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Exploration of phytoconstituents
of Medhya Rasayana herbs to
identify potential inhibitors for
cerebroside sulfotransferase
through high-throughput
screening
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Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu
University, Varanasi, Uttar Pradesh, India

Cerebroside sulfotransferase (CST) is a key enzyme in sulfatide biosynthesis and
regulation of the myelin sheath in the nervous system. To counter sulfatide
accumulation with the deficiency of aryl sulfatase A, CST is considered a target
protein in substrate reduction therapy in metachromatic leukodystrophy. In
this study, 461 phytoconstituents from four herbs of Medhya Rasayana were
screened using multi-pronged virtual screening methods including molecular
docking, molecular dynamics (MD) simulation, and reverse pharmacophore
analysis. The initial screening of the top 15 hits was based on the binding affinity
of the compounds toward the CST substrate-binding site using the lowest
free energy of a binding score cutoff of ≤ −7.5 kcal/mol, with the number of
conformations in the largest cluster more than 75. The absorption, distribution,
metabolism, and excretion (ADME) and toxicity-based pharmacokinetic analysis
delivered the top four hits: 18alpha-glycyrrhetinic acid, lupeol, alpha carotene,
and beta-carotene, with high blood–brain barrier permeability and negligible
toxicity. Furthermore, a 100-ns simulation of protein–ligand complexes with
a trajectory analysis of structural deviation, compactness, intramolecular
interactions, principal component analysis, free energy landscape, and dynamic
cross-correlation analysis showed the binding potential and positioning of the
four hits in the binding pocket. Thus, an in-depth analysis of protein–ligand
interactions from pre- and post-molecular dynamics simulation, along with
reverse pharmacophore mapping, suggests that 18alpha-glycyrrhetinic acid
is the most potent and specific CST inhibitor, while beta-carotene could
be considered the second most potent compound for CST inhibition as
it also exhibited overall stability throughout the simulation. Therefore, the
computational drug screening approach applied in this study may contribute
to the development of oral drugs as a therapeutic option for metachromatic
leukodystrophy.

KEYWORDS

cerebroside sulfotransferase, substrate reduction therapy, metachromatic
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GRAPHICAL ABSTRACT

1 Introduction

Metachromatic leukodystrophy (MLD) is an autosomal
recessive lysosomal storage neurodegenerative disorder,
pathologically characterized by progressive motor and cognitive
dysfunction (Miyake et al., 2021; Lamichhane and Cabrero, 2023;
Penati et al., 2017; Singh and Singh, 2024b). MLD is caused by
the deficiency of aryl sulfatase A (ARSA), which leads to the
accumulation of sulfatide, themain glycolipid involved in stabilizing
the myelin sheath equilibrium in the central and peripheral
nervous systems (Sessa et al., 2016; Fumagalli et al., 2022). Sulfatide
accumulation may cause various pathophysiological conditions,
including progressive demyelination, neuroinflammation,
communication gap, astrocyte dysfunction, developmental delay,
speech disorder, and in severe cases it causes death within 5–6 years
of the early onset of the disease (Miyake et al., 2021; Lamichhane
and Cabrero, 2023; Fumagalli et al., 2022). Based on the age
of onset, MLD is categorized into three major clinical types:

late-infantile (≤30 months); juvenile, which is subdivided into
early juvenile [30 months–6 years] and late juvenile [7–16 years];
and adult MLD (≥17 years) (Miyake et al., 2021; Fumagalli et al.,
2022; Chang et al., 2024). Worldwide, the prevalence of MLD
is 1.4–1.8 in 100,000 or 1 in 40,000, bringing it to the loop of
rare diseases of greater concern (Lamichhane and Cabrero, 2023;
Chang et al., 2024; Shaimardanova et al., 2020).

To date, more than 280 mutations have been reported
in the ARSA gene, which poses a major challenge in the
success of existing therapeutic options, including gene therapy,
hematopoietic stem cell therapy, enzyme replacement therapy, and
chaperone therapy, thus making these options costly and, therefore,
demanding a case-by-case approach that leads the treatment
of this rare disease beyond the reach of the larger population
(Shaimardanova et al., 2020; Kurtzberg, 2022; Eichler et al., 2022;
Fernández-Pereira et al., 2021; Sevin and Deiva, 2021). Another
major obstacle to the success of existing therapies is the blood–brain
barrier (BBB) in delivering the therapeutic gene or enzyme to the
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target site (Miyake et al., 2021). In contrast to existing therapies,
which are mainly ARSA-dependent, a new approach of substrate
reduction therapy (SRT) can be an alternate therapeutic option
for metachromatic leukodystrophy. SRT has shown its success in
various single-gene disorders including some key lysosomal storage
disorders (Mistry et al., 2023; Komada et al., 2021; Istaiti et al.,
2022). SRT focuses on the development of oral drugs to treat
pathophysiological conditions. Miglustat and eliglustat are the two
FDA-approved oral drugs for Gaucher’s disease (Mistry et al., 2023;
Komada et al., 2021; Istaiti et al., 2022).

In MLD, the therapeutic focus in substrate reduction therapy
is the development of a specific, potent, and competitive inhibitor
which targets the catalytic action of the rate-limiting enzyme,
cerebroside sulfotransferase, that is involved in the biosynthesis of
sulfatides (Singh and Singh, 2024b; Yaghootfam et al., 2007; Li et al.,
2020). To date, the development in substrate reduction therapy
has been at the nascent stage in MLD. Experimental data with
available CST inhibitors are limited, even though the full-length
CST sequence and cDNA are available (Li et al., 2020). The lack
of structural information of proteins due to the unavailability
of the three-dimensional structure of CST has been a major
roadblock in initiating preliminary in silico-based drug discovery,
which has great potential in screening drug-like candidates in
the shortest possible time with less expenses. The development
of the three-dimensional homology model of CST by our group,
which used a multipronged modeling and validation approach, is a
breakthrough in SRT research in MLD (Singh and Singh, 2024a).
This study uses this model for the screening of phytoconstituents
fromMedhya Rasayana.

Medhya Rasayana is a group of Ayurvedic medicinal herbs with
neuroprotectiveeffectsagainstvariousneurodegenerativediseasesand
known to improve cognitive function and neural tissue regeneration,
retard brain aging, and balance mental health (Kulkarni et al., 2012;
Sarokte and Rao, 2013; Rashmi et al., 2017). Medhya Rasayana
comprises four major herbs: Mandukaparni (Centella asiatica
Linn.), Yastimadhu (Glycyrrhiza glabra Linn.), Guduchi (Tinospora
cordifolia Miers), and Shankhpushpi (Convolvulus pluricaulis Chois)
(Kulkarni et al., 2012).These herbs are rich in phytoconstituents with
unique bioactive properties. This study focuses on identifying potent
and specific bioactive compounds as inhibitors against CST through
multipronged in silico studies. High-throughput virtual screening is
the most common and reliable strategy used to identify the potent
and specific inhibitors and potential lead molecules from the diverse
dataset of small molecules at low cost and rapid pace using the
recent advancement in the field of bioinformatics (Singh et al., 2018;
Singh et al., 2017; Yasuo and Sekijima, 2019). With this perspective,
the present study opens the door for many futuristic studies to
achieve a marketed oral drug for metachromatic leukodystrophy that
could bring this hereditary disease within the reach of a possible
cost-effective treatment loop.

2 Methodology

2.1 Resources

The computational study was executed using the high-
performance super-computing facility, PARAM Shivay, installed

at the Indian Institute of Technology, Banaras Hindu University,
Varanasi, India, with a capacity of 837 TFLOPS with Intel(R)
Xeon(R) Gold 6148 CPU @2.40 GHz and 40 CPUs per node.
This study used key software programs including AutoDock 4.2,
GROMACS 2023, Origin 2024, Chimera 1.17.3, PyMOL, Discovery
Studio visualizer, VMD, and Bio3D tool with R package and key
webtools including PharmMapper, pkCSM, SwissADME, and
ProTox 3.0.

2.2 Protein structural analysis and receptor
grid generation

For screening of bioactive phytoconstituents, the 3D model of
CST developed in our earlier study was used as a receptor. The
model comprises 69–336 amino acid residues of the full-length
protein with 423 residues and covers the entire catalytic region of
the protein with a sulfuryl acceptor substrate (galactocerebroside)-
binding site and a sulfuryl donor co-substrate (PAPS)-binding site
on a linear horizontal plane (Singh and Singh, 2024a; Singh and
Singh, 2024b). The model protein was processed using AutoDock
4.2 by the removal of water molecules and heteroatoms and the
addition of hydrogen atoms with proper assignment of atom type
and Gasteiger charge to generate a PDBQT file of the protein. A grid
box of 90 × 90 × 90 Å and spacing of 0.253 Å around the protein
active site was generated considering the key residues LYS82, HIS84,
LYS85, HIS141, PHE170, TYR176, PHE177, TYR203, and ARG202,
and a grid file (.gpf) was created.

2.3 Ligand preparation

We used a set of compounds from the Indian Medicinal
Plants, Phytochemistry, And Therapeutics (IMPPAT 2.0) online
database (Vivek-Ananth et al., 2023; Mohanraj et al., 2018). The
3D (.mol2) structures of 81 compounds from C. asiatica Linn
(Mandukaparni), 310 from G. glabra Linn (Yastimadhu), 52
from T. cordifolia Miers (Guduchi), and 18 from C. pleuricaulis
Chois (Shankhpushpi) were converted to .pdbqt files after
energy minimization and assigning proper atom types using
AutoDock Raccoon, a virtual screening file preparation tool
(Forli et al., 2016).

Following the preparation of the protein, ligands, and grid files,
AutoDock Raccoon was further used for the preparation of docking
(.dpf) files for each ligand and the subsequent arrangement of all
files in a single separate folder for each protein–ligand complex
with the generation of a single virtual screening script file (.sh) for
performingmolecular docking-based virtual screening of all ligands
simultaneously under the Linux environment. The parameters used
for the generation of .dlg files for docking run were 100 GA run, a
population size of 300, maximum number of generations of 27,000,
and maximum number of evaluations of 25,000,000. AutoDock
applied the Lamarckian genetic algorithm and a gradient-based
local search method for protein–ligand interactions. The pKi and
ligand efficiency are two major parameters for assessing the binding
potential of ligands in the active site.The best-docked conformation
was selected, processed using custom Python scripts, and visualized
using .pdb visualization tools including PyMOL and Discovery
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Studio Visualizer to analyze protein–ligand interactions and ligand-
binding patterns in the active site.

2.4 In silico drug-likeness properties,
ADME, and toxicity analysis

The selected top hits based on the binding score
and number of conformations in the largest cluster were
subjected to pharmacokinetic property analysis using pkCSM,
SwissADME, and ProTox webservers (Banerjee et al., 2018;
Daina et al., 2017; Pires et al., 2015). The canonical Simplified
Molecular Input Line Entry System (SMILE) of the selected
compounds was used as the entry data in these servers for their
pharmacokinetic and drug-likeness property analysis through
adsorption, distribution, metabolism, and excretion along with
toxicity studies.

2.5 Molecular dynamics simulations

All atommolecular dynamic (MD) simulations were performed
using the GROMACS 2023.1 software package using the
CHARMM27 all-atom additive force field. For the simulation, a
dodecahedron simulation boxwas createdwith aminimumdistance
of 1.2 Å from the box edge, and periodic boundary conditions
were applied to minimize the edge effect. Each box was solvated
with the TIP3P water solvation model, and the charges on the
system were then neutralized by the addition of chloride (Cl−)
ions, and thereafter, the solvated system was energy-minimized
using the steepest descent algorithm.The energy-minimized system
was then equilibrated to 1,000-ps (1 ns) NVT simulation with a
time step of 2 fs at 300 K. Next, the system was equilibrated to
1,000-ps NPT simulations with a time step of 2.0 fs at 300 K. The
LINCS algorithm was used to constrain the bond lengths. The final
MD simulation run was performed for 100 ns, and trajectories
were analyzed using different MD parameters including root
mean square deviation (RMSD), root mean square fluctuation
(RMSF), radius of gyration (Rg), solvent-accessible surface area
(SASA), hydrogen bonds, principal component analysis (PCA),
and dynamic cross-correlation matrix (DCCM) analysis of the
protein–ligand complexes.

2.6 Cross-target prediction

The PharmMapper server was used to identify a wide range
of targets using an innovative reverse pharmacophore mapping
approach (Wang et al., 2017; Liu et al., 2010). The best mapping
poses of the submitted molecule (.mol2) were aligned against
all target proteins available in PharmTargetDB. The algorithm
used to perform the reverse pharmacophore matching protocol
comprises a sequential combination of triangle hashing (TriHash)
and genetic algorithm (GA) optimization (Liu et al., 2010). Based
on the calculated highest fit-score (cutoff >5.0) between the small
compound and the pharmacophore models, the probable protein
targets were ranked. It was imperative to check the disease-causing
potential of the targets.

3 Results

3.1 Molecular docking-based virtual
screening

Virtual screening is a computational approach used to screen
libraries of compounds available in databases against the target
protein to identify a potential drug candidate for a targeted disease
(Singh et al., 2018; Singh et al., 2021; Zare et al., 2024; Pirolli et al.,
2023). In the CST-led research to develop substrate reduction
therapy for metachromatic leukodystrophy, the state-of-the-art in
silico approach could be the most promising and directional method
for future studies. Toward this approach, the development of a
homology model of the CST protein using various computational
algorithms is an important step (Singh and Singh, 2024a). In the
present study, this 3D model was utilized for screening specific and
potent phytoconstituents of four major herbs of Medhya Rasayana.
Out of a total of 461 bioactive compounds, 81 compounds from
C. asiatica Linn., 310 from G. glabra Linn., 52 from T. cordifolia
Miers, and 18 from C. pleuricaulis Chois were screened against CST,
which are detailed in Supplementary Tables S1–S4. In the initial
level of screening, using the lowest free energy of a binding cutoff
of ≤ −7.5 kcal/mol and the number of conformation cutoff of ≥75
in the largest conformation cluster, the top 15 compounds were
selected, i.e., 3 from C. asiatica and 12 from G. glabra. Compounds
belonging to T. cordifolia and P. Chois were found to be less potent
and less specific toward CST and, hence, were not considered
for further study. The docking score of these top 15 compounds
falls between −7.57 and −10.32 kcal/mol. With a ligand efficiency
of ≤0.19 per non-hydrogen atom, the top 15 compounds were
considered promising for drug-likeness property analysis. Apart
from α- and β-carotene, all 13 compounds strictly followed the
Lipinski rule of 5 parameters in terms of molecular mass (<500),
number of hydrogen bond donors (<5), hydrogen bond acceptors
(<10), number of rotatable bonds, and topological surface area
(TPSA). Despite failing at the Lipinski rule of five parameters,
α- and β-carotene were considered for further studies because of
their wider therapeutic potential in neurodegenerative diseases,
and these molecules have already been tested in the human body
(Banerjee et al., 2023; Abrego-Guandique et al., 2023; Hira et al.,
2019; Narisawa et al., 1996). Additionally, these compounds showed
good lipophilicity with a log p-value > 0, which is imperative for
compounds to cross the lipophilic membrane and, thus, strengthen
the movement of these molecules to the target site. Therefore, all 15
hits were considered for absorption, distribution, metabolism, and
excretion (ADME) and toxicity analysis to eliminate false positives
from this list, which is provided in Table 1.

3.2 Absorption, distribution, metabolism,
excretion, and toxicity profiling

After the administration of the drug in the body, it goes through
absorption, distribution, metabolism, and excretion processes. In
this process, the drug interacts with desirable or undesirable targets
and causes a pharmacological impact (Zhang and Tang, 2018).
Thus, the bioavailability of a drug depends on the rate of absorption,
metabolism, and transportation of the drug to the target site (Zhang
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and Tang, 2018; Stielow et al., 2023). Human intestinal absorption
and lipophilicity of compounds are other important parameters
to be considered to ensure the easy diffusion of compounds. The
cytochrome p450-based drug response to body metabolism exhibits
genetic variability and plays a critical role in the detoxification of
drugs and homeostasis (Zhao et al., 2021). In this study, CYP2C9,
CYP2D6, and CYP3A4 inhibitors were used to analyze the drug
response at the metabolism stage. Renal OCT2 is a renal transporter
that plays an important role in determining the renal clearance or
deposition of drugs (Zou et al., 2021; Wright, 2019). Except few,
most of the selected compounds showed good intestinal absorption
capacity, along with body metabolism and renal excretion potential.
SinceMLD is a brain disorder, themajor deciding parameters for the
potential drug candidates were BBB permeability, which screened
four compounds—IMPHY012226 (18alpha-glycyrrhetinic acid),
IMPHY012473 (lupeol), IMPHY011609 (alpha-carotene), and
IMPHY011707 (beta-carotene)—with considerable blood–brain
barrier permeability. In order to select a potential lead molecule,
in silico toxicity study becomes another crucial criterion due to its
accuracy, accessibility, and rapidity in preclinical-level screening and
providing a potential lead scaffold for further optimization (Raies
and Bajic, 2016; Hemmerich and Ecker, 2020; Yang et al., 2018).
pkCSM and ProTox 3.0 are freely available in silico toxicity study
servers that use the SMILE of each compound to evaluate various
toxicity parameters including Ames mutagenicity, hepatotoxicity,
and cytotoxicity (Banerjee et al., 2018; Pires et al., 2015). These
four phytoconstituents belonged to class “4” of the ProTox-
predicted toxicity class based on their LD50 range between 560
and 2,000 mg/kg, suggesting that the selected four compounds
are mainly nontoxic. Table 2 provides the details of ADME and
toxicity analysis of the top 15 hits, and Figure 1 shows the structural
details of the best 4 compounds screened through ADME and
toxicity analysis.

3.3 Pre-MD/docking-based protein-ligand
interaction pose analysis

Protein–ligand interaction analysis was imperative to obtain an
insight into the binding pattern of compounds in the substrate-
binding site of the CST protein.The substrate-binding site comprises
a left-end polar site dominated by Lys85, Phe170, Lys82, and Ser88;
a middle part flanked on both sides by His84 and His141; and an
aromatic site at the right enddominated byTyr203 andPhe170.With
the lowest free binding energy of −10.32 kcal/mol and 98 similar
conformations in the largest cluster, 18alpha-glycyrrhetinic acid was
found to be the most potential ligand with the highest binding
affinity among the 4 in the binding pocket of the CST protein.
The compound consists of five steroidal rings with a carboxylic
group attached at one end and a hydroxyl group at the other end.
These ends determined the orientation of the compound toward the
polar site based on the degree of polarity of the carboxylic group,
which interacted with Lys85 by hydrogen bonding. One oxygen
atom was attached by a double bond at the third ring in the middle
of the compound positioned at the middle of the active site and
was flanked on both sides by His84 and His141 and formed a
hydrogen bond with His84. At the right side of the binding pocket,
methyl groups located on the rightmost ring of the compound
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FIGURE 1
Top four selected compounds. (A) α-carotene. (B) β-carotene. (C) 18alpha-glycyrrhetinic acid. (D) lupeol.

interacted with the residues Tyr203 and Phe177 via pi–sigma and
pi–alkyl bonds, respectively (Figure 2I). Both α-carotene and β-
carotene complexes shared similarity in the interaction pattern in
the CST-binding pocket. α-Carotene and β-carotene are isomers,
differing in the position of the double bond on the ring at one end
oriented toward the polar site in the binding pocket. Lys82 and Lys85
played a critical role in the interaction with the isomeric fragment
of these compounds. In α-carotene, the methyl group at the C2
position was oriented toward Lys85 and, thus, interacted with it,
whereas in β-carotene, the methyl group at the C2 position was
oppositely oriented and away from Lys85. In the CST–β-carotene
complex, the two methyl groups at the C6 position were oriented
toward Lys85 and interacted via the pi–alkyl interaction, whereas in
the CST–α-carotene complex, the methyl groups at the C6 carbon

were positioned away from Lys85 and interacted with Lys82. The
aliphatic chain between the two aromatic rings interacted in a nearly
similar fashion in both complexes with key residues Phe177, Tyr203,
phe170, and His84, while Arg202 interacted with the aromatic ring
on the right side of the binding pocket (Figures 2II, III). In contrast
to the other three compounds that broadly occupied the active
site core, in the CST–lupeol complex, the ligand predominantly
occupied the right side of the binding pocket, which might be
due to its small size and the missing of a polar carboxylic group
at one end as it was in 18alpha-glycyrrhetinic acid. The lack of
occupancy of the polar site by lupeol is due to its five-carbon
nonpolar ring that interacted strongly at the aromatic site of the
binding pocket (Figure 2IV), while the six-membered polar ring
in 18alpha-glycyrrhetinic acid stretched the compound toward the

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1476482
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Singh and Singh 10.3389/fmolb.2024.1476482

FIGURE 2
Interaction of the top four docked complexes, including (A) surface view (upper panel), (B) 3D view (middle panel), and (C) 2D view (lower panel) of the
protein–ligand interaction at the substrate-binding site of CST protein in (I) CST–18alpha-glycyrrhetinic acid, (II) CST–α-carotene, (III) CST–β-carotene,
and (IV) CST–lupeol complexes. In the 2D view, conventional hydrogen bond, pi–sigma, pi–alkyl, and van der Waals interactions are depicted in green,
violet, pink, and light green, respectively.

polar site and, thus, was strongly accommodated in the active site
(Figure 2I). The details of the interaction types are given in Table 3.
To further understand the protein–ligand interaction under a
dynamic environment, all four compounds were considered for
molecular dynamic simulations.

3.4 Molecular dynamic simulation

MD simulation is a computational approach used to analyze
and optimize the overall stability of the protein–ligand complexes
under atomistic simulation conditions with a dynamic aqueous
environment (Guterres and Im, 2020; Kurniawan and Ishida,
2022; Khan et al., 2016). MD simulation provides a cumulative
idea about the movement of every atom or atom in the protein
over the simulation time span to study important biological
processes, including the impact of ligand binding on the overall
protein dynamics and the way the macromolecule responds at
the atomic level with the binding or unbinding of the ligand

(Alrouji et al., 2023; Hollingsworth and Dror, 2018). In this study,
to understand the in-depth dynamic behavior of the protein–ligand
interaction, MD simulation was carried out for a time span of
100 ns to evaluate the strength and stability of the protein–ligand
complexes through trajectory analysis with various parameters
including RMSD, RMSF, Rg, SASA, and hydrogen bonding. We also
carried out principal component analysis, free energy landscape
analysis, and dynamic cross-correlation analysis to understand the
dominant motions responsible for the binding pattern and stability
of the protein–ligand complex.

3.4.1 Structural deviation and flexibility with
RMSD and RMSF analysis

The RMSD measures the conformational deviation of the
protein structure from the initial docked conformation to the
final conformation under the dynamic aqueous environment over
the simulation time span to ensure the stability of the predicted
protein–ligand complex after ligand binding (Zare et al., 2024;
Aier et al., 2016). In this study, in a simulation time of 100 ns, the
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TABLE 3 Non-bonded interaction in docked protein–ligand
conformation.

Sl. no. Compound Residue
in
contact

Bond
type

Distance
(Å)

1
18alpha-
Glycyrrhetinic
acid

Lys85 Conventional
hydrogen
bond

1.60

Lys85 Conventional
hydrogen
bond

2.10

His84 Conventional
hydrogen
bond

2.20

His84 Pi–sigma 4.25

His84 Pi–alkyl 4.24

His84 Pi–alkyl 5.30

His141 Pi–alkyl 4.61

Phe177 Pi–alkyl 5.37

Phe177 Pi–alkyl 6.35

Phe177 Pi–alkyl 6.63

Phe177 Pi–alkyl 6.58

Tyr203 Pi–sigma 4.60

Tyr203 Pi–alkyl 5.10

Ser173 van der
Waals

3.48

Arg282 van der
Waals

4.33

2 α-Carotene

Lys82 Pi–alkyl 5.08

Lys85 Pi–alkyl 3.12

Lys85 Pi–alkyl 4.29

Lys85 Pi–alkyl 6.93

His84 Pi–alkyl 4.85

His84 Pi–alkyl 4.96

His84 Pi-Alkyl 5.76

Phe170 Pi–alkyl 5.01

Phe177 Pi–alkyl 5.36

Phe177 Pi–alkyl 5.53

Arg202 Pi–alkyl 3.37

Arg202 Pi–alkyl 3.96

(Continued on the following page)

TABLE 3 (Continued) Non-bonded interaction in docked protein–ligand
conformation.

Sl.
no.

Compound Residue
in
contact

Bond
type

Distance
(Å)

Tyr203 Pi–alkyl 3.12

Tyr203 Pi–alkyl 3.75

Tyr203 Pi–alkyl 5.04

Tyr203 Pi–alkyl 5.54

3
β-
Carotene

Lys82 Pi–alkyl 4.51

Lys85 Pi–alkyl 4.07

Lys85 Pi–alkyl 5.63

His84 Pi–alkyl 3.83

His84 Pi–alkyl 4.68

Phe170 Pi–alkyl 5.18

Tyr176 Pi–alkyl 5.05

Phe177 Pi–alkyl 5.87

Phe177 Pi–alkyl 6.24

Arg202 Pi–alkyl 3.74

Arg202 Pi–alkyl 4.38

Arg202 Pi–alkyl 4.51

Arg202 Pi–alkyl 5.83

Tyr203 Pi–sigma 3.86

Tyr203 Pi–alkyl 4.21

Tyr203 Pi–alkyl 4.38

4 Lupeol

His84 Pi–alkyl 5.40

His84 Pi–alkyl 5.84

His84 Pi–alkyl 5.85

Leu169 Pi–alkyl 5.32

Phe170 Pi–alkyl 3.74

Phe170 Pi–alkyl 5.50

Phe177 Pi–alkyl 6.31

Tyr203 Pi–alkyl 3.82

Tyr203 Pi–alkyl 4.29

Arg202 Pi–alkyl 4.18
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FIGURE 3
Structural dynamics of CST in complex with (A) α-carotene, (B) β-carotene, (C) 18alpha-glycyrrhetinic acid, and (D) lupeol. (I) Root mean square
deviation (RMSD) plot over time, highlighting any deviations in the spatial structure of CST over a time scale of 100 ns from its original conformation;
the plot used a protein backbone for considering deviation throughout simulation. (II) Root mean square fluctuation (RMSF) of residues in CST under
different ligand-bound states during a time scale of 100 ns.

CST–18alpha-glycyrrhetinic acid and CST–α-carotene complexes
were found to be the most stable with negligible fluctuation, while
the CST–β-carotene complex showed overall stability with little
fluctuation at 40 ns The CST–lupeol complex showed initial rapid
fluctuation, but after 25 ns, it also achieved stability. The average
deviation found for CST, CST-GC, CST–18alpha-glycyrrhetinic
acid, CST–α-carotene, CST–β-carotene, and CST-Lupeol was 0.49,
0.76, 0.57, 0.89, 0.92, and 0.67, respectively.Thus, RMSD simulation
showed that the four complexes of CST could maintain overall
structural stability during the simulation and no significant
conformational changes occurred in the protein structure after
ligand binding as the RMSD was maintained throughout the
simulation either between the RMSD of free CST and the CST-
GC complex or closer to the RMSD of the CST–GC complex,
which is a good indication toward achieving competitive inhibition
(Figures 3IA–D) (Singh and Singh, 2024a).

Following the protein conformational deviation studies with
RMSD, protein structural fluctuation at the residue level was
analyzed with RMSF calculation of the protein–ligand complex
(Martínez, 2015; Paul et al., 2022). In this study, the fluctuations
in the residues of the CST protein in the presence of the
selected ligand were compared with the RMSF of the free CST
and CST-GC complex. The average RMSF of free CST, CST-
GC, CST–18alpha-glycyrrhetinic acid, CST–α-carotene, CST–β-
carotene, and CST–lupeol was 0.15, 0.17, 0.18, 0.176, 0.18, and
0.23, respectively. As depicted in (Fig 3IIA–D), a wider residual
fluctuation was clearly observed in free CST between the amino
acid residues 175 to 190, which represents the loop region
in the substrate-binding site, while in the CST–GC complex,
residual fluctuation was minimized significantly, as interaction
with the ligand may provide less room for fluctuation (Singh
and Singh, 2024a). Among the four test complexes,
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CST–18alpha-glycyrrhetinic acid and CST–β-carotene showed
relatively better stability between amino acid residues 180 and
190, while in the CST–lupeol complex, the fluctuation in this
region was close to that of the free CST. Overall, the CST–18alpha-
glycyrrhetinic acid and CST–β-carotene complexes showed residual
fluctuation close to that of the CST–GC complex, which is again
a good indication of the competitive inhibition of CST. The
CST–lupeol complexwas found to be least stable at the residual level.

3.4.2 Structural compactness with Rg, SASA, and
hydrogen bonding analysis

The next level of screening was to evaluate changes in the
size or structural compactness of the protein in the presence of
ligands during the simulation bymeasuring Rg of the protein–ligand
complex (Lobanov et al., 2008; Rampogu et al., 2022; Funari et al.,
2022). Rg also estimates the flexibility of the protein under complex
formation by comparing it with Rg of either the free protein or the
substrate-bound protein. The larger Rg in the free CST indicated
lesser compactness and greater flexibility, whereas the smaller Rg in
the CST–GC complex indicated greater compactness and rigidity in
the protein structure in the presence of the substrate. As depicted in
Figure 4A, a similar trend was visible with inhibitor binding. Of the
four, the Rg of the CST–β-carotene complex wasmost closely related
to the Rg of the protein–substrate complex. In the CST–18alpha-
glycyrrhetinic acid complex, structural compactness of the protein
was between that of free CST and the CST-GC complex, suggesting
that the presence of the ligand slightly compressed the protein
structure. The Rg values of the CST–α-carotene and CST–lupeol
complexes were found to be between the Rg of the free CST and
the Rg of the CST-GC complex, also suggesting that the protein
structure takes on stiffness and compactness in the presence of
these ligands (Figure 4A).

The SASA measures the solvent-accessible surface area of the
free protein or protein in the protein–ligand complex. It basically
calculates the surface area of molecules that is exposed to solvent
molecules (Alrouji et al., 2023; Durham et al., 2009; Ali et al., 2014;
Savojardo et al., 2021). The SASA analyzes how parts of the protein
come into contact with the solvent over the simulation time. The
average SASA range for the selected compounds was between
170 and 180 nm2, which falls between the range of the SASA
of free CST (180.1 nm2) and that of CST complexed with the
substrate (173.07 nm2) (Singh and Singh, 2024a).The average SASA
of the CST–18alpha-glycyrrhetinic acid, CST–α-carotene, CST–β-
carotene, and CST–lupeol complex was 175.83 nm2, 180.89 nm2,
175.38 nm2, and 175.30 nm2, respectively (Figure 4B). Of the
four hits, the SASA of CST–18alpha-glycyrrhetinic acid, CST–β-
carotene, and CST–lupeol falls within the expected range of the free
CST and CST–substrate complex, suggesting better compactness of
the protein in the presence of these ligands with relatively lesser
unwanted solvent accessibility. The SASA of the CST–α-carotene
complex was close to the SASA of free CST, suggesting that ligand
binding has a negligible impact on the solvent accessibility of the
protein structure. Overall, the SASA of the protein–ligand complex
of the selected compounds showed nomajor changes in the exposed
protein structure after protein–ligand binding and maintained the
natural structural integrity of the protein.

Furthermore, intramolecular hydrogen bonding analysis was
vital for understanding the stability of the protein–ligand complex as

ligand binding impacts the overall protein intramolecular dynamics
(Pace et al., 2014; Hubbard and Haider, 2010). Compared to the free
CST protein, substrate binding to the substrate binding site in CST
slightly increased the intramolecular hydrogen bonding, suggesting
that when binding to the active site, the substrate pushed the protein
structure inward, facilitating the proximity of atoms and, thus,
facilitated additional contacts at the intramolecular level. Among
the protein–ligand complexes of the selected compounds, the
CST–18alpha-glycyrrhetinic acid, CST–β-carotene, and CST–lupeol
complexes showed a negligible impact on the intramolecular
hydrogen bond dynamics of the CST protein, suggesting the
stability of protein intramolecular dynamics with ligand binding
(Figures 5A, C, D). Probability distribution function (PDF) plots
show good consistency of these three complexes. The CST–α-
carotene complex was found to be the least stable and most deviated
complex, and the protein structure in this complex even showed
negatively more flexibility than that of the free CST (Figure 5B).

Thus, at the structural compactness level, the CST–18alpha-
glycyrrhetinic acid, CST–β-carotene, and CST–lupeol complexes
were found to be relatively more stable than the CST–α-carotene
complex. In the presence of these three compounds, the CST
protein underwent the expected natural stiffness and compactness
phenomenon, as observed in the case of protein–substrate
binding.

3.4.3 Principal component analysis
The specific catalytic action of each protein is executed through

coordinated and collective atomic motion, which determines the
stability of the protein (Zare et al., 2024; Yuan et al., 2024). PCA
is widely used to analyze the atomic-level conformational changes
through ligand binding. Basically, the principal components are
the dominant mode of motion of the system that determine the
structural and dynamic properties of the protein–ligand complex
(Zare et al., 2024; Alrouji et al., 2023). In this study, principal
components for the four selectedCST–ligand complexeswere largely
determined by the first two (PC1 and PC2) and the first three
eigenvectors (PC1, PC2, and PC3), which reflected the overall
dynamics of the molecular subspace of the CST protein bound with
the selected ligands (Figures 6A, B). With eigenvector 1 spanning
between −3.3 and 4.5, eigenvector 2 between −3.07 and 3.09,
and eigenvector 3 between −3.23 and 4.26, the CST–18alpha-
glycyrrhetinic acid complex showed better compactness among the
four. In the CST–β-carotene complex, eigenvector 1 covers −6.18
to 3.87, eigenvector 2 was between −3.3 and 2.7, and eigenvector
3 was between −1.7 and 3.4. With eigenvector 1 valued between
−4.6 and 5.1 nm, eigenvector 2 from −7.3 to 4.1, and eigenvector
3 from −2.0 to 2.7 nm, the CST–α-carotene complex was found to
be the most dispersed among the four, followed by the CST–lupeol
complex, of which eigenvector 1 ranged between −4.3 and 5.9,
eigenvector 2 from −2.6 to 3.8 nm, and eigenvector 3 from −3.6
to 4.6. In the first two eigenvectors, CST–18alpha-glycyrrhetinic
acid, CST–β-carotene, and CST–lupeol complexes fell within the
expected range of free CST and CST complexed with its substrate
(GC) and showed relatively less motion and higher stability, while
the CST–α-carotene complex was found to be the most diverted
and less stable complex (Figure 6A). Subsequently, comparing the
results of the first three principal components, we found that all
four complexes primarily fall within the expected range of the free
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FIGURE 4
Structural compactness analysis of CST in the CST–18alpha-glycyrrhetinic acid, CST–α-carotene, CST–β-carotene, and CST–lupeol complexes. Time
evolution of (A) Rg values and (B) SASA values during the simulation.

CST and CST–substrate complex, with slight diversions observed
in the CST–lupeol complex (Figure 6B). Thus, in both sets of
eigenvectors, CST–18alpha-glycyrrhetinic acid and CST–β-carotene
demonstrated relatively better stability because their principal
components occupied a smaller subspace. Thus, these findings
further strengthen the candidature of 18alpha-glycyrrhetinic acid
and β-carotene as inhibitors for CST.

3.4.4 Free energy landscape analysis
The free energy landscape (FEL) analysis is primarily applied

to understand the folding pattern of proteins and the impact of
ligand binding on the structure of the protein (Plattner and Noé,
2015; Lau and Roux, 2007; Khan et al., 2019; Maisuradze et al.,
2010). In this study, the first two eigenvectors were used from
the principal component analysis to generate the FEL plot of
each protein–ligand complex based on the dominant and stable
conformation during a simulation of 100 ns. In contrast to the
free CST, which showed relatively increased conformational space
with global minima of 16.60 kJ/mol for attaining a stable structure,

the conformational space of CST-GC complex slightly shifted with
global minima of 17.10 KJ/mol (Singh and Singh, 2024a). In this
study, in the spectrum of the free energy landscape, dark blue
signified the most energetically favored region, and green depicted
the moderately favored region, where the conformation of the
protein could maintain its stability, while yellow represented the
relatively unfavorable region and high energy state. According to
the FEL plot, CST–18alpha-glycyrrhetinic acid, CST–β-carotene,
and CST–lupeol complexes showed a wider blue zone with a
global minima of 16.40 kJ/mol, 17.20 kJ/mol, and 15.10 kJ/mol,
respectively (Figures 7A, C, D).The globalminima of CST–18alpha-
glycyrrhetinic acid and CST–β-carotene complexes were within the
range of the global minima of the free CST (16.60 kJ/mol) and CST-
GC complex (17.10 kJ/mol) (Singh and Singh, 2024a), thus showing
potential for competitive inhibition in terms of energy requirement
for binding. Among the four hits, the FEL of the CST–α-carotene
complex with a global minima of 19.00 kJ/mol was found to have
the least stable protein–ligand interaction (Figure 7B). Overall, the
free energy landscape of the protein–ligand complexes provided a
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FIGURE 5
Time evolution of intramolecular hydrogen bond analysis in CST in (A) CST–18alpha-glycyrrhetinic acid, (B) CST–α-carotene, (C) CST–β-carotene, and
(D) CST–lupeol complexes. The lower panel represents the probability distribution function (PDF) plot of each complex.

FIGURE 6
Principal component analysis of conformational projections of free CST and its complexes substrate (violet), 18alpha-Glycyrrhetinic acid (dark yellow),
α-carotene (red), β-carotene (light green), and Lupeol (blue). (A) Projection of the first two eigenvectors 1 and 2 (B) projections of first three
eigenvectors and plot between PC1 and PC3.

valuable insight into the interaction potential of the ligand and the
stability of the protein in its bound form.

3.4.5 Dynamic cross-correlation matrix analysis
Using the MD trajectory data, a DCCM analysis was performed

to understand the dominant correlation network of amino acid
residues in the CST protein in the presence of ligands (Du et al.,
2010; Avti et al., 2022).The dynamic correlation mapping of protein
residues in the presence of different ligands indicated the impact of
the ligand on the overall protein structure conformational stability.
For the DCCM study of the four complexes, the MD simulation
structure in the last 10 ns was considered to obtain an insight

into the protein–ligand complex. In the 2D matrix of DCCM
analysis, the dark blue region represents the highly correlated
motion of residues in the positive direction, the white region
represents the highly anti-correlatedmotion of residues, and the no-
color region indicates no correlation in the motion of the residue.
Protein residues in the CST–18alpha-glycyrrhetinic acid complex
were considered highly correlated because they occupied a wider
area of dark blue (Figure 8A). The protein residues in the CST–β-
carotene complex showed a relatively better residue correlation
than that in the CST–α-carotene complex (Figures 8B, C). The
residues in the CST–lupeol complex were found to have the least
correlated residues as the dark blue region is relatively sparse
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FIGURE 7
Free energy landscape of (A) CST–18alpha-glycyrrhetinic acid, (B) CST–α-carotene, (C) CST–β-carotene, and (D) CST–lupeol complexes.

among the four protein–ligand complexes, and the large area in
this complex is uncolored, indicating no significant correlation and
reduced relation with the target protein (Figure 8D). Overall, the
correlated motion of the residue analyzed in this study showed
the quality of the protein–ligand complex. The DCCM analysis
of residues bound to 18alpha-glycyrrhetinic acid revealed the
strongest correlation with the protein among all four complexes,
thus indicating a strong protein–ligand interaction. In line with
otherMD trajectory analysis results, β-carotene also showed positive
results in the DCCM analysis, showing a strong correlation with
protein residues.

3.5 Post-MD protein–ligand interaction
pose analysis

Post-simulation interaction analysis was an attempt to
understand the binding pattern of the selected compounds under
a dynamic aqueous environment, where the protein was free to

take its most stable state. Of the four hits, 18alpha-glycyrrhetinic
acid successfully retained its interaction with key residues, as well
as its orientation and positioning in the binding pocket of the
protein. In the CST–18alpha-glycyrrhetinic acid complex, as in
the docked conformation, C=O of the carboxylic group formed a
hydrogen bond with Lys85 in the polar site. In the middle of the
binding pocket, His84 and His141 flank the compound on both
sides, and hydrogen bond formation took place with His84, while
Tyr203 at the aromatic side interacted with the compound through
two pi–alkyl bonds (Figure 9A). Additionally, Ser173, as in the
docked conformation, retained van der Waals interaction with the
C=O group of the third aromatic ring of the compound. Thus,
the CST–18alpha-glycyrrhetinic acid complex showed a strong
protein–ligand interaction. During simulation, β-carotene also
largelymaintained a similar orientation in the binding pocket, with a
slight change in the interaction pattern. Lys85 and Tyr176 in the left
polar region, His84 and Phe177 in the middle, and Tyr203, Phe170,
and Arg202 at the right end of the binding pocket determined the
positioning of β-carotene in the binding pocket (Figure 9C). In
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FIGURE 8
Dynamic cross-correlation map for the protein complexed with (A) 18alpha-glycyrrhetinic acid, (B) α-carotene, (C) β-carotene, and (D) lupeol, using
the Bio3D package in RStudio.

contrast to the similarity in the docked conformation of CST–α-
carotene and CST–β-carotene complexes, α-carotene was found
to be the least stable in the binding pocket during the simulation.
The isomeric aromatic ring of α-carotene shifted outward from
the polar region away from Lys85, which was a key interacting
residue in the docked conformation (Figure 9B).The simulation-led
structural shift is shown in pre- and post-MD aligned complexes
(Figure 10B). As in the docked conformation, the CST–lupeol
complex maintained its position in the binding pocket, occupying
mostly the right side of the binding pocket. Due to its relatively small
size, lupeol left major room for ligand flexibility, which might not be
suitable for competitive inhibition (Figure 9D).The distance ofmost
of the pi-interactions was relatively short in both the CST–18alpha-
glycyrrhetinic acid and CST–β-carotene-simulated complexes than
their respective docked complexes, suggesting the strongest binding

potential of 18alpha-glycyrrhetinic acid and the second strongest
binding potential of β-carotene in the protein-binding pocket in
the dynamic environment (Tables 3 and 4). Therefore, based on the
interaction pattern analysis and alignment of pre- and post-MD
complexes, 18alpha-glycyrrhetinic acid and β-carotene were found
to be suitable candidates for further reverse pharmacophore analysis.

3.6 Reverse pharmacophore mapping and
cross-target identification

Reverse pharmacophore mapping for potential cross-target
identification of the CST bioactive compounds (18alpha-
glycyrrhetinic acid and β-carotene) was performed through
PharmMapper, which compared the pharmacophore of the active
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FIGURE 9
Post-MD interaction analysis of protein–ligand complexes with a surface view; 3D and 2D protein–ligand interaction of (A) CST–18alpha-glycyrrhetinic
acid, (B) CST–α-carotene, (C) CST–β-carotene, and (D) CST–lupeol. Dark green, violet, light pink, and light green represent conventional hydrogen
bonds, pi–sigma bonds, pi–alkyl bonds, and van der Waals interactions, respectively.

Frontiers in Molecular Biosciences 17 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1476482
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Singh and Singh 10.3389/fmolb.2024.1476482

FIGURE 10
Pre- and post-MD structural alignment of (A) CST–18alpha-glycyrrhetinic acid, (B) CST–α-carotene, (C) CST–β-carotene, and (D) CST–lupeol
complexes. Brown indicates the pre-MD CST complex with green ligands, and blue depicts the post-simulation protein complex with magenta ligands.

compounds with the pharmacophore models of 300 proteins
deposited in the database (Wang et al., 2017; Liu et al., 2010).
Based on their fitness score cutoff ≥5.0, the key cross-targets
were identified. Table 5 provides the details of the cross-target
interactions of 18alpha-glycyrrhetinic acid and β-carotene.
The two potential targets of 18alpha-glycyrrhetinic acid were
corticosteroid 11-beta-dehydrogenase isozyme 1 and estradiol 17-
beta-dehydrogenase 1, and positively, none of these are associated
with the brain, while in the case of β-carotene, potential cross-
targets are transthyretin, cellular retinoic acid-binding protein 2,
and retinol-binding protein 4 (RBP4), among which transthyretin
and RBP4 are associated with the brain.

4 Discussion

Metachromatic leukodystrophy is one of the critical
neuropathological conditions that arise due to the accumulation
of sulfatides over neurons, which leads to the development of white
matter abnormalities and, thus, interrupt the proper processing
of communication signals throughout the central and peripheral
nervous systems. In the era of bioinformatics advancement, the
option of developing an oral drug as a part of substrate reduction
therapy is emerging as a new strategy in single-gene disorders

including MLD. To counter the major existing challenge in SRT,
i.e., the lack of the availability of the three-dimensional structure of
the target protein, cerebroside sulfotransferase, our group successfully
developed a 3D homology model of the protein, which was used
as a receptor for screening of compounds in this study. In the
present study, the substrate-binding site of the protein was used
for grid generation and protein–ligand interaction study. For this
study, four potential herbs of Medhya Rasayana were considered
for screening their phytoconstituents as these herbs are well-
regarded as memory enhancers. Initially, based on a binding score
cutoff of ≤−7.5 kcal/mol, the top 15 compounds were selected for
performing pharmacokinetics studies to eliminate false positives.
Along with showing no significant toxicity under ADMET analysis,
the four potential compounds—18alpha-glycyrrhetinic acid, α-
carotene, β-carotene, and lupeol—showed high blood–brain barrier
permeability, which was considered a critical parameter for the
selection of inhibitors as the target’s physical location is the brain,
and it was important to select those compounds that can cross the
blood–brain barrier smoothly.

The interaction analysis of these four compounds in pre- and
post-MD showed interesting outcomes, which became a basis for the
identification of themost potent compounds forCST among the four
compounds. In the pre-MD protein–ligand complex, the protein
was rigid, and flexible ligands attempted to adjust in the active
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TABLE 4 Non-bonded interaction in the simulated
protein–ligand complex.

Sl. no. Compound Residue
in
contact

Bond
type

Distance
(Å)

1
18alpha-
Glycyrrhetinic
acid

Lys85 Conventional
hydrogen
bond

1.90

His84 Conventional
hydrogen
bond

3.50

Tyr176 Pi–sigma 5.03

His141 Pi–sigma 4.23

Ser173 Van der
Waals

4.24

Phe177 Pi–alkyl 5.86

Phe177 Pi–alkyl 5.30

Tyr203 Pi–alkyl 5.81

Tyr203 Pi–alkyl 7.31

2 α-Carotene

His84 Pi–alkyl 5.08

His84 Pi–alkyl 6.02

His141 Pi–alkyl 5.80

Tyr176 Pi–alkyl 6.93

Tyr176 Pi-Alkyl 5.93

Phe170 Pi–alkyl 6.23

Phe177 Pi–alkyl 4.98

Phe177 Pi–alkyl 6.78

Arg202 Pi–alkyl 4.01

Tyr203 Pi–alkyl 4.80

Tyr203 Pi–alkyl 5.19

Tyr203 Pi–alkyl 5.38

3 β-Carotene

Lys85 Pi–alkyl 4.21

Lys85 Pi–alkyl 4.79

His84 Pi–alkyl 4.72

His84 Pi–alkyl 4.83

Phe170 Pi–alkyl 5.91

Tyr176 Pi–sigma 4.84

Phe177 Pi–alkyl 6.53

(Continued on the following page)

TABLE 4 (Continued) Non-bonded interaction in the simulated
protein–ligand complex.

Sl.
no.

Compound Residue
in
contact

Bond
type

Distance
(Å)

Arg202 Pi–alkyl 3.84

Arg202 Pi–alkyl 5.54

Tyr203 Pi–alkyl 3.98

Tyr203 Pi–alkyl 4.93

4 Lupeol

His84 Pi–alkyl 5.47

His84 Pi–alkyl 5.68

His84 Pi–alkyl 5.98

Phe170 Pi–alkyl 5.67

Tyr203 Pi–alkyl 6.29

Arg202 Pi–alkyl 4.64

Arg202 Pi–alkyl 7.69

site. However, during MD, the protein was subjected to an aqueous
environment, which provided enough flexibility to the protein to
adjust itself in the best possible way to provide maximum stability to
its complex formation with the ligand. Among the four complexes,
18alpha-glycyrrhetinic acid showed a better interaction with the
CST active site while maintaining its position throughout the
simulation (Figure 10A). The carboxylic acid end of the compound
facilitated the orientation of compounds toward the polar region
dominated by Lys85, Lys82, and Tyr176. The middle part of the
compound was positioned exactly in the middle of the active site
and flanked by His84 and His141 on both sides. Additionally, the
oxygen atom at the middle of the compound facilitated its tight
interaction in the active site. Phe170, Phe177, and Tyr203 were key
residues in the aromatic site and interacted with the compound
via a pi–alkyl interaction. In the pre-MD interaction study, α-
carotene and β-carotene showed a similar interaction pattern, with
minor differences at their isomeric ends. However, after MD, β-
carotene maintained its position in the active site (Figure 10C),
while α-carotene deviated from its initial position toward outside,
as shown in Figure 10B. Based on active site occupancy criteria,
lupeol, despite maintaining its position in the active site throughout
the simulation, was regarded as less potent as it left enough space
in the active site for other ligands to either cross-contaminate the
active site or replace it if the other ligand is available in sufficient
concentration (Figure 10D). Therefore, lupeol was considered less
suitable to satisfy the competitiveness criteria.

The in-depth trajectory analysis of the selected compounds
provided sufficient information for understanding the above
structural changes. The RMSD of four ligands showed stability
in terms of overall structural deviation within the stipulated
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TABLE 5 Reverse pharmacophore mapping for identifying potential targets for the best-performing compounds.

Compounds Proteins identified
in PharmMapper

PDB ID Disease No. of
pharmacophore
features

Fitness score

18alpha-Glycyrrhetinic acid

Corticosteroid
11-beta-dehydrogenase
isozyme 1

2BEL Polycystic ovary syndrome
(PCOS)

10 5.383

Estradiol
17-beta-dehydrogenase 1

1JTV None 8 5.142

β-Carotene

Transthyretin 1RLB Amyloidosis type 1 (AMYL1) 10 5.937

Cellular retinoic acid-binding
protein 2

1CBS None 10 5.517

Retinol-binding protein 4 1RBP Night vision problems 8 5.081

simulation time. The residual-level fluctuation was sharpened in
the RMSF study, where the fluctuation was more pronounced in
lupeol, followed by α-carotene. The CST–18alpha-glycyrrhetinic
acid andCST–β-carotene complexes showed better residual stability.
Regarding structural compactness parameters including Rg and
SASA, the protein in all four complexes largely maintained its
structural compactness within the range of the free CST and
CST–substrate complex, while at intramolecular hydrogen-bond
formation-based structural compactness criteria, the protein in the
CST–α-carotene complex showed least compactness among the four
complexes. Furthermore, in PCA, the deviation of α-carotene and
lupeol was more pronounced, while CST–18alpha-glycyrrhetinic
acid and CST–β-carotene were relatively better confined with
occupying minimal subspace. A similar trend was also observed in
the free energy landscape analysis; among the four, only 18alpha-
glycyrrhetinic acid and β-carotene showed global minima between
the range of the free CST and CST–substrate complex, while α-
carotene was far above the range, and lupeol was found far below
the range. In the dynamic cross-correlation map, the CST–lupeol
complex was found to be least correlated. In the correlation matrix,
the CST–18alpha-glycyrrhetinic complex was found to be the
best correlated complex among the four, followed by the CST–β-
carotene complex. Thus, the overall trajectory analysis represented
the CST–α-carotene and CST–lupeol complexes as lesser stable
complexes, hence excluded from further studies.

Reverse pharmacophore mapping was carried out to rule out
the possibilities of cross-contamination with other nervous system
proteins. With no potential neurodegenerative disease link target,
18alpha-glycyrrhetinic acid can be considered the most potent
and specific drug candidate against CST, while in the case of β-
carotene, transthyretin and RBP4 may act as cross-targets in the
brain (Pinheiro et al., 2022; Ishii et al., 2019). Cross-binding of β-
carotene to transthyretinmay cause β-amyloid deposition, leading to
neuropathological conditions. In the central nervous system, RBP4
binds and inhibits transthyretin and, thus, regulates the breakdown
of amyloid-β, whereas the cross-interaction of β-carotenewith RBP4
may reduce the β-amyloid deposition by restricting the interaction
of RBP4with transthyretin (Pinheiro et al., 2022). To understand the
merit of the existing discrepancies with the cross-target interactions

of β-carotene with other proteins, a strong recommendation is made
to further validate the result through experimental data.

Thus, the combinatorial high-throughput in silico screening
procedures conducted in this study suggested the overall stability
of 18alpha-glycyrrhetinic acid and β-carotene inside the active site
pocket of the CST protein. Although 18alpha-glycyrrhetinic acid
was found to be the best performer throughout the screening
while maintaining the overall integrity of the protein conformation
during complex formation in a dynamic simulation environment,
β-carotene can also be considered for further studies as the second-
best drug candidate as it also showed strong binding affinity in
the binding site pocket of CST. Thus, the application of molecular
docking, ADMET analysis, and simulation-led trajectory analysis
provided a thorough understanding of the overall stability of the
protein–ligand interaction. However, despite the multiple levels
of stringent screening done in this study, there is no ruling
out the possibility of failure of the proposed drug candidates
at the experimental level. Therefore, the potency and specificity
determined in this study need further validation through in vitro
enzymatic, cell line studies and subsequent in vivo validation using
animal models to complete the preclinical drug discovery validation
process to obtain a potent drug candidate for the clinical trial of
future marketed drugs. Additionally, since these drug candidates
are originated from medicinal plants, they can also open the door
for combinatorial substrate reduction therapy where potent drugs
can combine with the hydroalcoholic extract of the whole plant
to minimize any form of side effects of potent compounds while
maintaining the potency via optimizing the dosage combination.
Thus, the idea is to develop the safest possible oral medication
for metachromatic leukodystrophy, which is one of the most fatal
genetic diseases in children.

5 Conclusion

Cerebroside sulfotransferase is identified as an attractive target
protein to develop substrate reduction therapy as a new therapeutic
intervention in the field of metachromatic leukodystrophy. This
study aimed to identify a potent and selective inhibitor for CST
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inhibition using a multipronged virtual screening approach using a
library of phytoconstituents of popular herbs of Medhya Rasayana.
The screening of key neuroprotective herbs of Medhya Rasayana
is an important strategy to identify potential neuroprotective
inhibitors of CST. The phytoconstituents are natural compounds
and are more adaptable to the natural system. Identifying potent
drug candidates will further strengthen the potency of Ayurvedic
herbs by applying the combinatorial strategy of treatment while
minimizing any negative impact of the high concentration of drug
candidates. In this study, 18alpha-glycyrrhetinic acid was identified
as the most potent and specific inhibitor of CST, while β-carotene
was found to be the second-most potent inhibitor of CST. Thus,
the virtual screening approach applied in this study is a targeted
approach that saved time and resource compared to the traditional
approach of testing random chemicals through enzyme technology
or applying a chemical synthesis approach for testing new drug
entities as inhibitors. The MD simulation provided an insight into
the binding pattern and orientation of compounds in the active
site by providing knowledge about the most dominant mode of the
motion responsible for determining the potency and selectivity of
compounds.This informationwould be beneficial for designing new
compounds based on the amino acid composition of the active site
pocket.Thus, the findings of the present study narrowdown the large
pool of datasets and provide a direction for further in vitro and in
vivo studies.
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