanal et al., 2013). In HEK293 cells, putrescine, agmatine
and spermidine uptake by hOCTs, hOCTNs and hMATEs (see
Sections 2.6.2 and 2.8) was also investigated (Higashi et al., 2014):
significant putrescine, agmatine and spermidine uptake by hOCT2
was observed; Through trans-stimulation assay, agmatine has been
identified as a global trans-stimulator of OCTs (Lefevre et al., 2021).
Residues within the OCTs putative hydrophobic cleft that are not
conserved in OCT3 were mutated to their corresponding OCT1
counterparts. Polyamines interacted poorly with the wild-type
OCT3s but strongly with the mutants, as they do with OCT1, thus
indicating that OCT1 might be involved in polyamine transport
(Lietal., 2015). Cadaverine, putrescine, spermine, spermidine and
acrolein have been tested as inhibitors of OCTs in immortalized
human proximal tubule epithelial cell line (ciPTEC) on the uptake
of the fluorescent OCT substrate, 4-(4-(Dimethylamino)styryl)-
N methylpyridinium-Iodide (ASP*) (Schophuizen etal.,, 2013).
Putrescine was the least potent inhibitor even though reported as
an OCT substrate (Cunha etal., 2022). From homology models,
a-helices involved in the recognition and in transport have been
proposed. It would be interesting to reevaluate these findings
with respect to the recently solved tridimensional structure of
OCTs (Zeng et al., 2023).

2.6.2 SLC22A4 (OCTN1)

SLC22A4 (OCTN1) is well known for its involvement in
chronic inflammatory disorders. The OCTNI1 variant L503F is
associated with an increased susceptibility to Crohn’s disease. The
first hypothesis concerning the ability of OCTNI1 to transport
polyamines derives from the observation that the OCTN1 variant
L503F might increase the uptake of potential toxins, such as
putrescine, derived from bacteria (Peltekova et al., 2004). Even
though the physiological role of OCTN1 is not fully assessed, its
association with inflammation is well recognized (Pochini et al.,
2024). Among the most acknowledged substrates of OCTN1, there
are acetylcholine and ergothioneine. The first is the player of
the non-neuronal cholinergic system, besides its neurotransmitter
role; the second is an exogenous antioxidant. Interestingly, the
knockout OCTNI mice apparently lack a phenotype. However,
some differences among the wild type and knockout mice have
been described after stress induction indicating that OCTN1 might
play a role in recovery from stress (Pochinietal., 2022). The
association of polyamines to prolonged life correlates well with
the OCTNI1 proposed role (Britoetal., 2022; Kurihara, 2022).
OCTNI1 may be involved in the transport of products of the
gut microbiome. In this frame, it was not trivial to hypothesize
that OCTNI is involved in polyamine transport (Peltekova et al.,
2004; Schophuizen etal., 2013). Indeed, the ability of OCTN1
to transport polyamine was recently demonstrated. Spermine
present in inflamed intestinal tissue extracts was transported in
HEK293 cells over-expressing OCTN1 (Masuo et al., 2018). Assays
in proteoliposomes confirmed the ability of OCTNI to interact
with polyamines indicating a mixed inhibition by spermidine or
spermine of the acetylcholine transport (Ki 35 + 7.1 or 18 *
2.4 uM) (Pochinietal, 2012). OCTN1 might also be involved
in polyamine release (Pochinietal,, 2015; Ueharaetal, 2024).
Accordingly, the link between polyamines and inflammation is
also associated with OCTNI1 function (Lianetal., 2022; Shen
et al., 2023).
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2.6.3 SLC22A6

SLC22A6 (OAT1) mediates renal excretion of organic anionic
and a few cationic drugs. Despite their cationic nature, spermidine
and spermine were found to bind mouse OAT1 and are considered
putative novel endogenous substrates. Starting with an integrated
“omics”-driven network approach, the interaction of the polyamines
with OATs has been investigated using adult kidney slices.
Spermidine, spermine and arginine inhibited uptake of the OAT
substrate, 6-carboxyfluorscein, 6CF (Ahn et al., 2011). Similar data
were obtained from the Xenopus oocyte and CHO cell culture
assay. Computational analysis confirmed the transcriptomic data.
The collected data highlight a role for OAT1 in metabolism of
polyamines (Liu et al., 2016).

2.6.4 SLC22A16 (CT2)

SLC22A16 (CT2) is a carnitine transporter with a higher affinity
for polyamine. The polyamine analogue, Bleomycin-A5 (BLM-A5),
used in combination with other antineoplastic drugs to treat cancer
(Aouida et al., 2010), is transported by CT2. According to CT2
sharp physiological localization in the epididymis and its over
expression in specific cancers (NT2/D1 testicular cancer cells),
some other cancers show resistance to BLM-A5. The availability
of the reconstituted recombinant protein (Galluccio etal.,
2022) will allow to assess the ability of CT2 to mediate
polyamine transport.

2.6.5 SLC22A18

In primary human melanocytes the mRNA expression level of
SLC22A18 was decreased under spermidine treatment, as previously
reported for SLC7A1 (Brito et al., 2022).

2.7 SLC44

The existence of a retina-to-blood transport system for
spermine across the BRB was suggested (Kuboetal, 2014).
Expression of SLCI2A8 (CCC9) at this level has been found
but its involvement in polyamine transport is questioned. This
data together with the lack of inhibition by OCTs and CATs
substrates allowed to exclude the involvement of CCC9, OCTs
and SLC7 members in polyamine transport in this district.
SLC44A1 (CTL1) has been suggested to be involved in putrescine
excretion from the retina to the blood across the inner and outer
BRB (Tega et al., 2023).

2.8 SLC47

The SLC47A1, multidrug and toxic compound extrusion
(MATE) transporter 1, an H¥/cation antiporter, is critical
in the efflux of various organic cations from the brush-
border and canalicular membrane of the kidney and liver,
respectively. Considering that OCT and MATE transporters
share overlapping substrate-specificity for several cationic
compounds, polyamine transport was investigated. In HEK293
cells agmatine accumulation, in contrast to putrescine, was
significantly enhanced by hMATEl (Winteretal, 2011;

Higashi et al., 2014).
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2.9 Other putative polyamine SLCs

Arginine, the cardioprotective biomarker L-homoarginine
and the uremic toxin asymmetric dimethylarginine, ADMA are
substrates of the human renal transporter, SLC21/SLCO4Cl
OATP4CI. L-homoarginine can also be exported by OATP4C1
out of cells (Taghikhanietal., 2019). Moreover, the involvement
of SLC43A1 (along with SLC7A1) in Cav-1-dependent polyamine
uptake has been hypothesized. Cav-1 is involved in the regulation of
polyamine uptake in vascular smooth muscle cells (VSMC). Cav-1
KO VSMCs express higher levels of SLC43A1 mRNAs compared
with WT cells (Grossi et al., 2014).

3 Conclusion

The issue of polyamine transport is becoming to be dealt with.
Indeed, understanding the mechanisms of transport of these vital
cations is critical in light of novel therapeutic approaches to human
pathologies. Polyamine blockade therapy (PBT) is emerging as a
novel adjuvant therapy of both chemo- and immune-therapies for
a variety of cancers (Casero et al., 2018; Chin et al., 2022; Lian et al.,
2022). Interestingly, the use of polyamine transport inhibitors (PTT)
in combination with the ODC inhibitor a-difluoromethylornithine
(DMFO), which is a largely used anticancer drug (Riviere-
Cazaux et al., 2023), is promising (Lianetal, 2022). However,
how these PTIs inhibit the transport systems and which specific
transporter they inhibit is so far unknown (Dobrovolskaite et al.,
2022). AMXT and other agents are effective in inhibiting polyamine
uptake. It has been speculated that intracellular spermidine
production might promote proliferation, whereas administration
might activate the immune response overriding the tumor-
promoting function (Zimmermann etal, 2023). Thus, from a
different point of view, polyamine transport can be considered as
a mean of delivering polyamine-conjugates or polyamine drug-like
molecules to cells (Liu et al., 2019; Basagni et al., 2023) to exploit
the self-regulation of polyamine homeostasis as a promising strategy
for therapeutic benefit in neoplastic conditions (Ma etal., 2020;
Holbert et al., 2022; Lodeserto et al., 2022; Zhang et al., 2022). For
all these possible therapeutic approaches, many open questions
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structures of some SLC22 transporters hypothesized to be involved
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