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Lipids and α-Synuclein: adding
further variables to the equation

Jana Schepers*† , Timo Löser† and Christian Behl*

The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes
Gutenberg University Mainz, Mainz, Germany

Aggregation of alpha-Synuclein (αSyn) has been connected to several
neurodegenerative diseases, such as Parkinson’s disease (PD), dementia with
Lewy Bodies (DLB), and multiple system atrophy (MSA), that are collected
under the umbrella term synucleinopathies. The membrane binding abilities of
αSyn to negatively charged phospholipids have been well described and are
connected to putative physiological functions of αSyn. Consequently, αSyn-
related neurodegeneration has been increasingly connected to changes in lipid
metabolism and membrane lipid composition. Indeed, αSyn aggregation has
been shown to be triggered by the presence of membranes in vitro, and some
genetic risk factors for PD and DLB are associatedwith genes coding for proteins
directly involved in lipid metabolism. At the same time, αSyn aggregation itself
can cause alterations of cellular lipid composition and brain samples of patients
also show altered lipid compositions. Thus, it is likely that there is a reciprocal
influence between cellular lipid composition and αSyn aggregation, which can
be further affected by environmental or genetic factors and ageing. Little is
known about lipid changes during physiological ageing and regional differences
of the lipid composition of the aged brain. In this review, we aim to summarise
our current understanding of lipid changes in connection to αSyn and discuss
open questions that need to be answered to further our knowledge of αSyn
related neurodegeneration.
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1 Introduction

With approximately 50% of the dry weight of the human brain being lipids,
it has one of the highest lipid contents in the human body (Hamilton et al., 2007;
Bruce et al., 2017). Strikingly, lipid changes in Alzheimer’s disease (AD) have already
been described by Alois Alzheimer upon discovery (Alzheimer et al., 1995) but have not
been consequently investigated at that time, perhaps partly due to the lack of adequate
methodology. Nowadays, changes in lipid metabolism of the brain are implicated in several
neurodegenerative diseases such as, among others, AD, Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS) (Wei et al., 2023). For example, it was shown that
the lipid metabolism in AD brain tissue is changed, including changes in the fatty acid
composition (Nasaruddin et al., 2016; Yin, 2023), accumulation of cholesterol (Xiong et al.,
2008; Ahmed et al., 2024), and the presence of the lipoprotein APOE4 isoform as risk factor
for AD (Zhu et al., 2015; Lefterov et al., 2019; Miranda et al., 2022; Pires and Rego, 2023;
Lozupone and Panza, 2024).

In this review, we focus on α-Synuclein (αSyn) and its growing connection to lipids, not
only in the context of its putative physiological functions but also during neurodegenerative
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GRAPHICAL ABSTRACT

The graphical abstract summarises factors that might lead to lipid changes and possible influences of lipid changes on synucleinopathies.

processes. Aggregation of αSyn in different neuronal tissues
is associated with different neurodegenerative diseases that are
collected under the term synucleinopathies. These include, among
others, PD, dementia with Lewy Bodies (DLB), and multiple
system atrophy (MSA) (Calabresi et al., 2023). To understand
disease formation and progression, a lot of successful research
has already been conducted, connecting αSyn-aggregation and
neurodegeneration to mitochondrial dysfunction and oxidative
stress, lysosomal dysfunction, inflammatory processes, and a
perturbed Ca2+ homeostasis and excitotoxicity (Rocha et al., 2018;
Wang et al., 2020; Sahoo et al., 2022; Lyra et al., 2023; Forloni, 2023;
Rcom-H’cheo-Gauthier et al., 2016). However, more recently, the
link between PD pathogenesis and lipids has gained more and more
attention (reviewed in (Alecu and Bennett, 2019; Fanning et al.,
2020; Battis et al., 2023; Flores-Leon and Outeiro, 2023)). For
example, it was shown that LewyBodies (LBs) contain an abundancy
of different membranes (Shahmoradian et al., 2019).

We focus on lipid changes and its impact on synucleinopathies,
summarising how changes in membrane lipids might contribute
to disease progression and whether differences in the
membrane composition could contribute to differences in
aggregate conformation and localisation. We summarise putative
physiological functions of αSyn in connection to membrane lipids
as well as lipid-associated processes and discuss lipid changes
connected to PD, DLB, and MSA. It is important to keep in mind
that, while these three diseases are distinguishable from each other,

especially PD and DLB share overlapping disease phenotypes and
risk factors (Calabresi et al., 2023). Thus, we compare common
factors connecting lipid metabolism that might play a role in all
three synucleinopathies but also discuss differences.

As ageing is known to be connected to neurodegenerative
synucleinopathies (Poewe et al., 2022; Calabresi et al., 2023),
we further discuss current knowledge of changes of the lipid
composition of the aged brain. To date, little is known about lipid
changes in the brain during physiological ageing even though it
might be possible that changes in the regional lipid composition
of the brain might explain why different brain regions are affected
in different patients. Whether synucleinopathies are induced by
age-related lipid changes in the brain remains unclear.

It is known that αSyn forms amyloid fibrils that are rich
in β-sheets during pathological processes. During amyloid fibril
formation, the structurally disordered αSyn monomers oligomerise
to form aggregates that grow into β-sheet rich protofibrils. These
protofibrils grow to form long amyloid fibrils, that can be detected
in LBs (Ghosh et al., 2017; Alam et al., 2019; Mehra et al., 2021). It is
known that these amyloid fibrils can adapt different conformations,
referred to as strains (Bousset et al., 2013). In this review, we address
aggregation formation of αSyn in the presence of lipids and discuss
how conformational variations of αSyn strains, might, to a certain
extent, depend on the lipid environment.

To date, there are no disease-modifying treatments available
for PD, DLB, and MSA. For PD, the use of L-Dopa to restore
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dopaminergic function, developed in the 1960s (Cotzias et al., 1967),
is still the most common treatment (Fernagut et al., 2014; Stoker and
Barker, 2020). Developing alternative treatments and ways to detect
pathological events earlier is urgently needed. Thus, understanding
the connection between lipid changes, αSyn aggregation, and disease
progression has the potential to open new, possible ways of disease-
modification and earlier detection.

2 Alpha-Synuclein

αSyn is a 14 kDa protein of the small synuclein protein family,
which was initially described in the Pacific electric ray Tetronarce
californica in 1988 and is evolutionary highly conserved (Figure 1A)
(Maroteaux et al., 1988; Zhu and Fink, 2003). In humans, the SNCA
gene, which spans five canonical exons and is located on the
PARK1/4 locus of chromosome 4, encodes αSyn. The full-length
protein consists of 140 amino acids (aa) and can be divided into three
domains (Figure 1B) (Emamzadeh, 2016).

Residues 1–60 form the positively charged N-terminus,
which, because of its amphipathic nature, allows interactions with
membrane lipids (Bartels et al., 2010; Pirc andUlrih, 2015).Thehigh
amount of lysine residues conducts interactions with anionic lipids,
such as phosphatidic acid, phosphatidylinositol, as well as highly
negative phosphoinositide phosphates (Middleton and Rhoades,
2010; Jacob et al., 2021a). Upon membrane binding, the coiled N-
terminus transforms into a α-helical structure (Figure 1C) (Bussell
and Eliezer, 2003; Bodner et al., 2009). Besides an electrostatic
interplay, the robustness of this membrane-binding α-helix is
strongly dependent on the amount of lipid molecules per protein
(Shvadchak et al., 2011; Roeters et al., 2023). The transition from
random coil to helix is facilitated by multiple, imperfect repeats
of 11 aa, containing a highly conserved KTKEGV motif. Lipid-
binding motifs with high similarity were found in apolipoproteins,
such as ApoA-I, which also forms α-helices upon membrane
binding (Segrest et al., 1990; George et al., 1995). Two of these
KTKEGV repeats in αSyn also reach into the second protein domain,
the 35 aa long non-amyloid-β component (NAC) (Ueda et al.,
1993). In early studies, this domain was found to be prone to
aggregation, presumably because of an 11-residue core region,
the so-called NACore. Its β-strand structure tends to stack into
multiple β-sheets and induces amyloidogenic protein aggregation
(Rodriguez et al., 2015; Tuttle et al., 2016; Xu et al., 2016). In vitro
studies revealed numerous factors that affect the kinetics of αSyn
fibril formation. Endogenous factors for αSyn nucleation include
protein modifications and truncations, as well as the presence
of lipids and membranes (Galvagnion et al., 2015; Ghosh et al.,
2017). Environmental factors, such as metals, pesticides, pH,
and temperature changes were also found to promote in vitro
fibrillation (Morris and Finke, 2009; Ghosh et al., 2017). The third
protein domain is the anionic C-terminus, which consists of the
remaining 46 aa. It is a proline-rich, intrinsically disordered region
(random coil) in which around one third of residues are acidic. This
comparatively flexible region was found to be a target for multiple
post-translational modifications (PTMs), and the central domain
for protein-protein interactions (Cole et al., 2002; Oueslati et al.,
2010; Manzanza et al., 2021). The majority of investigated PTMs
introduced in αSyn were found to inhibit protein function and

enhance its susceptibility to pathological aggregation (Zhang et al.,
2019). However, recent studies have identified several physiological
functions of C-terminal modifications (Figure 1B). For instance,
SUMOylation of lysine residues K96 and K102 is required for the
nuclear translocation of αSyn (Krumova et al., 2011; Ryu et al.,
2019). Additionally, phosphorylation of tyrosine Y125 has been
shown tomodulate the interaction between αSyn and phospholipase
D in human embryonic kidney cells (HEK-293) (Ahn et al., 2002).
Recently, it has been shown that phosphorylation at serine S129,
which is predominantly related to αSyn pathology, might also
regulate αSyn function in healthy cells (Ramalingam et al., 2023).

Exclusively found in vertebrates, αSyn is localised in several
different regions of the brain, such as the substantia nigra, the
cerebral cortex, and hippocampus, among others (Taguchi et al.,
2016). Localisation of αSyn in presynaptic terminals as well as
its co-localisation with synaptic vesicles (Maroteaux et al., 1988;
Bayer et al., 1999; Taguchi et al., 2016) led researchers to believe that
αSyn might play an important role in neurotransmission. In the
following years, many studies helped elucidate the transport route of
αSyn from its synthesis in the cell soma to presynaptic axon terminals
and its interactions with different proteins and whole organelles.

3 From synthesis to function –
interactions of αSyn across the neuron

Since αSyn lacks a canonical translocon sequence, de novo
biosynthesis of αSyn ismost likely directed into the cytoplasm. In the
neuronal soma, αSyn is able to interact with a variety of organelles
(reviewed in (Bernal-Conde et al., 2019)). Localisation into the
nucleus is facilitated via C-terminal SUMOylation and subsequent
translocation by karyopherin α6 (Ryu et al., 2019). Because of its
small size (<40 kDa), diffusion through the nuclear pore complex
inside the nucleus might also be possible (Timney et al., 2016).
αSyn can affect DNA persistence length, i.e., physical stiffness, and
accessibility for transcription factors, either by direct electrostatic
interactions with the DNA backbone, or indirectly, by retaining
epigenetic proteins (e.g., histone-modifying enzymes) from entering
the nucleus (Desplats et al., 2011; Jiang et al., 2018; Surguchov,
2023). It was observed that these interactions influence DNA
condensation through H3K9 methylation and altered histone
acetylation (Kontopoulos et al., 2006; Sugeno et al., 2016).

Outside the nucleus, αSyn is found at the outer mitochondrial
membrane as well as in mitochondrial sub-compartments
(Cole et al., 2008; Devi et al., 2008; Georgas et al., 2009;
Menges et al., 2017). At the outer membrane, αSyn suppresses
mitochondrial fusion events, which is suggested to benefit the
transport of small mitochondrial fragments across the axon
(Nakamura et al., 2011; Saxton and Hollenbeck, 2012; Bernal-
Conde et al., 2020). However, another study found that drastically
changed fusion-fission rates, induced by αSyn overexpression,
impair axonal transport (Pozo Devoto et al., 2017). Once inside
the mitochondrion, the largest proportion of αSyn accumulates
at the inner mitochondrial membrane (IMM), where it most
likely interacts with the highly anionic mitochondrial signature
phospholipid cardiolipin (Cole et al., 2008; Dudek, 2017; Ryan et al.,
2018). This IMM-localisation was mainly found around the electron
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FIGURE 1
Evolutionary conservation and structure of αSyn. (A) Protein sequence alignment of αSyn in vertebrae species Homo sapiens (human), Pan troglodytes
(chimpanzee), Pongo abelii (sumatran orangutan), Bos taurus (cattle), Sus scrofa (wild boar), Rattus norvegicus (common rat), Mus musculus (house
mouse), Serinus canaria (atlantic canary), Gallus gallus (chicken), and Xenopus tropicalis (western clawed frog). The alignment shows a high
conservation of the protein across all listed species, especially in the amphipathic N-terminus (green) and NAC domain (yellow). The six KTKEGV motifs
(grey boxes), numbered I-VI, show close similarity, with only two differences. In cattle, the first arginine residue in the third motif (III) replaces the
chemically very similar lysine residue. The same is observed for the first aa of the fourth KTKEGV motif (IV) in both bird species. In birds, the αSyn
protein is also three aa longer than in the other listed organisms. (B) αSyn can be structurally divided into the amphipathic N-terminus (green, 1–60 aa),
the aggregation promoting NAC-domain (yellow, 61–95 aa) and the acidic C-terminus (red, 96–140 aa) which facilitates protein-protein interactions.
The grey boxes depict the KTKEGV motifs, which promote membrane association. At the C-terminus, four post-translational modifications, K96 and
K102 SUMOylation, as well as Y125 and S129 phosphorylation, are displayed. These post-translational modifications are suggested to serve
physiological functions of αSyn inside the cell. Phosphorylation at S129 is also associated with αSyn pathology. (C) Representation αSyn’s secondary
structure in the presence of membrane lipids. The N-terminus and NAC domain form an interrupted α-helix which binds to highly curved membranes.
The proline-rich C-terminus is considered as intrinsically disordered and flexible.

transport chain (ETC), which is most likely due to its cardiolipin-
rich environment (Paradies et al., 2014). The physiological function
of αSyn at the ETC is not fully understood, but several lines of
evidence suggest that αSyn might stabilise complex I-III electron
transfer (Ellis et al., 2005; Devi et al., 2008).

One of the most important processes that αSyn interferes
with is vesicular trafficking between the endoplasmic reticulum
(ER), the Golgi apparatus (Golgi), and the endosomal shuttle
network (Thayanidhi et al., 2010; Teixeira et al., 2021). In several
PD models, αSyn was found to interact with membrane fusion
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factor Rab1 and its homologues, which are associated with
ER-Golgi trafficking (Cooper et al., 2006). While the study from
Cooper et al. (2006) mainly focused on the detrimental interplay
of αSyn with proteins involved in ER-GA transport, previous
studies suggested a physiological function of αSyn for soluble
N-ethylmaleimide-sensitive-factor attachment receptor (SNARE)-
dependent membrane fusion events (Burré et al., 2010; Yoo et al.,
2023). Accordingly, experiments in S. cerevisiae expressing human
αSyn showed that the Rab1 homologue Ypt1 colocalises with
cytosolic αSyn-accumulations (Soper et al., 2011). Human wild-
type αSyn also co-localises with several other yeast Rab proteins,
involved in intra-Golgi trafficking, such as Ypt6, Ypt31, and Ypt32
(Soper et al., 2011). In the endo-lysosomal system, αSyn was found
to be in close proximity to transport vesicles (Lee et al., 2011;
Huang et al., 2019) as well as important factors, such as RAB5A,
RAB7, and RAB11A, which play a role in endosomal trafficking
(Hasegawa et al., 2011). αSyn being involved in this pathway
is supported by the high amounts of anionic, phosphorylated
phosphoinositides that comprise endosomal transport vesicles,
to which αSyn demonstrates an exceptionally high affinity
(Jacob et al., 2021b; Choong et al., 2023).

One of the earliest discovered key functions of αSyn is its
involvement in synaptic vesicle trafficking and exocytosis at the
pre-synapse (reviewed in (Sharma and Burré, 2023; Nordengen
and Morland, 2024)). In fact, the majority of αSyn is found at
pre-synaptic axon terminals in adult animals (Maroteaux et al.,
1988; Hsu et al., 1998). In order to reach its destination, αSyn
is transported along the axon via the slow component b (SCb)
(Tang et al., 2012). Besides αSyn, SCbwas shown tomainly transport
proteins critical for axon growth and regeneration, as well as
synaptic function (Roy et al., 2007). Interestingly, the translocation
of αSyn to the synapse is also dependent on its association with
lipid rafts (Fortin et al., 2004).

At the axon terminal, αSyn was found to play an important,
but not essential, role in the life cycle of synaptic vesicles (SV),
primarily, but not exclusively, in dopaminergic neurons (reviewed
in (Nordengen and Morland, 2024)). During preparation of SV
secretion, αSyn participates in different steps, such as monoamine
transmitter loading, vesicle docking and - priming (Pifl et al., 2014;
Huang et al., 2019). In vesicle priming, αSyn was shown to interact
with different proteins that facilitate the fusion of SV and the plasma
membrane, e.g., SNARE proteins and the previously mentioned Rab
proteins (Burré et al., 2010; Lou et al., 2017). In these processes,
the N-terminus of αSyn is proposed to remain in close proximity
to the SV membranes, due to its high affinity to anionic and
highly curved membranes, while the C-terminus is thought to
interact with other proteins (Jensen et al., 1999; Payton et al., 2004;
McFarland et al., 2008). Recent data in different cell types show that
the localisation of αSyn to the plasmamembrane is highly dependent
on the abundance of phosphatidylinositol polyphosphates, namely,
phosphatidylinositol bisphosphates (PIP2) and phosphatidylinositol
trisphosphates (PIP3) (Jacob et al., 2021b). Subsequently, αSyn is
also involved in the fusion of SVs and, thereby, the release of
neurotransmitters. The presence of αSyn was shown to expand the
exocytotic fusion pore at the synapse, favouring full membrane
fusion over the faster “kiss-and-run” mechanism (Khounlo et al.,
2021). In order to keep the SV pools balanced, αSynwas suggested to

aid with endocytosis by introducing higher curvature to the synaptic
plasma membrane (Westphal and Chandra, 2013).

αSyn demonstrates a high variety of localisations and putative
physiological functions across the neuron, from soma to axon
terminal (Summarised in Figure 2). In PD and LBD, aggregated
forms of αSyn that contribute to disease pathology were found
to be in close proximity to the beforementioned organelles and
pathways (Miraglia et al., 2018; Moors et al., 2021). This underlines
the importance of a strict regulation of putative physiological
functions of αSyn in affected cellular compartments. Even though
interactions with multiple organelles and transport pathways may
appear arbitrary at first glance, a shared characteristic unites these
diverse localisations of αSyn. αSyn seems to play a key role in
general vesicle organisation and membrane fusion events. This was
especially observed in highly curved membrane regions rich in
anionic phospholipids, such as SVs, general endolysosomal vesicles,
or even mitochondria with externalised cardiolipin (Ryan et al.,
2018). Given that the above described αSyn-membrane interactions
play such a considerable role in αSyn’s putative impact on a variety
of neuronal functions, dysregulation of these interactions might be
likely to contribute to the generation and/or progression of αSyn
related neurodegenerative diseases.

4 Synucleinopathies and lipids

4.1 PD and lipid changes

The most common synucleinopathy is PD, which is commonly
associated with neurodegeneration of dopaminergic neurons in
the substantia nigra (SN) and the formation of LBs (Kalia and
Lang, 2015). Analyses of patient tissue have revealed that the lipid
composition of the brain is changed. These changes include, for
example, an increase of diacylglycerols (DAGs) in the frontal cortex
of PD patients (Wood et al., 2018). Lipidomic analysis of the visual
cortex of PD patients revealed a dramatically altered lipid profile
when compared to control brains. These changes include a decrease
of unsaturated phosphatidylethanolamine (PE) and differences in
the amount of phosphatidylinositol (PI), depending on its fatty acid
(FA) chain lengths (Cheng et al., 2011). Similar observations were
made when lipidomic analyses were performed upon expression
of αSyn in several model systems, where an increase in DAG
together with a decrease of several membrane lipid species such
as phosphatidylserine (PS) and PI was found (Fanning et al., 2019).
Taken together, this suggests that αSyn (-aggregation) may change
the lipid composition of the brain.

It is also known that αSyn-lipid interactions depend on the
membrane lipid composition. For example, it was shown that
increasing the amount of negatively charged gangliosides (GMs)
of small unilamellar vesicles (SUVs) in vitro increased membrane
binding of αSyn (Man et al., 2021). Further in vitro studies revealed
that the amount of anionic lipids is crucial for αSyn-membrane
interactions (Davidson et al., 1998; Andersson et al., 2024) and that
more αSyn is able to bind to anionic deformable SUVs, showing that
the charge, the flexibility, and the curvature of membranes influence
αSyn binding (Andersson et al., 2024; Makasewicz et al., 2024).
Furthermore, the interaction of αSyn with membrane lipids was
proposed to contribute to aggregate formation (Auluck et al., 2010;
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FIGURE 2
Proposed physiological interactions of αSyn across the neuron. In the cell, αSyn acts in various compartments including the nucleus (Nuc),
endoplasmic reticulum (ER), Golgi apparatus (Golgi), early endosomes (EE), lysosomes (Lyso) and mitochondria (Mito). In mitochondria, αSyn localises
in the intermembrane space (IMS) in close proximity to electron chain complex I and III (box on the left). αSyn shuttles between soma and synapse via
axonal transport via the slow component b. At the synapse, αSyn plays a role in various steps of the entire life cycle of synaptic vesicles (SV). Further
interaction details are depicted as text boxes in the figure.

Galvagnion et al., 2015). However, other studies have shown that
this interaction can prevent αSyn fibril formation (Zhu and Fink,
2003; Martinez et al., 2007). It is important to note that these studies
have all been conducted in vitro and in correlationwith different lipid

compositions. While the ratio of PS, phosphatidylcholine (PC), and
PE contributed to amyloid aggregation (Galvagnion et al., 2015),
interaction with the ganglioside GM1 inhibited it (Martinez et al.,
2007). Indeed, GM1 levels were shown to be decreased in brains
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of PD patients (Hadaczek et al., 2015). Studies on mice deficient
for the GM2-synthase, were shown to exhibit PD-like symptoms,
which could be alleviated by treatment with LIGA-20, an analogue
of GM1 that is able to cross the blood brain barrier (BBB) (Wu et al.,
2011). Therefore, the overall lipid composition might not only
have a great influence on αSyn membrane interaction but also
on αSyn oligomerisation and fibril formation, by either inducing
or preventing it. Interestingly, PD-associated mutations of αSyn
have been shown to exhibit differential membrane interaction
properties (Battis et al., 2023).

Furthermore, some genetic risk factors for PD that are
involved in membrane lipid metabolism continue to be identified.
One of the most prominent examples are mutations of the
GBA1 gene, coding for the hydrolase glucocerebrosidase (GCase)
(Aharon-Peretz et al., 2004; Neumann et al., 2009; Galper et al.,
2022; Flores-Leon and Outeiro, 2023). GBA1 mutations include
T369M, T297S, and E326K, among others and cause a reduced
activity of the lysosomal GCase (Dos Santos et al., 2024). This
is associated with an increased risk for PD (Flores-Leon and
Outeiro, 2023; Dos Santos et al., 2024). The GCase hydrolyses
glucoceramide to glucose and ceramide in the lysosome and,
thus, plays a role in sphingolipid metabolism (Gegg et al., 2022).
However, the exact mechanisms of how this leads to PD are
still unclear. It is thought that a reduced activity of the GCase
inhibits lysosomal function and, thereby, leads to an increased
amount of protein aggregation, including aggregation of αSyn
(Johnson et al., 2020). It was further shown that αSyn aggregation
depends on the FA chain length of GCase substrates; only FA
chains longer than C22 induced aggregation (Fredriksen et al.,
2021). Conversely, GCase activation enhanced lysosomal activity,
which induced clearance of αSyn aggregates (Mazzulli et al., 2016).
Interestingly, homozygous mutations of GBA1 are known to cause
Gaucher’s disease (GD), in which symptoms overlap with symptoms
known in PD (Johnson et al., 2020).

Another risk factor for PD that is associated with lipid
metabolism is Synaptojanin 1 (SYNJ1), which is a PIP-
phosphatase (Krebs et al., 2013; Quadri et al., 2013; Olgiati et al.,
2014; Ben Romdhan et al., 2018; Schechter and Sharon, 2021).
SYNJ1 is part of several pathways involving vesicular structures
such as endocytosis (Perera et al., 2006), endosomal trafficking
(Watanabe et al., 2018), and autophagy (George et al., 2016;
Vanhauwaert et al., 2017). Mutations in SYNJ1’s PIP-phosphatase
domain but also other domains are associated with an increased
risk for developing PD (Ben Romdhan et al., 2018; Taghavi et al.,
2018; Schechter and Sharon, 2021). Again, the exact mechanisms
that cause an increased risk for PD are still unclear. It is thought
that synaptic dysfunction, caused by SYNJ1 mutations, may trigger
neurotoxicity (Brooker et al., 2024). Additionally, mutations of
SH3GL2, which encodes for the SYNJ1 binding partner endophilin
A1, have also been identified as risk factors for PD (Nalls et al., 2019;
Brooker et al., 2024). Similarly,mutations inLRRK2, a protein kinase
that phosphorylates SYNJ1 and is involved in endocytosis (Pan et al.,
2017; Schechter and Sharon, 2021) and autophagy (reviewed in
(Madureira et al., 2020)) have been identified as risk factors for PD
(Summarised in Table 1). Again, detailed molecular mechanisms
remain unclear. Taken together, dysregulation of lipid homeostasis,
whether directly or indirectly, is likely to affect cellular function and,
thus, contributes to PD formation and/or progression.

As most data on αSyn and lipid homeostasis exist in the context
of PD, little is known about lipid changes, maybe even in other
brain regions, that may also be altered in other synucleinopathies.
The question here is whether similar changes in lipid composition
might be a common factor in all synucleinopathies and whether
changes occur in different regions of the brain, which might explain
the differences between the synucleinopathies. Lastly, whether
and how the lipid composition influences aggregate conformation
known to vary in different synucleinopathies still needs to be
investigated.

4.2 DLB and lipid changes

Formation of LBs and a loss of dopaminergic neurons of the SN,
together with a reduction of cortical neurons and neurons of the
limbic system, are commonly associated with DLB (Outeiro et al.,
2019). In DLB, LBs can also be found in different regions
of the brain besides the SN, such as the neocortex and the
limbic system (Outeiro et al., 2019). There is still very little data
connecting changes in lipid homeostasis to DLB but a few genetic
risk factors are known that overlap with risk factors for PD.

The most common genetic risk factors for DLB, shared with PD,
are mutations of GBA1, causing changes in the functionality of the
GCase, a dysregulation of sphingolipid metabolism, and changes in
autophagy function (see above) (Lee et al., 2021). It was suggested
that mutations of GBA1 may even have a stronger association to
DLB than to PD (Nalls et al., 2013; Lee et al., 2021). Another risk
factor involved in lipid homeostasis that is associated with DLB
is the presence of the APOE ε4 isoform of the apolipoprotein E
(APOE) (Tsuang et al., 2013; Bras et al., 2014). APOE has three
isoforms (ε2, ε3, and ε4) and is mainly expressed in astrocytes.
It plays a role in cholesterol and lipid transport across the brain,
which is important for neuronal function (Yamazaki et al., 2019;
Jin et al., 2022). Interestingly, the presence of the APOE ε4 isoform
has also been associated with Alzheimer’s Disease (AD) (Lee et al.,
2021; Pires and Rego, 2023; Fortea et al., 2024; Lozupone and Panza,
2024). An inefficient lipid transport from astrocytes to neurons is
known to change neuronal lipid composition (Lefterov et al., 2019;
Miranda et al., 2022). Interestingly, it was found in the context of
AD, that carriers of the APOE ε4 allele have reduced levels of
PIP2, which was explained by a decreased degradation of the SYNJ1
mRNA (Zhu et al., 2015). As mentioned above, mutations in SYNJ1
itself are known risk factors for PD (Krebs et al., 2013; Quadri et al.,
2013; Olgiati et al., 2014; Ben Romdhan et al., 2018; Schechter and
Sharon, 2021), however, whether this is also the case for DLB is
still unclear. Further research into a possible connection of SYNJ1
mutations andDLBwould help to clarify this.Maybe unsurprisingly,
DLB is often not clearly distinguishable from AD (dementia
only) or PD (Parkinsonism with dementia) (Noe et al., 2004;
Jellinger and Korczyn, 2018; Nedelec et al., 2023) (Summarised
in Table 1).

In general, the presence of αSyn itself is already changing the
cellular lipid composition (see above), and, thus, it might be likely
that this is also the case in other synucleinopathies.The combination
of genetic factors that change the cellular lipid profile might be one
of the factors leading to or accelerating disease progression.
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TABLE 1 Summary of lipid-related connections to αSyn pathology in PD, DLB, and MSA.

α-Synucleinopathy Affected brain
region

Connection to lipids
(including genetic
factors)

Aggregates found References

Parkinson’s Disease (PD) • Dopaminergic neurons of
the substantia nigra (pars
compacta)

Patient data
• Increase of DAG in the frontal
cortex of PD patients

• General change of the lipid profile
of the visual cortex of PD patients
including a decrease of
unsaturated PE and FA-chain
length dependent changes in the
amounts of PI

• Decrease of GM1 in brains of PD
patients
In vitro studies

• αSyn has a higher binding affinity
to negatively charged/anionic
membrane lipids and to vesicular
membranes

• PS, PC, and PE to αSyn ratio
contributes to amyloid
aggregation

• GM1 inhibits amyloid aggregation
In vivo studies

• Increase of DAG, decrease of PS
and PI

• GM2-synthase deficient mice
show PD-like symptoms, which
can be alleviated by
GM1-analogue treatment
Genetic risk factors

• Mutations of GBA1
• Mutations of SH3GL2
• Mutations of LRRK2

• Formation of Lewy Bodies (LBs)
and Lewy Neurites

• Aggregates contain a Lewy fold:
three layered aggregates
comprised of residues 31–100 of
αSyn that form a total of 9 β-sheet
strands

Davidson et al. (1998),
Aharon-Peretz et al. (2004),
Martinez et al. (2007),
Neumann et al. (2009),
Cheng et al. (2011),
Wu et al. (2011), Krebs et al.
(2013), Quadri et al. (2013),
Olgiati et al. (2014),
Galvagnion et al. (2015),
Hadaczek et al. (2015),
Kalia and Lang (2015),
Ben Romdhan et al. (2018),
Wood et al. (2018),
Fanning et al. (2019),
Johnson et al. (2020),
Man et al. (2021), Schechter
and Sharon (2021),
Galper et al. (2022),
Gegg et al. (2022),
Yang et al. (2022),
Flores-Leon and Outeiro
(2023), Andersson et al.
(2024), Dos Santos et al.
(2024), Makasewicz et al.
(2024)

Dementia with Lewy
Bodies (DLB)

• Neocortex
• Limbic system
• Dopaminergic neurons of
the substantia nigra (pars
compacta)

Patient data
• Decrease of several phospholipids
in brains of APOEε4 carriers (in
the context of AD)

• In the context of AD: reduced
levels of PIP2
In vivo studies

• In the context of APOE ε4 KI
mice: reduced levels of PIP2 and
reduced degradation of
SYNJ1mRNA
Genetic risk factors

• Mutations of GBA1
• Carriers of APOEε4

• Formation of LBs and LNs
• Aggregates contain a Lewy fold:
three layered aggregates
comprised of residues 31–100 of
αSyn that form a total of 9 β-sheet
strands

Nalls et al. (2013), Zhu et al.
(2015), Lefterov et al.
(2019), Outeiro et al.
(2019), Lee et al. (2021),
Yang et al. (2022)

Multiple System Atrophy
(MSA)

• MSA-P (with
parkinsonism): midbrain
and basal ganglia

• MSA-C (with cerebral
ataxia): midbrain,
cerebellum, and brainstem

Patient data
• Low serum levels of cholesterol,
LDL-C, HDL-C (lower in MSA-C
patients), and TG are associated
with both, MSA-C and MSA-P,
but have no effect on disease
progression
In vivo studies

• Transcriptome analysis of striatal
astrocytes of a MSA mouse model
revealed a downregulation of
genes involved in lipid
metabolism
Genetic risk factors

• inconclusive
• weak connection to APOE ε4

• Formation of glial cytoplasmic
inclusions (GCIs) in
oligodendrocytes

• Aggregates form asymmetrical
Type I or Type II filaments

• Type I filaments are made of two
protofibrils: PF-1A is formed by
residues 14–94 and contains 12
β-sheets and PF-1B is formed by
residues 21–99 and contains ten
β-sheets

• Type II filaments are made of two
protofibrils: PF-IIA is formed by
residues 14–94 and also contains
12 β-sheets but has a different
conformation to PF-IA. PF-IIB is
formed by residues 36–99 and
contains nine β-sheets

Lee et al. (2009), Cao et al.
(2014), Robinson et al.
(2018), Schweighauser et al.
(2020), Poewe et al. (2022),
So and Watts (2023),
Schneider et al. (2024)
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4.3 MSA and lipid changes

MSA is a rare neurodegenerative synucleinopathy and, in
contrast to PD and DLB, associated with the formation of αSyn
aggregates in oligodendrocytes referred to as glial cytoplasmic
inclusions (GCIs) (Spillantini et al., 1998; Poewe et al., 2022).
One of the hallmarks of MSA is a demyelination of neurons,
which is connected to GCI-formation (Poewe et al., 2022).
Myelin, multiple layers of membranes looped around the axon,
contains a higher proportion of cholesterol and glycolipids (e.g.,
glycosylceramide) than other cellular membranes (Baumann and
Pham-Dinh, 2001; Poitelon et al., 2020).

Little is known about the connections between GCI formation
and the unique lipid composition of myelin sheaths in the
context of MSA. It was shown that lower cholesterol levels and
lower levels of LDL-C and HDL-C in patient serum have been
connected to an increased risk of developing MSA (Lee et al., 2009;
Cao et al., 2014). However, it is known that lipoproteins carrying
cholesterol outside the central nervous system do not cross the
blood brain barrier (BBB) and that cholesterol in the brain is mainly
synthesised in astrocytes (Bleasel et al., 2014; Pifferi et al., 2021;
Li et al., 2022). Thus, the connections between serum cholesterol
levels and lipid changes in the brain during MSA remain elusive
on a molecular level. In an MSA mouse model, transcriptome
analyses of astrocytes implicated a dysregulation of cellular lipid
metabolism (Schneider et al., 2024). This might point towards a
changed lipid homeostasis inMSAbut needs to be investigatedmore
thoroughly.

Genetic risk factors for MSA that connect to lipid homeostasis
are currently unknown.There are inconclusive studies on the genetic
background of MSA (Poewe et al., 2022). Interestingly, one study
suggests that the frequency of MSA-patients carrying the APOE ε2
isoform is lower than the frequency of MSA patients carrying the
APOE ε4 isoform (Robinson et al., 2018) (Summarised in Table 1).

Taken together, MSA remains the rarest and, in terms of
connection to lipids, the most elusive synucleinopathy, mostly due
to the inconclusive evidence for a genetic background. Nevertheless,
more research effort has to be directed towards understanding the
differences or similarities between PD, DLB, and MSA.

5 Lipid changes in physiological
ageing

Given that ageing is one of the biggest risk factors for
developing neurodegenerative diseases such as PD, and that
most neurodegenerative diseases occur sporadically, it is of great
interest to understand lipid changes in the aged brain. While
there has been a lot of research effort to better understand
disease-related lipid changes in the brain, less is known about
the possible lipid changes during physiological ageing. Very early
studies analysing whole brains have described a general decline
of total lipids with age (Rouser and Yamamoto, 1968; Mesa-
Herrera et al., 2019). Later, analyses of white matter and cerebral
cortices of the temporal and frontal lobes confirmed these findings
(Svennerholm et al., 1991). More specific analyses of lipid classes
revealed, for example, a reduction of polyunsaturated fatty acids
(PUFAs) in the orbitofrontal cortex with age (McNamara et al.,

2008). A more recent study has found that, while the overall lipid
concentrations in the prefrontal cortex remain at a similar level
with age, the lipid profile itself undergoes changes with a transition
point of about 50–55 years of age. Some affected pathways were
shown to be unsaturated fatty acid biosynthesis and glycerolipid
metabolism, with differences between males and females (Yu et al.,
2020). Interestingly, regional lipid profile diversity was also shown
to change with age (Mota-Martorell et al., 2022). However, given the
complexity of the brain, lipid changes in the physiologically ageing
brain are still not clearly understood. Being able to differentiate
between changes in healthy ageing and changes that might be part
of, or even precede, pathological processes of neurodegeneration is
of great importance to prevent and/or treat these diseases.

In an effort to find potential disease markers for PD, a
significant amount of research has been focusing on lipidomic
analyses of patient serum. For example, serum analyses of patients
carrying the A53T mutation of SNCA revealed an increase of
diacylglycerol, triacylglycerol, and PC (Avisar et al., 2022). Similarly,
a decrease of serum levels of HDL-C was found in patients with
PD (Choe et al., 2021). Furthermore, patients carrying a mutation
in LRRK2 showed changes in ceramide (Cer), TAG, sphingomyelin,
PC, and lyso-phosphatidylethanolamine (LPE) (Galper et al., 2022).
Analysis of samples from patients with idiopathic PD showed
similar findings with lower levels of PS, some Cer species, and
Sphingomyelin (SM) (Dahabiyeh et al., 2023). While these findings
might pave the path to potential serum markers for disease, this
is only the beginning of more extensive research to come. The
challenge here is to find common markers that are reliably enough
for all variants of PD, as it is a disease caused by multiple factors,
many of which have not yet been completely understood.

6 Lipid interactions and possible
influences on aggregate formation

Interestingly, it is known that different synucleinopathies
exhibit different fibrillar αSyn conformations. These conformational
differences are referred to as αSyn strains and, similarly to what is
already known in prion diseases, they show different characteristics
in terms of disease progression (Prusiner, 2012; Bousset et al.,
2013; Peng et al., 2018; Woerman et al., 2019). When comparing
LBs to GCIs from MSA patients, for example, the conformation
of the accumulations was shown to be clearly distinct from
each other (Peng et al., 2018; Shahnawaz et al., 2020). Indeed, two
types of filaments were found in MSA patient brain extracts:
Type I filaments were larger and showed a distinct folding
when compared to the smaller Type II filaments. Both filaments
were found to be asymmetrical and made of two protofilaments
each. These protofilaments contain between 9 and 12 β-sheets
(Schweighauser et al., 2020; So and Watts, 2023). αSyn filaments
derived from patients with DLB or PD, on the other hand, showed
identical conformations containing an ordered core called the Lewy
fold, which is a three-layered aggregate with a total of nine β-
sheets formed by residues 31–100 (Table 1) (Yang et al., 2022). In
vitro, recombinant αSyn showed a larger variation in aggregate
conformation, depending on chemical conditions under which the
aggregations were formed (So and Watts, 2023). These variants
exhibited different effectivities of prion-like seeding properties
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(Walker and Jucker, 2015; Goedert et al., 2017), e.g., the propagation
from cell to cell within the brain (Torre-Muruzabal et al., 2023).

However, the reason for these conformational differences
that cause different disease phenotypes in synucleinopathies are
not well understood. It is known that αSyn aggregation can
be triggered by interaction with lipids (Makasewicz et al., 2024).
Using in vitro membrane models including small unilamellar
vesicles (SUVs), giant unilamellar vesicles (GUVs), and flat
supported lipid bilayers, it was shown that lipid interaction
of αSyn can induce nucleation of aggregates (Grey et al., 2011;
Galvagnion et al., 2015; Makasewicz et al., 2021; Dear et al., 2024).
These processes are dependent on the lipid composition of
the vesicular structures investigated, the amount of negatively
charged lipids, membrane fluidity, and membrane curvature
(reviewed in (Makasewicz et al., 2024)).

Furthermore, familial variants of αSyn are found to be N-
terminally acetylated in LBs (Anderson et al., 2006). Recently, it was
shown that N-terminal acetylation of familial variants of αSyn can
change the structure of the fibrillar aggregates and the lipid binding
properties individually for each investigated variant (Bell et al.,
2023). These findings point towards highly complex processes
involved in the formation of synucleinopathies, implicating, among
others, lipid composition, post-translational modifications, and
possible mutations of SNCA.

Based on this, it might not be unlikely that changes in cellular
lipid composition, occurring with age, through mutations in genes
involved in lipid homeostasis, or through individual lifestyle and
environmental factors, influence disease onset, variation, severity,
and progression. Thinking a little further, this might even mean
that differences of lipid compositions within a single brain (Mota-
Martorell et al., 2022) could explain regional specificity of protein
aggregates and symptom-phenotype variations. Indeed, it was
recently found that distinct aggregate variants can be found in
different brain regions (Wiseman et al., 2024). Taken together,
understanding changes in the lipid composition of different brain
regions and how this affects disease is likely to be one of the
significant steps towards understanding the progression and onset
of synucleinopathies. An improved understanding of the underlying
processes will open new paths towards treatment or even disease
prevention.

7 Discussion

The putative physiological functions and membrane binding
properties of αSyn and processes during neurodegeneration
are strongly connected to lipid changes in the brain.
While synucleinopathies are all known to be multifactorial
neurodegenerative diseases, it is possible that some of the factors
currently recognised as contributing to disease development and
progression might be rooted in changes in lipid metabolism or
membrane lipid composition (Reviewed in (Flores-Leon and
Outeiro, 2023)). For example, it was shown that a lack of the
well-established risk factor for PD PINK1 causes an accumulation
of ceramides in the mitochondrial membrane, inhibiting β-
oxidation and causing degradation of mitochondria via mitophagy
(Vos et al., 2021; Flores-Leon and Outeiro, 2023). Even though the

exact physiological roles of αSyn still remain to be determined,
much progress has been made. With the help of advanced analytical
methods, understanding the connection between lipid changes
(storage, metabolism, lipid rafts, membrane composition) and αSyn
is of importance to provide a deeper insight into the ever-increasing
complexity of synucleinopathies.

Individual genetic risk factors, environmental and nutritional
factors, and ageing, might all have an impact on the lipid
composition of the brain. To date, very little is known about
lipid-changes during physiological ageing although understanding
these processes might be key to develop new research approaches
for prevention or treatment of synucleinopathies. Furthermore,
being able to distinguish between physiological lipid changes and
alterations that contribute to disease progression will contribute
substantially to future research of neurodegeneration.More progress
is needed to understand regional lipid changes and their potential
impact on disease development. Considering that these changes
may result from a combination of several factors that are likely to
be individual for each affected person, personalised assessments
and treatments should be considered in the future. If different
lipid compositions affect aggregate conformation and, with that,
influence the rate of disease progression and spread throughout the
brain, it might potentially open new ways of disease prevention or
inspire novel therapeutical approaches.

A lot of research has already been conducted on future
therapeutical or preventative treatments. One approach, for
example, is the use of lipidic nanoparticles for drug delivery
(Tsakiri et al., 2024), which could be adapted for targeting lipid
changes in the brain, a concept referred to as membrane lipid
therapy (Escriba et al., 2015). However, for that, we require a deeper
understanding of the molecular mechanisms of lipid changes in
synucleinopathies. Othermajor challenges that need to be addressed
are ways to diagnose and classify neurodegenerative diseases such as
synucleinopathies earlier and before the onset of clinical symptoms.
Here, we can expand on the research efforts into finding reliable
early biomarkers for PD such as, for example, αSyn seeding assays
of cerebrospinal fluid (Orru et al., 2021; Rutledge et al., 2024).

Although a lot of factors connected to disease formation
are already well understood, the influence of lipids on these
processes have only recently gained more attention. Taken together,
future research efforts should be made to (i) better understand
differences between lipid changes that occur during physiological
aging and lipid changes associated with pathological processes; (ii)
to understand how regional differences in the lipid composition
might contribute to aggregate localisation and conformation and,
with that, influence the speed of disease progression and symptom
variations; (iii) and to find reliable markers that can detect
pathological processes earlier. Viewing synucleinopathies through
the lens of lipid alterations alongside other well-established disease
contributors possibly holds the potential to find novel approaches in
disease diagnosis and therapy.
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