
TYPE Original Research
PUBLISHED 16 September 2024
DOI 10.3389/fmolb.2024.1469775

OPEN ACCESS

EDITED BY

Hem Chandra Jha,
Indian Institute of Technology Indore, India

REVIEWED BY

Rajeev Nema,
Manipal University Jaipur, India
Sara Baldelli,
Università telematica San Raffaele, Italy
Asha Thomas,
Case Western Reserve University,
United States
Serena Castelli,
University of Rome Tor Vergata, Italy

*CORRESPONDENCE

Wei Zhao,
zhao4wei2@hotmail.com

Bei Wang,
wangbei1224@126.com

RECEIVED 24 July 2024
ACCEPTED 03 September 2024
PUBLISHED 16 September 2024

CITATION

Meng K, Zhao Z, Gao Y, Wu K, Liu W, Wang X,
Zheng Y, Zhao W and Wang B (2024) The
synergistic effects of anoikis-related genes
and EMT-related genes in the prognostic
prediction of Wilms tumor.
Front. Mol. Biosci. 11:1469775.
doi: 10.3389/fmolb.2024.1469775

COPYRIGHT

© 2024 Meng, Zhao, Gao, Wu, Liu, Wang,
Zheng, Zhao and Wang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

The synergistic effects of
anoikis-related genes and
EMT-related genes in the
prognostic prediction of Wilms
tumor

Kexin Meng1, Zerui Zhao2,3, Yaqing Gao1, Keliang Wu3, Wei Liu4,
Xiaoqing Wang4, Yi Zheng3, Wei Zhao2,3* and Bei Wang1*
1Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University
and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of
Abdominal Medical Imaging, Jinan, China, 2Department of Clinical Pharmacy, Clinical Trial Center,
The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan
Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development,
Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China, 3Department of Clinical
Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China, 4Department of
Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan,
China

Wilms tumor (WT) is the most common type of malignant abdominal tumor in
children; it exhibits a high degree of malignancy, grow rapidly, and is prone
to metastasis. This study aimed to construct a prognosis model based on
anoikis-related genes (ARGs) and epithelial-mesenchymal transition (EMT)-
related genes (ERGs) for WT patients; we assessed the characteristics of the
tumor microenvironment and treatment efficacy, as well as identifying potential
therapeutic targets. To this end, we downloaded transcriptome sequencing data
and clinical data for WT and normal renal cortices and used R to construct
and validate the prognostic model based on ARGs and ERGs. Additionally,
we performed clinical feature analysis, nomogram construction, mutation
analysis, drug sensitivity analysis, Connectivity Map (cMAP) analysis, functional
enrichment analysis, and immune infiltration analysis. Finally, we screened the
hub gene using the STRING database and validated it via experiments. In this
way, we constructed a model with good accuracy and robustness, which was
composed of seven anoikis- and EMT-related genes. Paclitaxel and mesna were
selected as potential chemotherapeutic drugs and adjuvant chemotherapeutic
drugs for the WT high-risk group by using the Genomics of Drug Sensitivity
in Cancer (GDSC) and cMAP compound libraries, respectively. We proved the
existence of a strong correlation between invasive immune cells and prognostic
genes and risk scores. Next, we selected NTRK2 as the hub gene, and in vitro
experiments confirmed that its inhibition can significantly inhibit the proliferation
and migration of tumor cells and promote late apoptosis. In summary, we
screened out the potential biomarkers and chemotherapeutic drugs that can
improve the prognosis of patients with WT.
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1 Introduction

Wilms tumor (WT), also known as nephroblastoma, is a
common type of embryonal childhood tumor; it is also one of
the predominant types of childhood kidney cancer (Davidoff,
2012). They account for about 90% of childhood renal tumors
and 7% of childhood cancers (Breslow et al., 1993). WT is
thought to be caused by aberrant renal development (Rivera
and Haber, 2005). Although the prognosis for WT patients
is good, 13% of WT patients experience a two-year relapse
after their tumor diagnosis (Furtwangler et al., 2011). To improve
the risk assessment and therapy stratification of WT, it is
essential to explore the main mechanism of its occurrence and
development (Liu et al., 2020).

Anoikis arises due to the rupture of cell‒cell or cell and
extracellular matrix attachments, leading to a specific form of
programmed apoptosis, which helps to maintain tissue homeostasis
by eliminating misplaced or dislodged cells (Han et al., 2021).
Anoikis was first described in epithelial and endothelial cells
and was found to be an important mechanism of cancer
invasion and metastasis (Kakavandi et al., 2018). The onset of
anoikis resistance can help detached cells to circumvent death
signaling pathways, allowing cells to survive under unfavorable
conditions (Adeshakin et al., 2021;Di Micco et al., 2021). Epithelial-
mesenchymal transition (EMT) refers to the process by which cells
change from epithelioid to mesenchymal. It is often accompanied
by changes in cell morphology, loss of polarity, increased
invasiveness, resistance to anoikis, and secretion of extracellular
matrix (Huang et al., 2020). The importance of EMT programs in
tumor progression has been established in the past two decades
(Huang et al., 2013), with a rapidly growing number of studies
demonstrating the activation of EMT programs during the process
of malignant progression (Ye and Weinberg, 2015; Shibue and
Weinberg, 2017; Nieto et al., 2016). The contributions of the EMT
program to tumor cell phenotypes have been most intensively
studied in relation to carcinomas (Lambert et al., 2017; Thiery,
2002). At present, a large number of reports have proved that: EMT
allows cancer cells to detach from neighboring cells, overcome
anoikis, and migrate from their primary location to metastatic
sites. Furthermore, anoikis and EMT may share some signaling
pathways and regulatory molecules (Sakamoto and Kyprianou,
2010), they undergo a few instances of crosstalk (Cao et al., 2016),
for example, the development of anoikis resistance and EMT of
lung cancer cells can be restrained via suppressing JAK2/STAT3
and SHP2/Grb2/PI3K/AKT signaling cascades (Wang et al., 2022a);
The prognostic risk model of colon adenocarcinoma suggests
that a positive correlation among anoikis resistance, EMT, and
liver/lung metastasis of colon adenocarcinoma (Zhou et al., 2023);
In the metastasis of cervical cancer, Nrf2 plays a crucial role,
which can enhance EMT and resistance to anoikis by promoting
the expression of Snail1 (Zhang et al., 2023). In addition, some
studies have separately evaluated the implications of anoikis and
EMT in WT (Giner et al., 2011; Guo et al., 2022), both of them
play a non-negligible role in tumorigenesis, tumor invasion, and
tumor infiltration. Therefore, the co-analysis of EMT and anoikis
is vital in relation to WT (Amoedo et al., 2014). However, the
current research on anoikis and the EMT pathway in WT still

lacks a large-sample systematic analysis and clinical models with
good practicability and robustness. The process of our study
is shown in Supplementary Figure S1.

In this study, we systematically demonstrated the importance
of the misalignment and crosstalk of anoikis pathway and EMT
pathway in WT patients in tumorigenesis and development. We
constructed a risk model composed of seven risk factors for anoikis-
related genes (ARGs) and EMT-related genes (ERGs) in order to
predict the prognosis of WT patients; we then verified its reliability
and robustness using a training cohort and test cohort. In addition,
we discussed the predictive effect of the risk model on the sensitivity
of commonly used chemotherapeutic drugs and screened out
potential drugs that might improve the clinical treatment of patients
in the high-risk group. Then, we associated the risk model with
tumormicroenvironment (TME) and analyzed the differential genes
between the high- and low-risk groups to explore the regulatory
mechanism behind them using Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment. Finally, the hub gene with the
inherent potential to become a prognostic biomarker and a drug
target was screened and verified using clinical samples and in vitro
experiments.

2 Materials and methods

2.1 Data collection

We obtained childhood Wilms tumor patient samples
from the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) database (https://www.cancer.
gov/ccg/research/genome-sequencing/target) and Genotype-
Tissue Expression (GTEx) database (https://www.genome.
gov/Funded-Programs-Projects/Genotype-Tissue-Expression-
Project). We used sequencing data and clinical data of
normal renal cortex tissue and normal adjacent tissues as
the training set (Grossman et al., 2016). The “sva” package’s
ComBat_seq algorithm was used to remove batch effects
between tumor and normal tissue (Leek et al., 2012). The
clinical data included patient survival time, survival status, age,
gender, stage, etc., and we excluded patients with incomplete
information. We also downloaded the gene expression data
and corresponding clinical data from the Genomic Data
Commons (GDC) (https://portal.gdc.cancer.gov/) as the testing
set. Additionally, we downloaded 198 genes from the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb.
org/gsea/msigdb) as EMT-related genes and derived human anoikis-
associated genes from GeneCards (https://www.genecards.org/)
(Subramanian et al., 2005; Stelzer et al., 2016).

2.2 Pathway scoring of anoikis and EMT

First, pathway scoring was calculated using the GSVA algorithm
for the ARGs (consisting of 408 relevant genes) and the ERGs
(comprising 174 relevant genes) (Hanzelmann et al., 2013).
Subsequently, the Wilcoxon rank-sum test was employed to assess
the differences between tumor and normal tissues.
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2.3 Differential analysis of ARG and ERG
expression

Using the “limma” package (Ritchie et al., 2015), “DESeq2”
package (Love et al., 2014), “edgeR” package (Chen et al., 2016), and
Wilcoxon test in R, we calculated the differentially expressed genes
(DEGs) between the WT samples and normal samples. The DEGs
were selected based on the criteria of |logFC| > 1 and p-value < 0.05.
The intersection of DEGs obtained from the “limma,” “DESeq2,” and
“edgeR” packages was taken. The visualization of the results was
carried out using the “ggplot2” and “tinyarray” packages (Valero-
Mora, 2010). The “venn” package was used to intersect the DEGs,
ARGs, and ERGs (Bardou et al., 2014).

2.4 Construction and validation of the
prognostic model of ARGs and ERGs

In the training cohort, the “survival” package (Therneau et al.,
2000) was used to perform a univariate Cox analysis on the
ARGs and ERGs, resulting in the identification of genes where the
expression values were significantly associated with overall survival
(p < 0.05). Subsequently, a penalty-based least absolute shrinkage
and selection operator (Lasso) logistic model was established to
identify the candidate prognostic genes (Friedman et al., 2010).
Furthermore, the Akaike Information Criterion (AIC) method was
applied in the multiple Cox regression analysis, using the derived
regression coefficients in combination with the linear integration of
the expression levels of the selected relevant genes to establish the
optimal riskmodel.The risk score was calculated using the following
equation:

Riskscore =∑N
i=1
(Coefi ×Expi)

where Expi represents the expression values of the relevant genes,
and Coefi represents the corresponding regression coefficients
calculated through multiple Cox regression analysis. Additionally,
MP2PRT data are used as the validation cohort (Gadd et al., 2022).

2.5 Clinical feature analysis

Utilizing the “ggstatsplot” package, we compared the differences
in the risk scores between different clinical feature groups and the
expression patterns of risk factors (Patil, 2021). Subsequently, we
analyzed the sample information for different first events within the
high-risk and low-risk groups.

2.6 Construction of the nomogram

The “RMS” package and the “survival” package were used to
construct a nomogram based on patients’ clinical and pathological
variables, including age, gender, stage, classification, and the risk
score based on the risk factors (Nunez et al., 2011). This nomogram
helps to create a personalized predictive model. To assess the
accuracy of the nomogram in predicting the 1-year, 3-year, and 5-
year survival rates for WT patients, calibration curves and decision

curve analysis (DCA) were employed (Rousson and Zumbrunn,
2011). Then, the “survival” package, in conjunction with the
“ROC” package, was used to create Kaplan–Meier survival curves
and receiver operating characteristic (ROC) curves based on the
risk scores calculated using the nomogram. These curves help in
visualizing and evaluating survival outcomes and the performance
of the risk score in predicting survival.

2.7 Gene mutation analysis

First, we obtained the mutation data of patients with Wilms
tumor from theGenomicDataCommons (https://portal.gdc.cancer.
gov/). Next, we calculated the mutation frequency of the top 20
genes using the “maftools” package and visualized them using
the “oncoplot” function (Mayakonda et al., 2018). Subsequently, we
calculated the tumor mutation burden (TMB) for all tumor samples
and assessed the distribution differences of the TMB values in the
different risk groups using the Wilcoxon rank-sum test, visualizing
the results using violin plots.

2.8 Prediction of drug sensitivity and
immunotherapy responses

Using the Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org/), we downloaded gene
expression data for all 805 cell lines from theGDSC2dataset to create
a training set (Yang et al., 2013). Subsequently, we employed the
“oncoPredict” package to build a model for assessing the sensitivity
of WT patients in the different risk groups to chemotherapy drugs
(Maeser et al., 2021). We used the Tumor Immune Dysfunction and
Exclusion (TIDE) tool (https://tide.dfci.harvard.edu/) to evaluate
the effectiveness of immunotherapy and the potential for immune
escape in patients (Fu et al., 2020). A higher TIDE score indicates
poorer responses to immunotherapy and a greater likelihood of
immune escape. Finally, we conducted Wilcoxon rank-sum tests to
assess the differences in the drug sensitivity and immunotherapy
response between the different risk groups.

2.9 Functional enrichment analysis

We performed differential analysis between the high-
risk and low-risk groups and conducted pathway enrichment
analysis on the differentially expressed genes based on KEGG
gene sets (Kanehisa et al., 2017).

2.10 Immune infiltration analysis

The single-sample Gene Set Enrichment Analysis (ssGSEA)
algorithm from the “GSVA” package was used to assess the
abundance of different immune cell subtypes in the tumor
microenvironment based on the risk score of individual
tumor samples (Charoentong et al., 2017).
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2.11 Protein–protein interaction network

We utilized the STRING database (https://cn.string-db.org/) to
construct a protein–protein interaction network for themodel genes
and used the MCC algorithm to identify the hub gene of the risk
model (https://cytoscape.org/) (Szklarczyk et al., 2011).

2.12 Patient tissue specimens and cell lines

The tissue specimens (including tumor and normal adjacent
tissues) of 12 WT patients were extracted from the patients after
surgical resections in the Shandong Provincial Hospital Affiliated
to Shandong First Medical University (SPH). Informed consent
was obtained from the patients before inclusion in the study. The
studies involving humans were approved by the Ethics Committee
of Shandong Provincial Hospital Affiliated to Shandong First
Medical University (ethics approval number: SZRJJ:NO.2021–140)
and complied with all relevant ethical regulations for clinical study.
All specimens were sampled within 10 min after resections and
subsequently extracted total RNA for transcriptome sequencing
or fixed in 10% formalin. The ethics committee in the hospital
approved the experimental procedures used in the study, and the
patients were also asked to sign a consent form. The 17.94 Wilms
tumor cell lines were supplied by the Leibniz institute (DSMZ-
German Collection of Microorganisms and Cell Cultures GmbH)
and the HEK293 cell lines were sourced from the Chinese Academy
of Sciences Cell Bank. These cells were cultured in a DMEM
medium (Hyclone,United States) containing 10% fetal bovine serum
(Gibco, United States), and 1% penicillin/streptomycin solution
(Beyotime, China), at 37°C, under 5% CO2 and 95% humidity
conditions. All the experiments were conducted using mycoplasma-
free cells.

2.13 Western blotting

WT clinical tissues (including tumor and normal adjacent
tissues) and two cell lines (17.94 and HEK293) were used for
the WB analysis. Tissues and cells were lysed with a RIPA
lysis buffer supplemented with 1% phenylmethanesulfonyl fluoride
(Solarbio). Then, the protein concentration was measured using a
BCA Protein Assay Kit (Beyotime). The lysates were fractionated
using SDS-PAGE and the isolates were transferred to PVDF
membranes (Millipore, IPVH00010, NH, United States). The
blots were probed with specific primary antibodies followed by
a secondary antibody, and the membranes were then detected
using ECL (Sigma, WBULS0500, MO, United States). TRKB
(ab134155: 1:10,000) and GAPDH (ab8245; 1:10,000) antibodies
were purchased fromAbcam. Secondary antibodies were conjugated
with HRP (Proteintech; PR30009; 1:10,000).

2.14 IHC analysis

The expression of TRKB in WT tissues were evaluated via
an immunohistochemical analysis. Paraffin-embedded tissues were
cut into 4 mm sections. Sections were deparaffinized and boiled

in 10 mM citrate buffer (pH 6.0) for antigen retrieval, and
3% H2O2 was used to block endogenous peroxidase activity.
TRKB (Abcam ab134155 1:100) antibodies were used as primary
antibodies.

2.15 CCK8 assay

The 17.94 cells were seeded in the 96-well plate at a density
of 1.5 × 104 cells per well. After the cells adhered to the wall,
they were cultured with eight different concentrations of ANA-
12 (0, 1, 2, 5, 10, 20, 30, and 40 μM). After culturing for
24 h or 48h, 10μL/well CCK8 (Biosharp) was added. This was
followed by continuous incubation for 1 h, and the absorbance
was measured at 450 nm. All experiments were executed in
triplicate.

2.16 Flow cytometry

The 17.94 cells were cultured for 24 h with a medium containing
various concentrations of ANA-12 (0, 10, 20, and 40 μM). Then,
they were dissociated using trypsin without EDTA. After washing
three times with precooled PBS, the cells were diluted in 100 μL
binding buffer. Then, we detected cell apoptosis using an Annexin
V-APC/7-AAD apoptosis kit (MULTI SCIENCES). Then, 5 μL
Annexin V-PE and 10 μL 7-AADwere added into the above binding
buffer. After incubation for 10 min at room temperature, 400 μL
binding buffer was added. Finally, the cell apoptosis state was
analyzed via flow cytometry. All the experiments were performed
in triplicate.

2.17 Wound healing assay

The 17.94 cells were added to 6-well plates to create a confluent
monolayer. Linear scratches were made using a 10 µL pipette tip.
The ANA-12 (Selleck) was dissolved in dimethyl sulfoxide (DMSO,
Sigma Aldrich), and then the solution was diluted in DMEM to
three concentrations (10μM, 20μM, and 40 μM) and added to
the corresponding well. The migration of cells into the scratched
areas was monitored and photographed after 24 h. The results were
analyzed using ImageJ.

2.18 Transwell assay

Transwell chambers with Matrigel-coated membranes were
used to assess the invasion potential of the 17.94 cells. The
17.94 cells were seeded in the upper chamber supplemented
with a serum-free medium, and a medium containing different
concentrations of ANA-12 was added (0 μM, 10, 20, and 40 μM);
meanwhile, the lower chamber contained a medium with 20%
FBS. After the 17.94 cells were incubated for 24 h at 37°C,
nonmigrating cells were removed with cotton swabs. Migrated or
invaded cells on the bottom of the membrane were fixed with
4% paraformaldehyde for 15 min and stained with crystal violet
for 15 min. Then, stained cells were assessed via counting under a
microscope.
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3 Results

3.1 The differential expression of
anoikis-associated genes and EMT-related
genes in WT patients

First, 408 human anoikis-related genes were downloaded from
GeneCards. Then, 174 pathway genes were downloaded as EMT-
related genes from the Molecular Signature Database (MsigDB). We
used the GSVA algorithm to calculate pathway scores based on the
anoikis gene set (comprising 408 related genes) and the EMT gene
set (comprising 174 related genes), and then employed Wilcoxon
rank-sum tests to assess the differences between tumor and normal
tissues (Figures 1A, B). Our findings revealed that tumor tissues
tend to inhibit anoikis but activate EMT, thereby promoting the
occurrence and development of the tumor. In order to further
demonstrate the accuracy of analysis results, we used seven pairs
of matched clinically-collected transcriptome data of Wilms tumor
and adjacent tissue samples for verification. The results showed that
the verification results of our SPH cohort were consistent with the
trend of previous analysis results (Supplementary Figures S2A, B).
To explore whether these genes can accurately distinguish WT
patient samples from normal samples, we conducted differential
expression analysis on 120 tumor tissues and six normal adjacent
tissues samples from the TARGET-WT dataset and 28 normal renal
cortex samples from the GTEx database. Among these genes, 11,947
showed significant differential expression (p < 0.05 and |logFC|
≥ 1). Subsequently, the intersection of anoikis-associated
genes, EMT-related genes, and differentially expressed genes
yielded 181 anoikic differentially expressed genes and 90 EMT
differentially expressed genes (Figures 1C, D). In the heatmap,
hierarchical clustering based on differential genes clearly shows
the general situation of genomic differences between normal and
tumor tissues (Figures 1E, F).

3.2 Construction and validation of the
anoikis and EMT gene signature

After confirming the profound and complex impact of ARGs
and ERGs on WT patients, we aimed to construct a clinical model
with good accuracy and robustness to assist in clinical diagnosis
and treatment. First, in the training set, based on the anoikis-
related differentially expressed genes and EMT-related differentially
expressed genes obtained above, we performed univariate Cox
regression to screen for prognostically significant genes (P <
0.05) and created forest plots of risk, where most genes were
categorized as risk genes (HR > 1). In the anoikis category,
a total of 13 different genes showed prognostic differences
(Figure 2A). In the EMT category, nine different genes exhibited
prognostic differences (Figure 2C). Then, LASSO analysis was
applied to obtain the hub genes in the two groups of overlapped
genes (Supplementary Figures S3A, B). Subsequently, we merged
the LASSO filtering results of the ARGs and ERGs, inputted them
into a multifactorial Cox stepwise regression, and created the
prognostic model. This process led to the identification of seven
independent prognostic genes (NTRK2, SPRY1, HEY1, LTF, PDK4,
MTDH, TLR3) related to anoikis and EMT (Figure 2B). Their

weighted coefficients are shown in Supplementary Table S1. Then,
we used the model to calculate risk scores for WT patients in the
training set and divided the patients into high-risk and low-risk
groups based on the median risk score. To visually represent and
validate the model’s accuracy, we conducted Kaplan–Meier (K-M)
survival analysis for the high- and low-risk groups and calculated
the area under the receiver operating characteristic (ROC) curve
(AUC). The results showed that the survival rate of high-risk WT
patients was significantly lower than that of the low-risk group (p
< 0.0001) (Figure 2D), and the AUC values for 1 year, 3 years, and
5 years were around 0.8 (AUC = 0.79, 0.83, and 0.85, respectively)
(Figure 2E), indicating themodel’s high accuracy. Finally, we ranked
the risk scores of each sample in the training set from high to
low, resulting in risk score distribution plots, survival status plots,
and a risk factors heatmap (Figure 2F). As shown in the figures,
as patients’ risk scores increased, their overall survival (OS) times
decreased significantly; the number of deaths increased, and the
expression levels of most model genes exhibited an upregulation
trend, confirming that they are risk genes. To assess the model’s
robustness, we used the external independent dataset MP2PRT as
a validation set. In keeping with the findings in the training set,
the high-risk group had significantly lower OS than the low-risk
group (P < 0.001) (Supplementary Figure S2C). In addition, the
ROC curve, risk score distribution plots, survival status plots, and
risk heatmap of the test cohort show the same trends as the training
cohort, which demonstrates the applicability and robustness of the
model across different datasets (Supplementary Figures S3D, E).

3.3 Correlation between risk scores and
patients’ clinical characteristics

To explore the correlation between risk scores and clinical
characteristics, we generated a heatmap showing the expression
of the model genes used for risk grouping in WT patients and
their correlation with clinical features (Figure 3A). Subsequently,
we used the “ggstatsplot” package to compare the differences
between different clinical feature groups. The results indicated that
there was a significant difference in the different tumor stages,
where stage III and IV patients had significantly higher risk
scores than stage I and II patients (Figure 3B). However, there
was no significant difference in risk scores among the patients in
different age groups or in terms of histological classification and
gender classification (Supplementary Figures S4A–C). Afterwards,
we collected information about first events in the high- and low-
risk groups and constructed a histogram (Figure 3C). It is evident
that the probability of recurrence is significantly higher in the high-
risk group, and all progressions occur within the high-risk group,
while the proportion at which no first events occur is significantly
higher in the low-risk group. We then conducted both univariate
Cox (Figure 3D) and multivariate Cox (Figure 3E) independent
prognostic analyses to determine whether themodel we constructed
could act independently of other clinical features. As shown in the
figures, in the single factor Cox andmultiple factor Cox analyses, the
P-values of the risk score are both less than 0.001, indicating that the
risk score can independently act as a prognostic factor without being
affected by other clinical features; it therefore has better applicability
and accuracy in clinical applications.
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FIGURE 1
Difference analysis of the pathway score and gene expression between normal and tumor tissues. (A,B) Difference in the anoikis and
epithelial-mesenchymal transition (EMT) pathway score between normal and tumor tissues. (C,D) Venn plots of the intersection of anoikis-related
genes (ARGs) or EMT-related genes (ERGs) and differentially expressed genes between normal and tumor tissues. (E,F) Hierarchical clustering of
differentially expressed genes between normal and tumor tissues (red represents a tumor sample or gene up-regulation, blue represents a normal
sample or gene down-regulation).
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FIGURE 2
Construction and verification of the anoikis- and EMT-related prognostic model. (A,C) Results of the univariate Cox regression analysis of ARG and
ERG. (B) Seven genes were chosen to establish a prognostic model. (D) K–M curve of the prognostic model in the TARGET training cohort (Log-rank
test). (E) ROC curves of the prognostic model for predicting the 1-, 3-, and 5-year OS times in the TARGET training cohort. (F) Risk score distribution
plots, survival status plots, and risk factors heatmap of the TARGET training cohort.
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FIGURE 3
Risk score differences in clinical characteristics and independent predictive analysis of the prognostic model. (A) Heatmap of the correlation between
model gene expression and clinical characteristics (stage, age, sex, classification). (B) Difference in risk scores between stage I-II and stage III-IV Wilms
tumors. (C) First event information for the high-risk and low-risk groups. (D,E) Univariate and multivariate independent prognostic analyses of risk
scores and clinical characteristics.
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3.4 Construction and validation of the
nomogram

By combining the risk score with the stage and other clinical
features, we constructed a nomogram to provide a quantitative
method for the personalized prediction of patient clinical outcomes.
As shown in the nomogram, each variable is represented by a
line segment with markings indicating the range of possible values
for that variable, and the length of the line segment reflects the
contribution of that factor to the outcome events. We found that
the risk score calculated by the model contributes more risk points
compared to other clinical features (Figure 4A). In the calibration
plot, the calibration curve was found to be close to the ideal line,
indicating good consistency between prediction and observation
(Figure 4B). The decision curve analysis (DCA) showed that the
predictive performance of the nomogram was significantly higher
than that of individual clinical features (Figure 4C). At the same
time, the Kaplan–Meier analysis showed a significant difference
in survival rates between the high- and low-risk groups, which,
when divided by the median of total score calculated by the
nomogram (Figure 4D) and the AUC of the nomogram’s ROC
curve, exceeded 0.8 (AUC = 0.84, 0.84, and 0.86) (Figure 4E). These
results demonstrate that the nomogram exhibits good predictive
performance.

3.5 Gene mutation frequency of the
prognostic model

To investigate the relationship between the tumor mutation
burden (TMB) and the risk score, as well as their association
with prognosis, we first used waterfall plots to visualize the
mutation frequency and the types of the top 20 genes with the
highest mutation rates in both the high-risk and low-risk groups
(Supplementary Figure S5A). However, we found no significant
differences between the two groups. Subsequently, we compared the
TMB between the high-risk and low-risk groups and observed no
significant differences (Supplementary Figure S5B).

3.6 Predicting the sensitivity of high- and
low-risk groups to drug treatment and
immunotherapy

To further investigate the impact of anoikis and EMT on drug
resistance in WT and the clinical implications of this signaling
model, we downloaded the GDSC2 dataset as our training set and
constructed a model using the “oncoPredict” package to assess
the sensitivity of WT patients in different risk groups to drug
treatments. The results showed that, among the chemotherapeutic
drugs approved by the Food and Drug Administration (FDA) for
WT treatment, patients in the high-risk group were more sensitive
to treatment with dactinomycin and vincristine and irinotecan
(Figures 5A–D). Based on this model’s prognostic assessment, high-
risk patients may benefit from prioritizing treatment with these
drugs. Then, we used a volcano plot to visualize the IC50 difference
of the 198 compounds evaluated using the drug sensitivity model
between the high-risk group and the low-risk group. The results

showed that paclitaxel had the lowest log2(Fold change) value,
indicating that, according to the drug sensitivity model, compared
with the low-risk group, paclitaxel may show the most significant
decrease in IC50 in the high-risk group (Figure 5E). In order
to further screen for drugs suitable for high-risk patients, we
used the edgeR algorithm to analyze the differentially expressed
genes between the high-risk and low-risk groups; we inputted
the most significant differences of 30 upregulated genes and 150
downregulated genes in the high-risk group into cMAP. The results
showed that the top five drugs with the highest negative values were
mesna, BIIB021, PD-169316, ampicillin, and LY-278584. Among
them, only mesna had an enrichment score lower than −90,
indicating that this drug represents a potential adjuvant therapy
for high-risk patients (Figure 5F). Furthermore, we employed the
tumor immune dysfunction and exclusion (TIDE) algorithm to
assess the effectiveness of immune therapy for patients in different
risk groups. Patients with higher TIDE scores are more likely to
experience immune evasion, resulting in a reduced response to
immune therapy. The results indicated that there were no significant
differences in sensitivity to immune checkpoint inhibitor therapy
between the high- and low-risk groups (Supplementary Figure S6).

3.7 Analysis of the relevant molecular
mechanisms between high- and low-risk
groups

In order to explore the specific mechanisms that affect the risk
scores of patients with WT, we used KEGG pathway enrichment
analysis to find the pathway of differential expression between
the two groups based on the differentially expressed genes in
the high- and low-risk groups (782 downregulated genes and
227 upregulated genes) (Figure 6A). These differentially expressed
genes were enriched in various cancer-related pathways, including
cytokine−cytokine receptor interaction, PPAR, Wnt, IL−17, the
MAPK signaling pathway, and transcriptional misregulation
in cancer (Figure 6B). This indicates that the differentially expressed
genes in the risk groups are related to the occurrence and
development of WT.

3.8 Immune infiltration analysis and hub
gene screening

Most of the previously enriched differential pathways of KEGG
exhibit deep crosstalk with the tumor microenvironment; therefore,
in order to further explore the relationship between the risk
groups and the tumor microenvironment (TME), we employed
the ssGSEA algorithm from the “GSVA” package. This was used
to evaluate the differences in the abundance of various immune
cell subtypes within the tumor microenvironment between the
high- and low-risk groups. It is worth noting that, among the 28
types of infiltrating immune cells, there were 11 subtypes with
significantly different abundance levels (Figure 7A). This proves
that there are large differences in the abundance of immune cell
infiltration in samples from the different risk groups. Moreover,
we speculated that the expression of risk factors that constitute the
prognostic model may affect the number of immune cells in the
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FIGURE 4
Construction and verification of the nomogram. (A) A nomogram based on risk score, age, gender, stage and classification. (B) Calibration plot of the
nomogram used to predict the probability of OS at 1, 3, and 5 years. (C) DCA of the nomogram. (D) K–M curve of the nomogram (Log-rank test). (E)
ROC curves of the nomogram for predicting 2-, 3-, and 5-year OS.

tumor microenvironment. Therefore, we calculated the correlation
coefficients between the expression levels of key molecules and the
abundance of TME-infiltrating cells inWT samples and then created

a correlation heatmap with annotated correlation coefficients and P
values (Figure 7B). The results demonstrated that risk factors were
significantly correlated with most immune cells, and the correlation
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FIGURE 5
Sensitivity analysis of chemotherapeutic drugs and immunotherapy in high- and low-risk groups. (A–D) Difference in sensitivity for dactinomycin,
vincristine, and cyclophosphamide and irinotecan between Wilms tumor (WT) patients in the high-risk group and the low-risk group. (E) Volcano plot
of the difference in sensitivity to anticancer drugs between high-risk and low-risk WT patients. (F) Connectivity map (cMAP) analysis.

was mainly positive. It is worth noting that NTRK2 is significantly
negatively correlated with various immune cell subpopulations, and
overexpression of this gene may lead to an overall downregulation
trend in immune cell infiltration in samples from the high-risk
group. Additionally, the negative correlation between the NTRK2
gene and CD56bright natural killer cells was the most significant,
with correlation coefficients (R-values) reaching −0.39. (Figure 7C).
Then, to select hub genes, we constructed a protein–protein
interaction network for the model genes based on the STRING
database and used the MCC algorithm to identify NTRK2 as the
hub gene for this riskmodel; this gene ismost widely associated with
other genes and may dominate the model predictions (Figure 7D).
Furthermore, it was found that NTRK2 is a risk gene and is
upregulated in tumor tissues (Supplementary Figure S7). And we

also demonstrated significant overexpression of NTRK2 in tumor
tissue using the SPH cohort (Supplementary Figure S8).

3.9 Validation of NTRK2 expression levels
in Wilms tumor cell lines and clinical
samples

To further clarify the difference in NTRK2 expression at the
protein level between tumor tissues and adjacent tissues, we first
detected the difference in the expression of the NTRK2-encoded
protein TrkB between the Wilms tumor cell line 17.94 and the
normal human embryonic kidney cell line HEK293 using Western
blotting. The results showed that the expression level of TrkB in
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FIGURE 6
Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) differential pathway in the risk groups. (A) Volcano plot of DEGs
between high- and low-risk groups. (B) KEGG pathway enrichment.

the 17.94 cell lines was significantly higher than that in HEK293
(Figure 8A). Subsequently, we used surgically collected Wilms
tumor tissues and adjacent fresh frozen tissues and paraffin sections
to detect the expression of the TrkB protein byWB and IHC, and the
results showed that the TrkB protein was highly expressed in Wilms
tumor tissues (Figures 8B, C).

3.10 The expression of NTRK2 promotes
the proliferation, migration, and invasion of
Wilms tumor cells

To investigate the role of NTRK2 in WT cells, we treated
17.94 cells with the selective TrkB antagonist ANA-12 at different

concentrations to target the downstream TrkB pathway. To evaluate
the effects of TrkB inhibition on the viability of the 17.94 cells,
we exposed the cells to varying concentrations of ANA-12 (0, 1,
2, 5, 10, 20, 30, and 40 μM) for different time periods (0, 24, and
48 h). A dose-dependent reduction in cell viability was observed
in the cell lines, and increasing effects were observed for longer
time periods (Figure 9A).

In addition, we exposed the cells to varying concentrations of
ANA-12 (0, 10, 20, and 40 μM) for 24 h; the effects on apoptosis, cell
migration, and invasion potential were then examined using flow
cytometry, wound healing, and a Transwell assay. After 24 h, the flow
cytometry showed that the use of ANA-12 increased the percentage
of late apoptotic cells (Figure 9B). The 17.94 cell lines in the treated
groups demonstrated significantly inhibited healing compared to the
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FIGURE 7
Correlation analysis of immune infiltration and screening of hub genes in the prognostic model. (A) Difference in immune cells infiltration abundance
between high-and low-risk groups (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001). (B) Correlation between the expression of risk factors and the infiltration
abundance of immune cells. Red, positive correlation; blue, negative correlation (∗p < 0.05; ∗∗p < 0.01). (C) Correlation between NTRK2 expression
and CD56bright natural killer cell infiltration abundance. (D) Protein interaction network of risk factors.
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FIGURE 8
Verification of TrkB expression levels. (A) TrkB protein levels in the HEK293 and 17.94 cell lines were detected using WB. (B) TrkB protein levels in normal
adjacent (N) tissues and Wilms tumor (T) tissues were detected using WB. (C) Expression levels of TrkB protein determined using IHC in normal adjacent
(N) tissues and Wilms tumor (T) tissues (magnification: 100×).

0 μM group in the wound healing assay (Figure 9C). In addition, we
demonstrated that ANA-12 inhibited cell invasion (Figure 9D). All
the above results were dose dependent.

4 Discussion

In recent years, the significant role of anoikis and EMT in
the migration and invasion of tumor cells has gained increasing
attention. Both anoikis and EMT play important roles in distant
metastasis, which severely limits the prognosis of WT patients
(Liu et al., 2023; Cao et al., 2016). Therefore, it is highly important
to explore the inherent crosstalk between a loss of nesting apoptosis
and EMT and tumor metastasis. However, large-scale systematic
analyses of and clinically robustmodels for anoikis and EMT-related
genes inWTare still lacking.Additionally, further research is needed
to screen hub biomarkers of anoikis and EMT in the occurrence,
development, and resistance of WT.

In order to prove that there are pathological changes in the
anoikis and EMT pathways of tumor cells in WT patients, we used

the GSVA algorithm to evaluate the activation of these two pathways
in tumor and normal tissues by calculating the pathway score of
an anoikis-related gene set and an EMT-related gene set. We found
that these two pathways were abnormally regulated in WT. Tumor
tissue not only inhibits anoikis, but also excessively activates the
biological function of EMT. Previous studies have shown that the
inhibition of anoikis can prevent the apoptosis of cancer cells during
distant metastasis, while the mesenchymal characteristics induced
by EMT enable cancer cells to successfully complete the pathological
processes of invasion and metastasis (Paoli et al., 2013; Nieto et al.,
2016). We proved that, in WT, cancer cells may promote their
own occurrence and metastasis by abnormally regulating ectopic
apoptosis and EMT. Then, we established and validated a prognostic
model based on ARG and ERG. We demonstrated its accuracy and
robustness for both the training and validation sets. This prognostic
model can also play an independent role in prognostic factors
without being affected by other clinical features. This model consists
of a total of seven genes: SPYR1, HEY1, LTF, NTRK2, PDK4,
MTDH, and TLR3. In previous researches, several results suggest
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FIGURE 9
The selective TrkB antagonist ANA-12 inhibits the proliferation, migration, and invasion of the 17.94 cell line and promotes late apoptosis. (A) A CCK-8
cell proliferation assay was used to detect the proliferation ability of the 17.94 cell line. (B) Flow cytometry was performed to examine the late apoptosis
of the 17.94 cell line. (C) The migration of the 17.94 cell line was detected using a wound healing assay (magnification: 10×). (D) A Transwell assay was
used to detect the invasion of the 17.94 cell line (magnification: 20×). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

that Hey1 promotes the invasion and metastasis of melanoma cells
by regulating the GRB2/PI3K/AKT pathway (Pu et al., 2021). The
expression level of HEY1 in lung adenocarcinoma is upregulated.

Patients with high HEY1 expression levels have poor prognosis
after cisplatin therapy. HEY1 could regulate the cisplatin sensitivity
of non-small-cell lung cancer (NSCLC) cells (Gao et al., 2022).
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Experiments have confirmed that the silencing of HEY1 expression
can induce cisplatin resistance, and EMT changes occur during this
process (Gao et al., 2022). The overexpression of LTF promotes the
proliferation, migration, and invasion of osteosarcoma cells. LTF
can serve as a prognostic biomarker for osteosarcoma (Liu et al.,
2022). In Hu’s study, NTRK2 is an oncogene related to microRNA-
22 regulation in human gastric cancer cell line (Hu et al., 2016).
Research has verified that the upregulation of PDK4 expression
enhances the ability of gastric carcinoma cells to proliferate, migrate,
and invade (Zhang et al., 2022). The MTDH gene is amplified
in human hepatocellular carcinoma (HCC) patients, and the
overexpression of MTDH has been identified in a high percentage
of both hepatitis-B-virus- and hepatitis-C-virus-positiveHCC cases,
suggesting its key role in regulatingHCC (Sarkar, 2013). Bianchi, F.'s
research shows that TLR3 expression in the early stage of NSCLC is
associated with a good prognosis (Bianchi et al., 2020).

Next, we analyzed the correlation between the risk score and
clinical characteristics of patients. The results showed that only
different tumor stage groups exhibited a significant difference,
with stage III and IV patients having significantly higher risk
scores compared to stage I and II patients, which means the
prognostic model can assist in the clinical evaluation of the tumor
stage in patients with WT. However, there was no significant
difference in risk scores among the different age groups, histological
classifications, and gender classifications. We also examined the
information on different first events in the high-risk and low-risk
groups. It was evident that the probability of experiencing relapse
or progression recurrence as the first event was significantly higher
in the high-risk group. This further underscores the association
between high risk levels and poor prognosis, demonstrating the
accuracy of our risk scoring.

Subsequently, we explored the differences in the mutation
burden between the high-risk and low-risk groups, as well as the
association between the mutation burden and prognosis. However,
no significant results were obtained in this regard. We then found
that the model can provide some choices of treatment for WT
patients. High-risk patients, as assessed using this model, may
be prioritized for treatment with drugs such as dactinomycin,
vincristine, and irinotecan. Meanwhile, there was no significant
difference in the sensitivity to immune checkpoint inhibition
therapy between the high-risk and low-risk groups. Then, we used
a volcano plot to visualize the difference in the IC50 of the 198
compounds evaluated by this drug sensitivity model between the
high-risk group and the low-risk group. The results showed that
paclitaxel might be the most promising drug for the treatment of
high-risk patients in this compound library. Previous studies initially
demonstrated that paclitaxel combined with carboplatin or cisplatin
can benefit heavily treated or adult WT patients (Ozaki et al., 2012;
Ramanathan et al., 2000). In breast cancer, cisplatin and paclitaxel
can jointly inhibit tumor growth and prevent tumor metastasis by
blocking early EMT (Wang et al., 2021).These studies confirmed the
reliability of the prediction and the potential of paclitaxel for further
clinical treatment. In order to further expand the screening range
of sensitive chemotherapeutic drugs in the high-risk group, we used
cMAP to screen out the compound mesna, which may significantly
reverse the expression of high-risk genes in the population of
WT patients in this analysis. This drug is a uroprotective thiol
agent, is routinely administered concomitantly with ifosfamide, and

has almost eliminated ifosfamide-induced hemorrhagic cystitis, as
well as reducing nephron toxicity (Dechant et al., 1991). Studies
have shown that, as a component of combination regimens, it
exhibits good efficacy in a variety of cancers, such as recurrent
sarcomas, pulmonary pleomorphic carcinoma, epithelial ovarian
carcinoma, and so on (Miser et al., 1987; Lee et al., 2018; Sutton,
1993). Therefore, it is speculated that the combined use of mesna
during chemotherapy in WT patients can reduce chemotherapy-
related side effects while also lowering patient risk scores and
improving their prognosis.

To explore the specific mechanisms that affect the risk scores
of patients with WT, we enriched the pathway of DEGs in the
high- and low-risk groups based on the KEGG gene set. We
found that they were primarily enriched in various cancer-related
pathways, such as the PPAR signaling pathway, cytokine–cytokine
receptor interactions, Wnt, MAPK, the IL-17 signaling pathway,
and transcriptional misregulation in cancer. PPARs are metabolic
regulators that participate in the regulation of glucose and lipid
homeostasis, and there are three subtypes of PPARs that are encoded
by distinct genes (Park and Kwak, 2012; Fucci et al., 2012). Previous
studies have shown that the PPAR signaling pathway promotes
proliferation and inhibits the apoptosis of cancer cells (Wang et al.,
2022b). Cytokines are released in response to a diverse range of
cellular stresses, including carcinogen-induced injury, infection,
and inflammation. Whereas the effective containment of the injury
promotes tissue repair, the failure to resolve it can lead to persistent
cytokine production and to an exacerbation of tissue destruction.
As such, host reactions to cellular stress can have an impact on
multiple stages of cancer formation and progression (Dranoff, 2004).
Aberrant Wnt signaling has been described as a key player in the
initiation and/or maintenance and development of many cancers,
due to its effect on the behavior of cancer stem cells (Duchartre et al.,
2016). The MAPK signaling pathway is not only involved in
regulating cellular biological functions, such as cell proliferation,
cell differentiation, cell cycle regulation, cell apoptosis, and tissue
formation, but is also related to tumor formation (Rubinfeld and
Seger, 2005). Continuous activation of theMAPK signaling pathway
can promote the transformation of normal cells into tumor cells,
while the inhibition of the MAPK signaling pathway can restore
tumor cells to a non-transformed state and can inhibit tumor growth
(Sebolt-Leopold et al., 1999). In addition, interleukin-17 is closely
related to immunity and inhibits the activity of NK cells, thereby
promoting the occurrence and development of tumors (Wang et al.,
2019). In summary, the pathway analysis revealed that the risk score
is closely related to tumor occurrence, development, and immunity.

The abnormality of the immune system is an important factor
in the occurrence and development of many cancers, and anoikis
and EMT are closely related to it (Romeo et al., 2019; Liao et al.,
2023).We analyzed the differences in the tumormicroenvironment’s
infiltration abundance of immune cells between the high-risk and
low-risk groups using ssGSEA. We found that 11 out of 28 kinds
of immune cells showed significant differences, and all of them
were downregulated in the high-risk group. It is therefore proven
that an immunosuppressive effect occurs in the high-risk group,
which promotes the development of tumor and drug resistance,
leading to a poor prognosis. Then, the correlation between the
prognostic model genes and the immune system was analyzed; it
was found that, except for NTRK2 and immune cell infiltration,
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which were mainly negatively correlated, the other model genes
were positively correlated with most immune cells. Therefore, we
speculate that the overexpression of NTRK2 may lead to an overall
downregulation trend in immune cell infiltration in samples from
the high-risk group. It is worth noting that NTRK2 showed the
most significant negative correlation with CD56bright natural killer
cells whose activity was inhibited by the interleukin-17 signaling
pathway, which was enriched in the previous KEGG analysis.
Therefore, we speculate that the tumor tissue of high-risk patients
may activate the IL-17 signaling pathway by up-regulating the
expression of the NTRK2 gene, so as to inhibit the activity of
CD56bright natural killer cells to reduce its abundance of tumor
infiltration, thus preventing its inhibition and the elimination of
malignant tumor cells.

After an in-depth demonstration of the important crosstalk
between the model genes and WT, we set out to further screen
their hub gene as a biomarker with the potential to assist with
clinical diagnosis and treatment. We used the STRING database
to construct a protein–protein interaction network for the model
genes and utilized theMCC algorithm to identify NTRK2 as the hub
gene for this prognostic model. NTRK2 (Neurotrophic Receptor
Tyrosine Kinase 2) is a protein coding gene, it encodes the protein
TRKB, which is a member of neurotrophic tyrosine receptor kinase
(NTRK) family (Rohrberg and Lassen, 2021). And this family
also includes TrkA and TrkC, which bind to nerve growth factor
(NGF) and neurotrophin-3 (NT-3) respectively (Solomon et al.,
2019). TRKs can regulate cell proliferation, differentiation, and
even apoptosis via the RAS/MAPKs, PI3K/AKT, and PLCγ
pathways (Jiang et al., 2021). Gene fusions involving NTRK act
as oncogenic drivers of a wide range of adult and pediatric tumors
(Wu et al., 2014), and TRKs have become promising antitumor
targets (Cocco et al., 2018). ANA-12, originally developed as an
experimental antidepressant, selectively and efficiently inhibits TrkB
by binding to both low- and high-affinity sites on the receptor
extracellular domain, it showed direct and selective binding to
TrkB without altering TrkA and TrkC functions (Cazorla et al.,
2011). Since its inception, there have been quite a number of
experimental studies to prove its effectiveness. ANA-12 was
identified as a selective NTRK2 antagonist, which has been reported
to reduce chronic pain in different experimental models (Tillu et al.,
2015; Liu et al., 2018). Furthermore, ANA-12 has been used to
target NTRK2 in studies of medulloblastoma (Thomaz et al.,
2019), gliomas (Pinheiro et al., 2017), leukemia (Polakowski et al.,
2014), lung adenocarcinoma metastasis (Sinkevicius et al., 2014),
lymphoid tissue neovascularization (Dalton et al., 2015) and
endometriosis (Lee et al., 2021), etc. Experimental validation
was performed on the hub gene. WB and IHC displayed an
upward trend of TRKB protein expression in Wilms tumors,
which is consistent with the results of a previous analysis of the
public database. Finally, in order to further explore the effect of
NTRK2 inhibition on the function of WT cells, we used in vitro
experiments to clearly demonstrate that the downregulation of
NTRK2 could inhibit the proliferation, migration, and invasion
capabilities of the WT cell line 17.94 while increasing the
percentage of late apoptotic cells. This proved the inherent
potential of NTRK2 to act as a prognostic biomarker and a
drug target for patients with WT.

However, this study has certain limitations. We did not conduct
a detailed analysis of the interactions between key molecules
and the specific molecular mechanisms by which anoikis and
EMT impact WT.

5 Conclusion

This study systematically demonstrated the importance of the
misalignment and crosstalk of the anoikis pathway and the EMT
pathway in WT patients in tumorigenesis and development. We
constructed a prognostic model composed of seven risk factors
of ARGs and ERGs to predict the prognosis of WT patients and
verified its reliability and robustness using a training cohort and a
test cohort. In addition, we discussed the predictive effect of the
risk model on the sensitivity of commonly used chemotherapeutic
drugs and screened out potential drugs that might improve the
clinical treatment of patients in the high-risk group. Then, using
KEGG enrichment, we associated the risk model with TME and
analyzed the differential genes between the high- and low-risk
groups to explore the regulatory mechanism behind them. Finally,
we screened the hub genes of the prognostic model through the
STRING database and verified their inherent potential as prognostic
biomarkers and drug targets using clinical samples and in vitro
experiments.
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