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Background and Aims: This study aimed to develop a prognostic model based
on DNA methylation-driven genes for patients with early-stage gastric cancer
and to examine immune infiltration and function across varying risk levels.

Methods:We analyzed data from stage I/II gastric cancer patients in The Cancer
Genome Atlas which included clinical details, mRNA expression profiles, and
level 3 DNA methylation array data. Using the empirical Bayes method of
the limma package, we identified differentially expressed genes (DEGs), and
the MethylMix package facilitated the identification of DNA methylation-driven
genes (DMGs). Univariate Cox regression and LASSO (least absolute shrinkage
and selector operation) analyses were utilized to pinpoint critical genes. A risk
score prediction model was formulated using two genes that demonstrated the
most significant hazard ratios (HRs). Model performance was evaluated within
the initial cohort and verified in the GSE84437 cohort; a nomogram was also
constructed based on these genes. We further examined 50 methylation sites
associated with three CpG islands in C1orf35 and 14 methylation sites linked
to one CpG island in FAAH. The CIBERSORT package was employed to identify
immune cell clusters in the prediction model.

Results: A total of 176 DNA methylation-driven genes were refined down to a
four-gene signature (ZC3H12Awas hypermethylated; GATA3, C1orf35, and FAAH
were hypomethylated), which exhibited a significant correlation with overall
survival (OS), as evidenced by p-values below 0.05 following univariate Cox
regression and LASSO analysis. Specifically, for the risk score prediction model,
C1orf35, which had the highest hazard ratio (HR = 2.035, p = 0.028), and
FAAH, with the lowest hazard ratio (HR = 0.656, p = 0.012), were selected.
The Kaplan–Meier analysis demonstrated distinct survival outcomes between
the high-risk and low-risk score groups. The model’s predictive accuracy was
confirmed with an area under the curve (AUC) of 0.611 for 3-year survival and
0.564 for 5-year survival. Notably, the hypomethylation of the three CpG islands
in C1orf35 and the single CpG island in FAAH was significantly different in stage
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I/II gastric cancer patients compared to normal tissues. Additionally, the high-risk
score group showed a notable association with resting CD4 memory T cells.

Conclusion: Promoter hypomethylation of C1orf35 and FAAH in early-stage
gastric cancer underscores their potential as biomarkers for accurate diagnosis
and treatment. The developed predictive model employing genes affected by
DNA methylation serves as a crucial independent prognostic factor in early-
stage gastric cancer.
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Introduction

Gastric cancer is globally recognized as the sixth most prevalent
type of cancer and ranks as the seventh leading cause of cancer-
related mortality, as reported by the World Health Organization
(WHO) (https://gco.iarc.who.int/Data version: Globocan 2022
(version 1.1) 08.02.2024). The primary treatment strategy for this
malignancy is surgery. The survival rates of patients undergoing
potentially curative surgery vary significantly, influenced by factors
such as the stage of the cancer at diagnosis and the quality
of the surgical procedure (Huang et al., 2022; Orman and Cayci,
2019). Despite achieving successful R0 resections, which indicate
no residual microscopic disease, some patients may experience
recurrence due to previously undetected micro-metastases. To
address this, gastrectomy followed by adjuvant chemotherapy
is frequently utilized to diminish the risk of recurrence. Prior
research highlights the significant role of adjuvant chemotherapy
in enhancing outcomes for patients with treatable advanced
gastric cancer (Sakuramoto et al., 2007; Nakajima et al., 2010).
While many patients with stage I or II gastric cancer experience
positive outcomes following either endoscopic or traditional
surgical interventions, the prognosis for others remains poor
(Miyahara et al., 2022). Recent studies have focused on identifying
clinicopathological factors associated with overall survival (OS) in
the early stages of gastric cancer (Ikoma et al., 2016; Bausys et al.,
2018; Aoyama et al., 2014; Saito et al., 2016), yet the genetic markers
predictive of prognosis at these stages are still not well-defined. The
identification of such predictive markers is essential for improving
survival forecasts for patients with early-stage gastric cancer.

Alterations in DNA methylation, including increased
methylation of tumor-suppressor genes (Manel, 2002) and
decreased methylation of oncogenes (Feinberg and Vogelstein,
1983), play a pivotal role in the pathogenesis of various cancers,
including gastric cancer (Tahara and Arisawa, 2015; Calcagno et al.,
2013). Genes such as SFRP2, THBS1, and UCHL1, which exhibit
aberrant methylation patterns, could be crucial in determining
the prognosis of gastric cancer (Yan et al., 2021; Hu et al., 2021;
Wang et al., 2015). The tumor microenvironment (TME) is
a complex network, and earlier research has suggested that
tumor-infiltrating immune cells (TIICs) significantly influence
the initiation, progression, and clinical outcomes of cancer.
Additionally, the responses of innate and adaptive immune systems
are critical determinants of the efficacy of immunotherapies
(Steidl et al., 2010; Guo et al., 2021; Seager et al., 2017). Recent
studies have elucidated the interaction between DNA methylation

and tumor immunity, revealing that DNA methylation regulation-
related genes (DMRegs) have potential effects on immune
cell infiltration, the TME, and the efficacy of immunotherapy
in hepatocellular carcinoma (HCC) patients. High scores in
DMRegs, characterized by the predominance of TP53 wild-
type mutations, elevated expression of PD-1 and CTLA-4, and
marked immune activation, correlate with a poor prognosis
(Song et al., 2022). Another study also confirmed the significant
role of DNA methylation in influencing tumor immunity, although
its comprehensive impact on TME formation and immune
activation remains to be fully elucidated (Yuan et al., 2022; Suarez-
Alvarez et al., 2012). These findings underscore the close
relationship between DNA methylation and immune regulation,
meriting further investigation. However, the specific effects of
DNA methylation on the prognosis of early gastric cancer and the
functionality of TIICs remain ambiguous. Consequently, further
research into DNA methylation could offer valuable insights into
this field.

This study aims to identify genes regulated by DNA
methylation and explore the relationship between these DMGs
and TIICs, which may serve as prognostic indicators for
patients with stage I or II gastric cancer. This research could
significantly enhance our understanding of the characteristics of
tumor microenvironment cell infiltration and inform treatment
strategies. Our findings suggest that methylation modifications of
several genes are intricately linked to the early development of
gastric cancer.

Material and methods

TCGA DNA methylation and gene
expression data

We procured level 3 DNA methylation and mRNA expression
datasets, along with corresponding clinical data for stage I/II
gastric cancer, from TCGA (Atlas, 2014). This included mRNA
expression data for 164 tumor and 32 normal tissues and
DNA methylation data for 189 tumor and 27 normal tissues
(Zhu et al., 2014). Clinical details such as age, gender, and stage
were also collected (Table 1). Both the methylation and mRNA
expression data were generated using the Illumina Infinium
Human Methylation450 BeadChip and Illumina GA_RNASeq
V2.1.0.0 platforms, respectively (Illumina, Inc., San Diego, CA,
United States).
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TABLE 1 Clinical characteristics of the study population.

Clinicopathological
parameter

Training
cohort
(TCGA)

Validation
cohort

(GSE84437)

P-
value

Age, years

<65 77 93 <0.001

≥65 109 57

Sex

Male 121 100 0.612

Female 68 50

T stage

T1, T2 91 40 <0.001

T3, T4 98 110

N stage

N0 125 79 0.005

N+ 60 71

Identification of DEGs between GC and
normal tissues

Employing the limma package in R (Smyth et al., 2005), we
identifiedDEGsbetween tumorandnormalgastric tissues.Expression
fold-change (FC) was calculated, and DEGs were selected based on a
significance threshold of p < 0.05 and |log2FC| ≥ 0.585.

Comprehensive analysis of DNA
methylation and gene expression

To identify differentially hyper- and hypomethylated genes, we
used the MethylMix package in R (Gevaert, 2015; Cedoz et al.,
2018). DMGs were classified as those if they satisfied the following
criteria: p < 0.05, |log2FC| ≥ 1 and cor ≤ −0.3. The MethylMix
analysis was conducted in three stages: initially, we overlaid cancer
DNA methylation data with corresponding data of gene expression
for pinpointingmethylation changes impacting gene expression. For
additional examination, we only chose those genes satisfying the
criteria for correlation filtering. Next, we implemented a beta mixed
model to describe the methylation patterns across an extensive
cohort of patients, reducing requirements for a preset threshold.
Finally, we employed theWilcoxon rank-sum test for contrasting the
DNA methylation levels between gastric cancer and normal tissues.

Univariate Cox regression analysis

Utilizing the Survival package in R, we carried out a
univariate Cox regression analysis. This analysis focused on DMGs

correlated with patient outcomes, calculating hazard ratios and
their confidence intervals. We set the significance at a p-value
less than 0.05.

Identifying critical DNA methylation-driven
genes via LASSO

We utilized LASSO analysis to explore how the expression of
genes influenced by DNA methylation correlates with prognosis.
This method effectively identified key genes driven by DNA
methylation that are significantly linked to prognosis, enhancing the
model’s accuracy and minimizing the likelihood of overfitting.

Development and validation of the risk
score model

From the univariate Cox regression and LASSO analyses, we
selected the two methylation-driven genes with the highest or
lowest hazard ratios to develop a risk score prediction model. This
model utilized a linear combination of gene expression levels, each
weighted by coefficients derived from multivariate Cox regression
analysis. Employing this model, we split gastric cancer patients
into categories of high and low risk in accordance with an
optimal risk score threshold. We obtained the risk score for each
patient by Risk score = Expression methylation-driven gene 1 ×
Coefficient methylation-driven gene 1 + Expression methylation-
driven gene 2 × Coefficient methylation-driven gene 2. We assessed
survival differences between the high-risk and low-risk groups using
Kaplan–Meier survival plots. The GSE84437 dataset from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/) served to validate the
prognosticmodel. Additionally, for evaluating themodel’s predictive
performance, we conducted a time-dependent ROC analysis.

Development and assessment of the
nomogram in the TCGA dataset

We built a nomogram for predicting the 1-, 3-, and 5-year
survival outcomes for stage I/II GC patients using two methylation-
driven genes. The calibration and discrimination of the nomogram
were evaluated through a bootstrap approach involving 1,000
resamples.

Clinical samples

Theresearchmethodologies were sanctioned by the Institutional
Medical Ethics Committee at Xiamen University. We collected
clinical samples after obtaining informed consent from the patients,
in compliance with the Declaration of Helsinki (1975) guidelines.
The diagnosis of GC was validated by two expert pathologists. From
Zhongshan Hospital of Xiamen University, 36 stage I and II human
gastric cancer specimens, along with adjacent epithelial tissues,
were collected. Inclusion criteria were as follows: (I) a pathological
diagnosis of GC; (II) undergoing radical surgery; (III) classified
as stage I/II according to the TNM Classification of Malignant
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TABLE 2 Clinical characteristics of the study population.

Target Chr Start End Length PrimerF PrimerR

C1orf35-1_1 chr1 228103687 228103869 183 TTATTTAGGAGGTTGAAGTAGGAGAA TCCCRCCTCAACCTCAAAAC

C1orf35-2_1 chr1 228102175 228102341 167 AAGYGAGTTTTGYGGAGGAGTTT AAACCRCCAAACTAAAACTATCTATATTCAC

C1orf35-3_1 chr1 228103237 228103418 182 AAGGTAGTTGTTTGGGGTTTG CRAAAACACAAATCCRAAACAATAC

FAAH-1_2 chr1 46394679 46394483 197 GGGTAAGGAGAGATTTTGGAGAGTT ACAAAAACAACRAACRAACCTAAAAA

Tumors, 8th edition; and (IV) availability of complete postoperative
information. Exclusion criteria included: (I) patients under 18 years
of age; (II) missing clinicopathological or follow-up information;
and (III) a background of other or additional primary malignancies.

DNA methylation detection

Following the protocol provided by the manufacturer, genomic
DNA was extracted from paraffin-embedded tumor and control
tissue samples from stage I and II patients using the QIAGEN
kit, Hilden, Germany. The extracted DNA was then measured and
adjusted to a working concentration of 20 ng/μL. Selection of CpG
islands in the proximal promoter regions of the C1orf35 and FAAH
genes adhered to specific criteria: (1) they must be at least 200 base
pairs in length; (2) they should have aGC content of at least 50%; and
(3) they need an observed/expected CpG dinucleotide ratio of 0.60
or above. A total of 50 CpG methylation sites across three islands of
the C1orf35 gene and 14 CpG methylation sites across one island of
the FAAH gene were sequenced.

For the purpose of bisulfite conversion, 400 ng of genomic
DNA underwent treatment with the EZ DNA Methylation™-
GOLD Kit from ZYMO RESEARCH, located in CA, United States.
Samples that did not achieve a bisulfite conversion rate of at least
98% were not included in the study. PCR products designed to
target specific CpG sites were subjected to separation through
agarose gel electrophoresis. Next, we employed the QIAquick Gel
Extraction Kit from QIAGEN in Hilden, Germany, to purify these
products. Methylation analysis was then performed using the
Illumina HiSeq/MiSeq 2000 systems according to the guidelines
provided by the manufacturer. For further details on the CpG sites
analyzed, refer to Table 2.

Analysis of immune cell infiltration in the
tumor microenvironment (TME)

We used the CIBERSORT package to assess the distribution of
22 immune cell types from high-risk and low-risk groups
respectively, enabling us to calculate the enrichment scores for every
immune-related phrase in each group (Newman et al., 2015). First,
we quantified and evaluated the relative abundance of different
immune cell types between tumor and normal samples in the
high-risk and low-risk groups to compare and predict immune
cell infiltration between the two groups respectively; second,
the distribution of immune cells between high-risk and low-risk

groups was evaluated too. The Pearson correlation coefficient was
used to test whether the relationship between tumor and normal
samples is significant in two groups respectively (The threshold for
significance: p < 0.05, | cor | ≥ 0.2).

Gene Ontology enrichment analysis and
GSEA

Venn diagram was employed to identify the key genes only high
expressed in the high-risk group.The “clusterProfiler” R packagewas
used to perform Gene Ontology enrichment analyses to elucidate
whether the biological functions in genes are only associated with
the high-risk group (Lu et al., 2008).

We performed GSEA to clarify the biological roles of
previously identified methylated regulatory genes. The threshold for
significance was established at p < 0.05, and a minimum enriched
gene count of 15 was required.

Statistical analysis

Analyses were conducted with IBM SPSS Statistics 27, utilizing
chi-square tests, and outcomes reached statistical significance when
the p-value was below 0.05.

Results

DEGs between tumor and normal groups

A methodological flowchart is presented in Figure 1. We
analyzed mRNA expression data from the TCGA database and
identified 5,304 DEGs, with 4,732 being upregulated and 572
downregulated.

Identification of DNA methylation-driven
genes in gastric cancer

We identified 176 genes influenced by DNA methylation,
comprising 38 hypermethylated and 138 hypomethylated genes.
These genes demonstrated a correlation coefficient below −0.3
with DEGs and significant associations (adjusted p-value <0.05),
prompting further detailed analyses.
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FIGURE 1
Methodological flowchart of the investigation.

Connection between prognosis and genes
affected by DNA methylation

A univariate Cox regression analysis was conducted to assess
the prognostic impact of these methylation-altered genes. Genes
such as GATA3, C1orf35, CMTM3, and BEX4, which exhibited
hazard ratios greater than 1, were deemed independent risk factors.
Conversely, genes including FAAH, POF1B, ZC3H12A, BCL2L15,
and MUC13, with hazard ratios less than 1, were considered
protective (Figure 2A).Aheatmapof theseDNAmethylation-driven
genes is shown in Figure 2F.

Identifying critical genes using LASSO analyses and building
a risk score prediction model based on genes influenced by DNA
methylation.

The nine selected DNA methylation-driven genes underwent
1,000 iterations of LASSO regression to further narrow the
selection. Four genes were identified using LASSO. Cross-validation
determined the optimal adjustment parameter λ, minimizing the
error rate (Figure 2B). The levels of expression and methylation of
these genes are displayed in Figure 2C. Based on their respective
hazard ratios—with C1orf35 having the highest (HR = 2.035, P
= 0.028) and FAAH the lowest (HR = 0.656, P = 0.012)—and
significant Kaplan–Meier survival analyses (P < 0.05), these two
genes were selected to construct a risk score prediction model based
on DNA methylation-driven gene activity. The expression of FAAH
and C1orf35 have negative correlaion with methylation of these two
genes (Figure 2D). The Mixture model of FAAH and C1orf35 have
been shown in Figure 2E. Subsequent survival analysis and ROC
curve assessments were performed on this model (Kamarudin et al.,
2017). The Kaplan–Meier plots revealed a significantly shorter OS
for the group with elevated risk scores (P = 0.005) (Figure 3E), with
AUCvalues of 0.564 for 5-year survival and 0.611 for 3-year survival,
respectively (Figure 3E).

Risk score model validation

The effectiveness of the predictive signature was evaluated using
the TCGA dataset and further confirmed through the GSE84437
dataset. In the high-risk group, OS was notably reduced (P = 0.019),

as indicated by the Kaplan–Meier analysis (Figure 3F). The AUC
values were recorded at 0.569 for 3-year and 0.593 for 5-year survival
periods, respectively (Figure 3F).

External validation of the nomogram in the
TCGA cohort

Our nomogram, incorporating a DNA methylation-based gene
signature, demonstrated broad applicability for both long- and
short-term patient follow-ups, as depicted in Figure 3G. The
calibration curves closely matched the predicted probabilities of OS
at 1-, 3-, and 5-year intervals for gastric cancer patients (Figure 3H).

Methylation level of C1orf35 and FAAH in
the early-stage gastric cancer patients

To assess the methylation levels in early-stage gastric cancer,
tissue samples from 34 patient pairs were examined. We calculated
the methylation level at each CpG site as the proportion of
methylated cytosine to the total cytosines examined. A total of
50 methylation sites associated with three CpG islands in C1orf35
and 14 methylation sites associated with one CpG island in FAAH
were analyzed (Figures 4A–D). The heatmap indicates variance in
methylation levels across samples. Notably, methylation was lower
in one island of C1orf35 (C1orf35_1: p = 0.0292; and not statistical
significance in the single island of FAAH (p = 0.8543) compared to
normal tissues, as shown in Figure 4E.

Analysis of immune cell infiltration in the
tumor microenvironment (TME)

First, we quantified and evaluated the relative abundance
of different immune cell types between tumor and normal
samples in the high-risk and low-risk groups. In the high-
risk group, B cells naive, CD4 memory resting, CD4 memory
activated, macrophages M0, dendritic cells activated, and mast
cells resting have statistically significant differences (Figure 5A),
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FIGURE 2
Texture feature selection and two-gene risk score model construction in the TCGA cohort. (A) Results of univariate analyses of DNA
methylation-driven genes. (B) Identification of hallmark genes using LASSO regression. (C) mRNA expression and DNA methylation levels of the four
DNA methylation-driven genes. (D) Regression analysis of the relationship between mRNA and DNA methylation levels of FAAH and C1orf35. (E)
Differential methylation statuses of FAAH and C1orf35, depicted through histograms highlighting the distribution of methylation in gastric cancer (GC)
samples. Beta values indicate the methylation level, ranging from 0 to 1, with the horizontal black bar representing the distribution of methylation
values in non-tumorous gastric samples. (F) Heatmap of DNA methylation-driven genes.
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FIGURE 3
(A) Kaplan–Meier survival curve of DNA methylation-driven gene FAAH and C1orf35. (C) Heatmap and distribution of the two gene expression profiles
in the high-risk and low-risk subgroups in the TCGA database. (D) Heatmap and distribution of the two gene expression profiles in the high-risk and
low-risk subgroups in the GEO database. (E) Kaplan–Meier survival curve of DNA methylation-driven gene-based risk score prediction model and
time-dependent ROC in the TCGA database. (F) Kaplan–Meier survival curve of DNA methylation-driven gene-based risk score prediction model and
time-dependent ROC in the GEO database. (G) Nomogram for predicting the probability of 1-, 3-, and 5-year survival times for patients with stage I/II
GC. (H) Calibration curve for the risk score model in the validation cohort. The dotted line represents the ideal predictive model, and the solid line
represents the observed model.
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FIGURE 4
Heatmap target T vs. N. no cluster. (A) (B) (C) The heatmap shows the differential methylation sites on the three CPG islands of the C1orf35 gene and
(D) methylation sites on the 1 FAAH CpG islands in stage I/II GC patients (T: tumor; N: Normal). (E) C1orf35 and FAAH island methylation level in stage
I/II GC patients.

and CD4 memory resting, CD4 memory activated, monocytes,
macrophages M0, macrophages M1, dendritic cells activated, and
mast cells resting cells also have statistically significant differences
(Figure 5B). Second, the distribution of CD4 memory resting,
Monocytes, Macrophages M1, Mast cells resting and Eosinophils
cells between high-risk and low-risk groups have a statistically
significant difference (Figure 5C). The Pearson correlation analysis
showed that T cells CD4 memory resting and NK cells resting are
associated with the risk score in the high-risk group (Figure 5D),
and NK cells activated is positive with risk score in the low-
risk group (Figure 5E). Finally, only NK cells resting were observed
to be positive in both scores of immune cell infiltration and
correlation analysis.

Functional annotations

We obtained the key genes only highly expressed in the high-
risk group for further analysis (Figure 5F). Figure 5G displays
the Gene Ontology (GO) analysis results, which show that the
marker genes of the B cells from these pathways, such as digestion,
immunoglobulin production, organic hydroxy compound catabolic
process, production ofmolecularmediator of immune response, and
regulation of hemostasis.

We employed gene set enrichment analysis (GSEA) for
identifying key signaling pathways associated with the risk
score model in both groups. Pathways with a false discovery
rate (FDR) below 0.05 and an enrichment score (ES) above
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FIGURE 5
(A) Differential expression of immune cell sets by ssGSEA between tumor and normal samples in the high-risk score group. Rose represents tumor, and
cyan represents normal. (B) Differential expression of immune cell sets by ssGSEA between tumor and normal samples in the low-risk score group.
Rose represents tumor, and cyan represents normal. (C) Differential expression of immune cell sets by ssGSEA between high-risk score and low-risk
score groups. Red represents the high-risk score group, and green represents the low-risk score group. (D) Positive correlation between ssGSEA scores
of immune cells and risk score in the high-risk score group. (E) Positive correlation between ssGSEA scores of immune cells and risk score in the
low-risk score group. (F) Venn diagram illustrating the overlap of immune cells between high-risk score and low-risk score groups. (G) Cnetplot
depicting the network of marker genes from these pathways in the high-risk score group. Colored points indicate corresponding pathways. (H)
Enrichment plots of the top five KEGG pathways in the high-risk score and low-risk score groups for stage I/II GC.
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0.5 were considered significant. In the high-risk group, the
most enriched pathways included “COMPLEMENT AND
COAGULATION CASCADES,” “MELANOMA,” “SYSTEMIC
LUPUS ERYTHEMATOSUS,” “TIGHT JUNCTION,” and “WNT
SIGNALING PATHWAY” (risk score <0.314). Conversely, the
low-risk group showed enrichment in pathways of “STARCH
AND SUCROSE METABOLISM,” “RETINOL METABOLISM,”
“METABOLISM OF XENOBIOTICS BY CYTOCHROME P450,”
“DRUG METABOLISM OTHER ENZYMES,” and “DRUG
METABOLISM CYTOCHROME P450” (Figure 5H). These
findings underscore the potential molecular mechanisms driving
tumor progression in GC.

Discussion

In recent years, a significant body of research has focused
on identifying clinicopathological factors associated with overall
survival in stage I/II gastric cancer. However, only few studies
have investigated genetic prognostic markers (Ikoma et al., 2016;
Bausys et al., 2018; Aoyama et al., 2014; Saito et al., 2016). Our study
aimed to develop a risk prediction model based on genes affected
by DNA methylation in patients with stage I/II gastric cancer.
This model seeks to identify patients who may benefit from more
aggressive treatment strategies, including adjuvant chemotherapy.

Our initial analyses integrated microarray studies and
bioinformatics techniques to identify DNA DMGs in stage I/II
gastric cancer. Notable genes identified with differential methylation
included ZC3H12A, GATA3, C1orf35, and FAAH. ZC3H12A, also
known as MCPIP1, is an RNAse that acts as a novel suppressor of
microRNA activity and biogenesis (Tahara et al., 2013). GATA3,
a zinc-finger pioneer transcription factor, plays critical roles in
gene regulation by binding to nucleosomal DNA and facilitating
chromatin remodeling (Qiang et al., 2023). The chromosome 1
open reading frame 35 (C1orf35) gene (Melton et al., 2019) and
fatty acid amide hydrolase (FAAH), responsible for the degradation
of anandamide into arachidonic acid and ethanolamine, are also
implicated in significant cellular pathways (Melton et al., 2019).
Abnormal methylation of these genes can lead to various diseases,
including cancer. Therefore, we conducted a thorough analysis and
clinical validation of FAAH and C1orf35 as key components of our
prognostic model.

Our risk score prediction model, based on univariate Cox
regression and LASSO analyses, identified FAAH and C1orf35 as
critical genes. Methylation sequencing experiments demonstrated
significant hypomethylation in the promoters of these genes among
the patients studied. This methylation pattern was confirmed in
34 pairs of early-stage gastric cancer patients. The Kaplan–Meier
analysis validated the effectiveness of this prognostic model in
predicting outcomes for stage I/II gastric cancer patients, and time-
dependent ROC analysis further confirmed the model’s prognostic
relevance.

A notable observation from our study was the prognostic
significance associated with the methylation status of C1orf35 and
FAAH. C1orf35, identified in multiple myeloma cell lines, acts as an
oncogene promoting the G1-to-S cell cycle transition bymodulating
c-MYC expression. Its oncogenic activity may be inhibited by
targeting c-MYC (Luo et al., 2020). Further studies have suggested

a potential role for C1orf35 in liver cancer (Meier et al., 2021).
Consistent with these findings, upregulated and hypomethylated
C1orf35 was associated with poor prognosis in stage I/II gastric
cancer patients.

FAAH, associated with cellular membranes, facilitates the
hydrolysis of anandamide, a ligand for cannabinoid receptors. In
the gastrointestinal tract, inhibition of FAAH reduces intestinal
motility (Capasso et al., 2005) and exhibits anti-inflammatory
effects in vivo (Massa et al., 2004; D’Argenio et al., 2006). Previous
research has indicated that endocannabinoids may inhibit
the development of precancerous lesions in mouse colons
(Izzo et al., 2008) and reduce the proliferation of colorectal
carcinoma cells in vitro. In our study, hypomethylated and
highly expressed FAAH correlated with a favorable prognosis,
echoing findings in pancreatic cancer (Michalski et al., 2008).
This contrasts with the findings of other studies where elevated
FAAH expression was linked to poor outcomes in various cancers
(Fogli et al., 2006; Carracedo et al., 2006).

T cells CD4 memory resting have been found to have lower
expression in tumor tissues and high-risk group in gastric cancer
specimens. The Pearson correlation analysis showed the negative
correlation between this kind of T cells and tumor tissues in
the high-risk group. Cancer immunology and immunotherapy
are driving forces of research and development in oncology,
and previous studies indicated the importance of CD4+ T cells,
CD4+ T cells play an essential role in the immune system by
coordinating both adaptive and innate responses (Künzli and
Masopust, 2023). Moreover, they have now been recognized as
anti-tumor effector cells in their own right (Speiser et al., 2023).
Recent research has shown that CD4+ T cells, particularly CD4+

memory T cells, are crucial for the immunotherapy-induced tumor
regression (Nguyen et al., 2019), which was consistent with the
findings of our study.

Our comprehensive analyses of data on DNA methylation
arrays, mRNA expression, and related clinical details sourced from
the TCGA database have revealed potential predictive biomarkers
for early-stage gastric cancer prognosis. These findings could
improve treatment accuracy and enhance overall survival in early-
stage gastric cancer. However, our study’s limitations include
potential selection bias due to its retrospective design and small
sample size. There is a scarcity of data to inform treatment choices
for this particular group, necessitating further research with a larger
cohort. We plan to establish a database for stage I/II gastric cancer
at our center to expand our research sample size.

In conclusion, this study has pinpointed key predictive elements
that are vital for forecasting the outcomes of early-stage gastric
cancer. Central genes like C1orf35 and FAAH have demonstrated
both predictive and prognostic significance as biomarkers based on
methylation, setting the stage for accurate diagnosis and targeted
treatment of gastric cancer.
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