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Thyroid diseases, including functional and neoplastic diseases, bring a huge
burden to people’s health. Therefore, a timely and accurate diagnosis is
necessary. Mass spectrometry (MS) based multi-omics has become an effective
strategy to reveal the complex biological mechanisms of thyroid diseases.
The exponential growth of biomedical data has promoted the applications of
machine learning (ML) techniques to address new challenges in biology and
clinical research. In this review, we presented the detailed review of applications
of ML for MS-basedmulti-omics in thyroid disease. It is primarily divided into two
sections. In the first section, MS-based multi-omics, primarily proteomics and
metabolomics, and their applications in clinical diseases are briefly discussed.
In the second section, several commonly used unsupervised learning and
supervised algorithms, such as principal component analysis, hierarchical
clustering, random forest, and support vector machines are addressed, and the
integration ofML techniqueswithMS-basedmulti-omics data and its application
in thyroid disease diagnosis is explored.
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1 Introduction

The thyroid gland is a small, butterfly-shaped gland located at the base of the neck
(Sofia et al., 2019; Mullur et al., 2014). It plays a crucial role in regulating various
metabolic processes by secreting hormones (Sofia et al., 2019; Mullur et al., 2014). Thyroid
disease refers to various diseases affecting the thyroid gland, categorized into functional
and neoplastic diseases (Vanderpump, 2011; Zhang et al., 2022). Functional diseases are
classified as hyperthyroidism or hypothyroidism, whereas neoplastic diseases are classified
as benign or malignant (Zhang et al., 2022).

In the field of neoplastic diseases, tumors are classified as benign tumors, low-
risk neoplasms, and malignant neoplasms according to prognostic risk categories
(Basolo et al., 2023). Thyroid cancer refers to malignant tumors, originating from follicular
or parafollicular thyroid cells, which can metastasize to other places in the body (Omur
and Baran, 2014). Thyroid cancer is one of the most common endocrine neoplasia, and
its incidence has been on the rise in the past 40 years, disproportionately affecting women
(Chen et al., 2023a; Guarino et al., 2010).

According to “The 5th edition of the World Health Organization (WHO) classification
of endocrine tumors” which was released in 2022, thyroid cancer exists in several
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forms (Schneider and Chen, 2013), including differentiated thyroid
cancer (DTC), undifferentiated thyroid cancer, and medullary
thyroid cancer (MTC). DTC, the most prevalent type of thyroid
malignancy, primarily includes papillary thyroid carcinoma
(PTC), follicular thyroid carcinoma (FTC), and oncocytic thyroid
carcinoma, with PTC accounting for 85% –90% of all DTC cases
(Omur and Baran, 2014; Caria et al., 2019). Thyroid cancer
presents a complex and clinically significant challenge. To explore
the molecular mechanisms of thyroid cancer, researchers have
increasingly turned to omics approaches.

Omics is a technique for the comprehensive evaluation
of different classes of biomolecules, including genomics,
transcriptomics, proteomics, metabolomics, and others (Babu
and Snyder, 2023). Using only one type of data to understand
the characteristics and complications of a disease is not enough.
Recently, exhaustive exploration through multi-omics strategies
has garnered increasing attention among analytical chemists
(Kappler and Lehmann, 2019). Advances in various omics
technologies, such as proteomics and metabolomics, coupled
with enhanced computing capabilities, have paved the way for
innovative integration of diverse omics data (Babu and Snyder,
2023). With the rapid development of high throughput sequencing
and multi-omics, biomedical research has increasingly adopted a
combination of multi-omics technologies. Multi-omics strategies
aim to scrutinize the same samples using two or more omics
methods, integrating diverse omics data to reveal coherent
associations and attain a comprehensive, holistic understanding
of biomedical processes (Kappler and Lehmann, 2019).

Mass spectrometry (MS) is crucial for studying multi-omics.
It is a high-throughput analytical technology that can quantify
countless molecules, from metabolites and lipids to peptides and
proteins (Zhao et al., 2022a; Leung Kwan et al., 2021). This
analytical technology aids in discovering biomarkers, understanding
diseases at the molecular level, and provides a new perspective
in the biological field (Leung Kwan et al., 2021). As an emerging
approach of biomarker discovery, MS-based multi-omics plays a
significant role in the early diagnosis and screening, classification,
and prognosis of diseases. However, the large amounts of data
generated by high-throughput technologies require specialized data
analysis strategies (Zhao et al., 2022b).

Machine learning (ML) is a driving force behind data integration
in systems biology (Alber et al., 2019). Through data-driven
bioinformatics analysis of MS-based multi-omics data, ML serves
as a powerful tool for revealing the intrinsic mechanisms of various
biological events (Leung Kwan et al., 2021).The combination ofMS-
based multi-omics and advanced data integration approach holds
promise for deeper investigation of complex biological processes.

In this review, we presented the detailed review of applications
of ML for MS-based multi-omics in thyroid disease. In literature
previously published, applications of ML in thyroid disease or
applications of MS-based multi-omics in thyroid disease are
reviewed, but no one has combined them into a comprehensive
review. This review can provide new insights to the people who
focuses on applications of combining ML with MS-based multi-
omics in thyroid disease. It is primarily divided into two sections.
The first section briefly introduces MS-based multi-omics, mainly
proteomics and metabolomics, and their applications in clinical
diseases. The second section addresses a comprehensive overview

of ML models, and explores the integration of ML techniques into
MS-based multi-omics data, and its application in thyroid disease
diagnosis.

2 Mass spectrometry-based
multi-omics in thyroid diseases

Data from various studies, including genomics, transcriptomics,
proteomics, and metabolomics studies together are denoted as
“multi-omics” data (Figure 1). Individual datasets from these “-
omics” studies can serve as valuable biomarkers for studying,
exploring, and understanding the traits and complexities of
biological organisms (Manochkumar et al., 2023).

MS plays a crucial role in multi-omics research by detecting
metabolites or proteins in samples (Qiu et al., 2023). The use
of mass spectrometry technology for detecting metabolites or
proteins in samples can identify thousands of proteins ormetabolites
across a substantial volume of samples (Kowalczyk et al., 2020).
This high-throughput approach not only improves our ability
to identify molecular signatures but also helps us gain a more
comprehensive understanding of the intricate biological processes
within organisms (Leung Kwan et al., 2021).

2.1 Mass spectrometry-based proteomics

Oncogenesis is associated with changes in the levels of
various proteins involved in cell proliferation, migration, and
apoptosis (Migisha et al., 2020). Proteomics enables the maximum
identification and quantification of all proteins in cells or
tissues, establishes the connection between genes and their
corresponding protein products, and provides information about
proteins, including their subcellular localization, post-translational
modifications, and interactions with other proteins, aiming
to reveal the mechanisms behind their biological functions
(Manochkumar et al., 2023; Chen et al., 2023b; Kang et al.,
2022). The analysis of the proteome can provide valuable
insights into the fundamental molecular mechanisms of diseases,
responses to therapy, and the identification of diagnostic,
predictive biomarkers and prognostic crucial for precision
medicine (Ball et al., 2023).

Mass spectrometry (MS) is an analytical technique that
measures the mass-to-charge ratio (m/z) of ionized molecules. The
basic components of a mass spectrometer include the ion source,
mass analyzer, and detector. Proteins or peptides are ionized in the
ion source, separated based on their m/z in the mass analyzer, and
detected to generate a mass spectrum. This mass spectrum provides
detailed information about the molecular weight and structural
characteristics of the analyte. Mass spectrometry-based proteomics
mainly includes five processes (Figure 2).

2.1.1 Sample preparation
The proteomics workflow begins with the preparation of

biological samples. Proteins are extracted from the sample, often
followed by enrichment or fractionation to reduce complexity.
This step is critical for ensuring the accurate identification and
quantification of proteins.
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FIGURE 1
Multi-omics analysis flow chart.

FIGURE 2
The workflow of MS-based proteomics and metabolomics analysis.

Frontiers in Molecular Biosciences 03 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1483326
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Che et al. 10.3389/fmolb.2024.1483326

The proteins are then digested into smaller peptides, typically
using an enzyme like trypsin.This peptidemixture ismore amenable
to analysis by MS.

2.1.2 Peptide ionization
Peptides are ionized in the ion source, which can be achieved

through various techniques. The most common ionization methods
in proteomics are Electrospray Ionization (ESI) andMatrix-Assisted
Laser Desorption/Ionization (MALDI).

ESI is widely used for liquid chromatography-mass
spectrometry (LC-MS) and generates ions by applying a high voltage
to a liquid sample, producing charged droplets that release ions.
MALDI involves embedding the sample in a matrix that absorbs
laser energy, leading to the ionization of peptides.

2.1.3 Mass analysis
The ionized peptides are introduced into the mass analyzer,

where they are separated based on their m/z ratio. There are several
types of mass analyzers, including Quadrupole, Time-of-Flight
(TOF), Orbitrap, and Ion Trap, each offering different advantages in
terms of resolution, accuracy, and speed.

High-resolution mass analyzers, such as the Orbitrap and TOF,
are particularly valuable in proteomics for their ability to distinguish
between ionswith very similarm/z ratios, enabling the identification
of complex peptide mixtures.

2.1.4 Peptide fragmentation
To obtain sequence information, peptides are often subjected

to fragmentation in the mass spectrometer. Tandem mass
spectrometry (MS/MS) involves two stages of mass analysis: the
first stage selects a precursor ion, which is then fragmented, and the
second stage analyzes the resulting fragment ions.

The fragmentation patterns are characteristic of the
peptide’s amino acid sequence, allowing for the identification
of the peptide and inference of the protein from which it
originated (Searle et al., 2020).

2.1.5 Data analysis
The mass spectrometry data are processed using sophisticated

bioinformatics tools. Software such as MaxQuant, Proteome
Discoverer, DIA-NN, Peaks, Spectronaut and Mascot matches the
obtained mass spectra to theoretical spectra derived from protein
databases, enabling protein identification.

Quantitative proteomics can be achieved through various
techniques, including label-free quantification, stable isotope
labeling (e.g., SILAC, iTRAQ), and tandem mass tags (TMT).
These approaches allow for the relative or absolute quantification
of proteins across different samples.

The development of highly sensitive and high-throughput
MS platforms over the past decade means that it is now
possible to identify and quantify thousands of proteins from large
numbers of biological samples. Rapid advancements in MS and
data analysis strategies have significantly enhanced proteomics
research worldwide (Halder et al., 2021). MS-based proteomics
is increasingly recognized as a widely adopted technique for
characterizing proteomes (Migisha et al., 2020). Proteomics research
can be divided into untargeted proteomics and targeted proteomics.
Untargeted proteomics is also called discovery proteomics, which

detects differential proteins in different samples by detecting
proteins as many as possible. The research objects of untargeted
proteomics are uncertain, and are often all the protein or peptide
components contained in the sample, which are relatively large in
number. Targeted proteomics is the quantitative detection of target
proteins. The research objects of targeted proteomics are specific
and the number is relatively small. Compared with untargeted
proteomics, it has greater sensitivity and accuracy and is often used
for verification analysis of biomarkers. Data-dependent acquisition
(DDA) and data-independent acquisition (DIA) are the two primary
MS strategies for untargeted proteomics (Qian et al., 2023). DDA
is a traditional MS-based proteomics analysis method. In DDA, in
the second stage of tandem mass spectrometry, a small number
of peptides are selected for fragmentation within a narrow range
of mass-to-charge ratio (m/z) signal intensity (Hu et al., 2016).
DIA is another MS-based proteomics analysis method. DIA divides
the entire full scan range of the mass spectrometer into several
windows and then fragments all peptide precursors within each
window simultaneously to generate a comprehensive MS2 spectrum
(Kawashima et al., 2019; Wang et al., 2022a).

2.2 Mass spectrometry-based
metabolomics

Metabolomics is to detect and qualitatively and quantitatively
analyze the dynamic changes of metabolites of organisms, tissues or
cells before and after a specific stimulus or interference which was
initially introduced in 1999 by Jeremy-Nicholson and is an emerging
research field (Nicholson et al., 1999; Wang et al., 2023a). The
research objects are metabolites, which are mostly small molecule
substances with a molecular mass range of ≤1,000 Da, such as small
organics: acids, amino acids, nucleotides, sugars, lipids, vitamins,
etc. Metabolites are the end products of cellular processes and
can directly reflect the physiological state of an organism. Liquid
chromatography coupled to mass spectrometry (LC-MS) was first
used to study thyroid cancer in serum samples in 2011 (Yao et al.,
2011). DIA workflow was applied for metabolomics in 2017
(Zhou et al., 2017).

MS-based metabolomics involves the separation, detection,
and characterization of metabolites, providing comprehensive
coverage of the metabolome. The workflow is shown in
Figure 2.

2.2.1 Sample preparation
The first step in MS-based metabolomics involves the

preparation of biological samples. Metabolites can be extracted
from various biological matrices, such as plasma, urine, tissues,
or cell cultures, using extraction methods optimized for different
classes of metabolites.

Sample preparation is critical to preserving the integrity of
the metabolome and avoiding contamination or degradation. The
extracted metabolites are often subjected to concentrate to improve
the detection of low-abundance compounds.

2.2.2 Metabolite separation
Prior to mass spectrometric analysis, metabolites are typically

separated using chromatographic techniques to reduce sample
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complexity.Themost common techniques are Gas Chromatography
(GC) and Liquid Chromatography (LC).

Gas Chromatography-Mass Spectrometry (GC-MS) is
particularly well-suited for analyzing volatile and semi-volatile
compounds. InGC-MS,metabolites are vaporized and separated in a
gas phase before being ionized and detected by a mass spectrometer.

Liquid Chromatography-Mass Spectrometry (LC-MS) is more
versatile and can handle a broader range of metabolites, including
polar, non-volatile, and thermally labile compounds. LC-MS
separates metabolites in a liquid phase based on their interaction
with the stationary phase and then ionizes them for mass
spectrometric detection.

2.2.3 Ionization of metabolites
The ionization of metabolites is a crucial step in mass

spectrometry, as it converts neutral molecules into charged ions that
can be detected. Common ionization methods include Electrospray
Ionization (ESI) and Atmospheric Pressure Chemical Ionization
(APCI) for LC-MS, and Electron Ionization (EI) for GC-MS.

ESI is widely used in LC-MS due to its ability to ionize a wide
range of metabolites, particularly those that are polar and easily
ionizable. ESI produces ions by applying a high voltage to the
liquid sample, resulting in charged droplets that release ions as they
evaporate.

EI, commonly used in GC-MS, involves bombarding gas-
phase molecules with high-energy electrons, leading to ionization
and fragmentation. The resulting fragment ions provide structural
information about the metabolite.

2.2.4 Mass analysis and detection
Once ionized,metabolites are introduced into themass analyzer,

where they are separated based on their m/z ratio. Unlike
proteomics, metabolomics is divided into positive and negative ion
modes due to the different properties of the compounds. Various
mass analyzers are used in metabolomics, including Quadrupole,
Time-of-Flight (TOF), Orbitrap, and Ion Trap analyzers.

High-resolution mass analyzers, such as the Orbitrap and
TOF, are particularly valuable in metabolomics for their ability to
accurately measure the m/z of metabolites and distinguish between
compounds with very similar masses.

2.2.5 Data acquisition and processing
The mass spectrometer generates a mass spectrum, which

provides information on the m/z ratios and intensities of detected
ions. This data is then processed using specialized software to
identify and quantify metabolites.

The identification of metabolites is typically performed by
matching the acquired mass spectra against reference libraries,
databases or, such as HMDB, Compound Discover, METLIN
and SMPDB (Xiao et al., 2012). Accurate mass measurements and
fragmentation patterns are used to deduce the molecular structure
of unknown metabolites.

Metabolites can be quantified either relatively, by comparing
the intensity of ion signals between samples, or absolutely, using
calibration curves with known standards.

MS is a major platform for clinical metabolomics due to its
excellent sensitivity, selectivity, and wide dynamic range (Ding and
Feng, 2023). MS-based metabolomics can simultaneously detect

and quantify thousands of metabolite features (Alseekh et al.,
2021). Common MS-based metabolomics methods include GC-MS
and LC-MS. Compared with GC-MS, LC-MS generates extensive
data, has high sensitivity, and can measure a wide range of
metabolites. Due to the feasibility of liquid chromatography (LC)
in separating a wide range of metabolites with broad polarity,
combining LC with high-resolution MS systems consistently detects
and quantifies thousands of metabolic features, even from minimal
sample amounts such as 10 mg of tissue, 50 uL of urine, or as few as
half a million cells (Guo et al., 2022a). LC-MS-based metabolomics
has gained increasing attention for identifying disease biomarkers
and providing unique insights into pathophysiological processes
(Ding and Feng, 2023; Randall et al., 2023).

Mass spectrometry imaging (MSI) technology is also widely
used in the study of the spatiotemporal distribution of various
metabolites, peptides and proteins in animal/plant tissues
due to its advantages such as label-free, non-specific, high
sensitivity, high chemical coverage, and simultaneous detection
of elements/molecules.

2.3 Mass spectrometry-based multi-omics
applications in thyroid diseases

High-throughput techniques, exemplified by MS, play a crucial
role in the measurement of metabolomic and proteomic data
(Reel et al., 2021). Collectively, these “-omics” data hold the
potential to significantly advance precision medicine, particularly
in the context of biomarker-driven approaches for conditions such
as endocrine diseases, diabetes, cancer, cardiovascular disease,
respiratory disorders, and Alzheimer’s disease (Reel et al., 2021).

Regarding thyroid diseases, understanding the pathogenesis
is essential for improving diagnostic accuracy, precise risk
stratification, and enabling personalized treatment (Li et al.,
2023a). In recent years, with the continuous development of
MS, various omics analysis methods based on different sample
types (cells, tissues, serum, and urine) have been applied to the
study of thyroid disease, actively promoting the development of
accurate diagnosis and treatment of thyroid disease by clarifying
the pathogenesis, diagnostic grading, prognosis prediction and
targeted therapy (Li et al., 2023a).

Biomarkers refer to “an indicator that can be objectively detected
and evaluated and can be used as an indicator of normal biological
processes, pathological processes, or pharmacological responses
to therapeutic intervention” and are of great significance for
screening, diagnosing, or monitoring diseases (Biomarkers, 2001;
Mischak et al., 2010; Joshi et al., 2024).The exploration of biomarker
discovery holds promise in identifying potential markers for early
disease detection, prognosis assessment, predicting and monitoring
treatment responses (Jimenez and Verheul, 2014).The identification
and validation of reliable biomarkers will continue to help improve
our understanding of thyroid disease and refine treatment strategies
(Davis et al., 2020; Califf, 2018).

Misdiagnosis is common in the diagnosis of
thyroid disease (Walsh, 2016). Therefore, it is necessary to identify
biomarkers for specific thyroid disease states. MS-based proteomics
and metabolomics have been widely used for the discovery of
potential biomarkers in the research of thyroid disease.
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Much of the published proteomic studies of thyroid disease
have compared the protein profiles of thyroid disease groups
with healthy thyroid groups to find potential protein markers
(Paron et al., 2003). Tissues and cell lines of thyroid are always used
for differential proteomics. In a 1997 study, Galectin-3 was proposed
to be a potential biomarker of malignant thyroid tumors, especially
papillary carcinomas (Fernández et al., 1997). This finding has been
confirmed by several other independent researches using different
proteomic approaches: MALDI-MSI (Paron et al., 2003), two-
dimensional gel electrophoresis and LC-MS (Torres-Cabala et al.,
2004). S100 family proteins are comprised of 21 small isoforms, and
many of them implicated in important cellular functions such as
proliferation, motility and survival (Martinez-Aguilar et al., 2015).
Several papers have been published confirming them as potential
biomarkers in thyroid cancer by proteomic approaches (Torres-
Cabala et al., 2004; Nishimura et al., 1997; Wang et al., 2021).
Torres-Cabala, C. et al. identified a new protein, S100C, which is
highly expressed in PTC by two-dimensional gel electrophoresis
and LC-MS (Torres-Cabala et al., 2004). S100A6 was found to be
expressed at a significantly higher level in PTC compared with
other tumor groups or normal tissues by LC-MS based proteomics
(Sofiadis et al., 2010). Nipp et al. (2012) confirmed S100A10 and
S100A6 as biomarkers of PTCwith lymph nodemetastasis identified
by MALDI-MSI proteomic approach. This result also demonstrated
the potential application of MALDI-MSI proteomic approach in
identifying biomarkers in thyroid cancer.

In recent years, exosomes, small membrane microvesicles
derived from endosomal cells, have attracted great interest in the
proteomics of thyroid diseases due to their role in transporting
proteins, lipids and nucleic acids into target cells (Zhang et al.,
2019). Transport of molecules via exosomes is one of the factors in
the development of thyroid cancer, and the transported molecules
can serve as cancer biomarkers (Surman et al., 2024). Luo et al.
(2018) compared proteome profiles of serum-purified exosomes
(SPEs) from PTC patients with LNM, PTC patients without LNM,
and healthy donors. The results showed that specific proteins
related to cancer cell metastasis, such as SRC, TLN1, ITGB2,
and CAPNS1, were overexpressed in the SPEs of PTC patients
with LNM (Luo et al., 2018). In the study of Xi Jia et al., the
screened differentially expressed proteins, such as MAP1S, VAMP8,
IF5, RSU1, ACTB and CXCL7, were mainly enriched in the
immune system and metabolic system that can be seen as potential
biomarkers, indicating that plasma exosomesmay play an important
role in the systemic immune imbalance of autoimmune thyroid
diseases (AITDs) (Jia et al., 2021).

Proteomics can not only provide biomarkers for diagnosis but
also reveal potential therapeutic targets. For example, proteinHSP90
was found to be overexpressed in thyroid cancer (Pearl et al.,
2008; Liu et al., 2017). HSP90 regulates protein degradation of
several growth-mediating kinases such as BRAF and RET which
are well known for the role they play in carcinogenesis (Gild et al.,
2016). Several studies have shown that inhibition of HSP90 can
not only attenuate cell proliferation but also improve the efficacy
of radioiodine therapy in thyroid cancer patients (Gild et al., 2016;
Marsee et al., 2004; Wickenberg et al., 2024; White et al., 2016).

Since tumors significantly alter major metabolic pathways,
metabolomics is also rapidly becoming an important method for
identifying cancer biomarkers. Alterations of themetabolome can be

reflected in both tissues and biological fluids.Most chromatography-
based metabolomics studies focus on biomarkers between disease
and normal groups. Huang et al. (2019a) conducted metabolomic
studies using 1,540 clinical serum and plasma samples, along with
114 clinical tissue samples, to characterize the metabolomic profiles
of healthy controls and patients with thyroid nodules, including
benign thyroid nodules (BTN) and PTC. Their research identified a
group of circulating metabolites—myo-inositol, α-N-phenylacetyl-
L-glutamine, proline betaine, L-glutamic acid, LysoPC (18:0), and
LysoPC (18:1)—as potential biomarkers. Jajin et al. (2022) used GC-
MS to perform plasma metabolomics profiling of medullary thyroid
cancer (MTC) patients. Results showed that linoleic acid, linolenic
acid, and leucine can be used as potential biomarkers for early
detection of MTC. These findings provide a basis for the diagnosis
and management of thyroid cancer patients from a metabolomics
perspective.

Spatially resolved metabolomics integrates MSI and
metabolomics technology to accurately measure the types, contents
and differential spatial distribution of endogenous or exogenous
metabolites in biological tissues and cells and shows great prospect
in biomarker discovery of thyroid disease. Jialing Zhang et al.
(2017b) used desorption electrospray ionization mass spectrometry
imaging (DESI-MSI) to analyze metastatic thyroid cancer in
human lymph node tissues and the results showed that the relative
abundance of ceramide and glycerophosphoinositide increased.

Wojakowska et al. (2018) used MALDI-MSI to analysis of lipid
distribution directly in formalin-fixed tissue. The results showed
that the abundance of phosphatidylcholine (32:0, 32:1, 34:1 and
36:3), sphingomyelin (34:1 and 36:1) and phosphatidic acid (36:2
and 36:3) were significantly higher in cancer tissues than them in
non-cancer tissues (Wojakowska et al., 2018).

Luojiao Huang et al. (2019b) used the air-flow assisted
desorption electrospray ionization (AFADESI) MSI to investigated
the metabolic characteristics of different microregions of PTC
and results showed that phenylalanine, leucine and tyrosine were
expressed at the highest levels in tumors, with a trend of gradually
decreasing from tumors to stromal tissues and normal tissues, while
creatinine was the opposite.

Biomarker discovery can contribute to molecular subtyping
in thyroid disease. The integration of MS-based multi-omics is
a powerful tool for elucidating complex molecular signatures of
various cancer subtypes (Wang et al., 2023b).This approach not only
enhances our understanding of the mechanisms of action of various
molecules within cancer but also facilitates more targeted and
personalized therapeutic interventions for specific subtypes (Berger
and Mardis, 2018).

Martinez-Aguilar et al. (2016) applied DIA MS for quantitative
analysis of expression levels for over 1,600 proteins across
32 specimens, discerning differences between normal thyroid
tissue and the three prevalent thyroid gland tumors: follicular
adenoma, follicular carcinoma, and papillary carcinoma. Proteomic
pathway analysis revealed that changes in papillary carcinomas
are associated with disruption of cell contacts (loss of E-
cadherin), actin cytoskeletal dynamics, and loss of differentiation
markers, characteristics of the aggressive phenotype (Martinez-
Aguilar et al., 2016).

Wojakowska et al. (2015) used the GC-MS method to
extract, identify, and semi-quantitate metabolites in formalin-fixed
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paraffin-embedded (FFPE) tissue specimens from five different
types of thyroid malignancies, benign follicular adenoma and
normal thyroid and concluded that multicomponent metabolomic
signatures can be used to classify different subtypes of follicular
thyroid lesions.

MS-based multi-omics have significantly increased in recent
years and enabled mapping of biochemical changes in thyroid
disease and hence can provide an opportunity to develop predictive
biomarkers that can trigger earlier interventions (Wang et al., 2013).
MS can directly quantify thyroid analytes and its high resolution
can enhance the accuracy and detection (Jasem et al., 2024).
Biomarkers of thyroid disease screened out byMS-based proteomics
andmetabolomics can not only provide a basis for clinical diagnosis,
but also provide insights into the biological mechanisms of thyroid
disease. It can be used to distinguish different types of thyroid cancer,
which is beneficial for classifying benign and malignant cancers
for treatment, such as using different dosing strategies, thereby
achieving precision medicine.

3 Classic machine learning models
and multi-omics applications in
thyroid disease

This sectionwill present several classicmachine learningmodels
and offer an overview of how these models contribute to the study
of thyroid diseases.

3.1 Classic machine learning models in
data analysis

Machine learning (ML) is the science of developing algorithms
and statistical models, which is a subset of artificial intelligence
(Smith et al., 2023). Computer systems utilize these algorithms
and models to perform tasks without explicit instructions, enabling
machines to undertake activities requiring human intelligence,
such as diagnosis, planning, and prediction, based on established
patterns and reasoning (Mohammadzadeh et al., 2024). In recent
years, the exponential growth of biomedical data has driven many
applications of ML techniques to address new challenges in biology
and clinical research (Auslander et al., 2021). ML methods are
favored in statistical analysis because of their inherent nonlinear
data representation and ability to quickly process large datasets
(Liebal et al., 2020). ML algorithms are employed for training, key
feature identification, and group classification (Huang et al., 2018).

Generally, ML can be categorized into four main
types: unsupervised, supervised, semi-supervised, and
reinforcement learning (Figure 3). Current research in
clinical diseases predominantly focuses on unsupervised and
supervised learning algorithms, which will be the focus of
this review (Perakakis et al., 2018).

This section examines the role of ML in handling and
analyzing the vast and complex datasets generated by MS-
based multi-omics approaches. It discusses specific algorithms and
techniques for data processing, feature selection, and classification,
emphasizing their importance in identifying potential biomarkers
and therapeutic targets.

3.1.1 Unsupervised learning
Unsupervised learning involves using datasets that contain only

input data and attempts to find structure in the data by grouping or
clustering the data points (Angra and Ahuja, 2017). Unsupervised
learning algorithms are primarily employed for dimensionality
reduction, clustering, and association tasks (Arjmand et al.,
2022). Four common unsupervised algorithms include principal
component analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), uniform manifold approximation and
projection (UMAP), and hierarchical clustering (HCL).

3.1.1.1 Principal component analysis (PCA)
The complexity of multivariate data often necessitates the use

of dimensionality reduction methods to simplify the information.
Dimensionality reduction of high-dimensional data plays a crucial
role in downstream tasks such as pattern recognition, classification,
and clustering (Kim et al., 2018). Principal component analysis
(PCA) is a classic unsupervised dimensionality reduction method
that identifies hidden features in data, providing themost significant
signals, and is often used in machine learning. (Kim et al., 2018;
Chen and Gao, 2016; Ma and Dai, 2011). PCA simplifies complex
data and makes the analysis process easier. Essentially, PCA is
an “unsupervised” method that analyzes data purely based on its
characteristics, without knowing the grouping of each sample. PCA
effectively identifies the “main” elements and structures in the
data, removes noise and redundancy, reduces the dimensionality of
complex data, and reveals the simple structure hidden behind the
complex data (Sugimoto et al., 2012). PCA is widely used in MS-
basedmulti-omics data analysis, particularly for data dimensionality
and achieving data visualization (Sugimoto et al., 2012). The results
are often visualized using scatter plots.

PCA is commonly applied in clinical analysis to reveal
differences between samples, with the distance between samples on
the horizontal and vertical axes representing the similarity distance
of the samples under the influence of the principal components
(PC1 and PC2).

For example, in a single-cell proteomics study of hepatocytes
by Rosenberger et al. (2023), PCA was used to reduce the
dimensionality of proteomics data, resulting in clear hepatocyte
partitioning and demonstrating the biological validity of the
data. Similarly, Xu et al. (2022) applied PCA to validate the
metabolic profile of mouse liver tissue in a study on the
mechanism of action of Huang Qin decoction for treating diabetic
liver injury.

PCA is particularly suitable for initial exploratory data analysis,
especially when linear relationships are presumed in the data and
the interpretability of components is crucial (Beattie and Esmonde-
White, 2021; Ivosev et al., 2008). It is also preferred in scenarios
where computational efficiency is a priority. However, PCA may
not adequately capture complex nonlinear interactions present in
biological data.

3.1.1.2 t-distributed stochastic neighbor embedding
(t-SNE)

t-distributed Stochastic Neighbor Embedding (t-SNE) is a
nonlinear dimensionality reduction technique primarily designed
for data visualization and excels at identifying and discovering
complex nonlinear structures in data (Cieslak et al., 2020). It
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FIGURE 3
Classification of ML learning algorithms.

converts high-dimensional data into a low-dimensional space,
typically two or three dimensions while preserving the local
structure of the data (Cieslak et al., 2020; Da Silva Lopes et al.,
2020). t-SNE focuses on preserving the relative distances between
similar data points, making it effective for revealing clusters
and patterns (Chatzimparmpas et al., 2020).

In the study by Liang et al. (2022), 1,681 proteins were analyzed
through proteomics in 258 HCM patients. t-SNE was utilized to
visualize and reduce the dimensionality of the data, revealing that
the four molecular subtypes were well separated.

t-SNE is ideal for visualizing small to medium-sized datasets
where the primary goal is to understand and explore local structures
and clustering. It is particularly suitable for high-dimensional
data with complex, nonlinear relationships (Gisbrecht et al.,
2015). However, it is relatively slow, especially when applied to
large datasets.

3.1.1.3 Uniform manifold approximation and projection
(UMAP)

Uniform manifold approximation and projection (UMAP), an
algorithmdeveloped byMcInnes et al., is a nonlinear dimensionality
reduction technique (Lundberg and Lee, 2017). It is another
nonlinear dimensionality reduction method particularly effective
at preserving both local and some global structures of the data
(Becht et al., 2018; Yang et al., 2021). UMAP is based on manifold
learning techniques and constructs a high-dimensional graph
representation of the data, which is subsequently optimized to create
a low-dimensional embedding (McInnes et al., 2018).

Like t-SNE, UMAP is also effective in capturing complex
nonlinear relationships in the data. In general, UMAP is faster and
more scalable than t-SNE and it better preserves both local and
global structures.

UMAP is preferred for large datasets requiring a balance
between local and global structure preservation (Sainburg et al.,
2021). It is effective for visualizing complex data structures and

works well for high-dimensional data (Becht et al., 2018). Compared
to PCA, this method is more complex and can be challenging
to understand and debug. Although UMAP is faster than t-
SNE, it still requires significant computational resources for very
large datasets (Roca et al., 2023).

3.1.1.4 Hierarchical clustering (HCL)
A crucial component of unsupervised learning is the clustering

algorithm. Traditionally, cluster analysis is classified as unsupervised
learning because it does not involve class labels or quantitative
response variables, which are characteristic of supervised learning
methods such as classification and regression (Pan et al., 2013).
Cluster analysis is a series of different algorithms that divide
observation data into different categories or clusters based on
distance functions (Blekherman et al., 2011). The goal is to
partition the data into groups such that the distance between
samples within each group is smaller than the distance between
samples in different groups (Blekherman et al., 2011). Hierarchical
clustering (HCL) is a clustering method frequently used in
marker screening and enables visualization of gene, protein,
and metabolite features (Picard et al., 2023; Granato et al.,
2018). The results of HCL are commonly visualized
using heatmaps.

In biomedical informatics, HCL is often applied to cluster
protein sequence data. Proteins with similar structures also have
similar functions. Proteins with similar functions can be grouped
into categories through clustering, aiding in the study of protein
functions. In clinical analysis, hierarchical clustering is utilized
to intuitively display relationships between groups and highlights
expression differences of characteristic substances.

In the study of MS-based urine proteomics of gastric
lesions by Fan et al. (2022), HCL was used to partition 139
differential proteins with VIP>1 into six clusters, revealing
dynamic changes from precancerous lesions dynamic changes in
gastric cancer.
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In an MS-based metabolomics study of cancer
cell lines by Li et al. (2019), HCL was employed to assess metabolic
similarities between cell lines.

For MS-based spatial proteomics, dimensionality reduction and
clustering methods such as PCA, t-SNE and HCL are effective
for quality control of MS-based spatial proteomic data and for
examining organelle separation (Huang et al., 2022; Karimpour-
Fard et al., 2015; Mou et al., 2022; Ringner, 2008).

3.1.2 Supervised learning
Supervised learning relies on labeled datasets to train algorithms

on a predefined classification system and to infer the functional
relationship between input features and output labels based
on this training. The algorithm learns a function from the
training dataset that enables prediction of outcomes for new
data. In essence, supervised learning involves determining whether
the objective is to predict outcomes based on known input-
output pairs. A significant category within supervised learning is
classification problems. In the classification problems, the target
variables are discrete rather than continuous. Examples include
tumor size, patient age, and the benign or malignant status
of the tumor.

Theprocess ofmodel trainingwithML algorithms involves three
steps: data splitting, parameter estimation using the training set, and
performance evaluation using the test set.

a. Data Splitting

Typically, the dataset used to train a ML model is divided
into a training set and a test set, with a common ratio of 70:30
(Galal et al., 2022). A validation set is often included for model
performance evaluation and hyperparameter tuning, ensuring
optimal results under the given data conditions. In this scenario,
the data can be divided into 60% training, 20% validation, and 20%
test sets (Galal et al., 2022).

b. Parameter Estimation Using Training Data

Parameter estimation is a critical step in model training.
The goal of using training set to estimate model parameters
is to create a model that accurately captures the underlying
information in the data so that it can make reliable predictions
about new data.

c. Comprehensive Evaluation Using Test Data

The test set evaluates the overall performance of the final model.
After final parameter adjustments, the test set is used to evaluate the
performance of themodel comprehensively, assessing for issues such
as overfitting or underfitting. If no issues are identified, the model
can be applied to the project.

Common supervised algorithms include partial least squares
discriminant analysis (PLS-DA), decision trees (DTs), random forest
(RF), support vectormachine (SVM),K-NearestNeighbor (kN), and
eXtreme Gradient Boosting (XGBoost).

3.1.2.1 partial least squares discriminant analysis (PLS-DA)
Partial least squares discriminant analysis (PLS-DA) is also

a dimensionality reduction algorithm. Unlike PCA, PLS is a
“supervised” mode of partial least squares analysis, meaning that
the grouping relationships of the samples are known, allowing

for better selection of characteristic variables that distinguish each
group and determination of relationships between the samples.
DA stands for discriminant analysis. PLS-DA employs the partial
least squares regression method to “reduce the dimensionality” of
the data, establish a regression model, and conduct discriminant
analysis on the regression results. PLS-DA is particularly suitable
for selecting and interpreting metabolite signatures when studying
biological systems (D'Andrea et al., 2023).

In an MS-based urine proteomics study of gastric
lesions by Fan et al. (2022), PLS-DA was used to analyze the
proteomics data of different groups and screen out 139 differential
proteins with VIP>1.

In the study by D'Andrea et al. (2023), the PLS-DA model
was confirmed through cross-validation, and the average variable
importance in projection (VIP) score was used to identify
metabolites that differed among sample classes.

3.1.2.2 Decision trees (DTs)
Decision trees (DTs) employ ML techniques to address

classification and prediction problems. Nodes and leaves are the
primary elements that form a decision tree (Chaubey et al., 2020).
Nodes test specific properties, and leaves represent a class (Mesarić
and Šebalj, 2016). Common decision trees include the ID3 tree,
the C4.5 tree (information gain rate), and the CART tree (Gini
coefficient) (Ross, 1993; Leo et al., 1984).

The ID3 algorithm is one of the classic decision tree algorithms.
The C4.5 algorithm is an improvement upon the ID3 algorithm and
can handle discontinuous features (Navada et al., 2011). The ID3
and the C4.5 algorithm are primarily used to address classification
problems, but cannot be used to apply regression problems (Singh
andGiri, 2014).TheCART algorithm canmanage both classification
and regression problems.

Fannes et al. (2013) introduced CP-DT (Decision Tree Cleavage
Prediction), an algorithm based on an ensemble of decision trees
trained on publicly available peptide identification data from the
PRIDEdatabase.The study demonstrated that CP-DT can accurately
predict trypsin cleavage (Fannes et al., 2013).

Decision tree algorithms are fast, however, they are generally not
as accurate as other models.

3.1.2.3 Random forest (RF)
Random forest (RF) is a regression tree technique that employs

bootstrap aggregation and predictor randomization to achieve
a degree of predictive accuracy (Steven, 2017). Proposed by
Breiman in 2001, RF employs randomization to create numerous
decision trees and is a widely used tool for classification and
regression in bioinformatics and related fields (Steven, 2017;
Janitza et al., 2016). Compared to a single decision tree, a
random forest exhibits stronger generalization performance. In
classification problems, the outputs of these decision trees are
voted and aggregated into one output; in regression problems,
they are averaged and aggregated into one output (Steven, 2017).
RF classification is a widely used supervised learning method
for developing predictive models in many research settings
(Speiser et al., 2019).

The random forest algorithm is simple and easy to implement,
applicable to both classification and regression problems (Steven,
2017). It has the following features.
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a. It can handle numerous input variables, and the more data
features present, the more stable the model (Belgiu and
Drăguţ, 2016).

b. It can evaluate feature importance while determining the
category (Archer and Kimes, 2008; Khalilia et al., 2011).

c. It can estimate valuable data and maintain a certain degree of
accuracy evenwhen a significant portion of the data ismissing.

Khalilia et al. (2011) utilized National Inpatient Sample (NIS)
data from the Healthcare Cost and Utilization Project (HCUP) to
train RF classifiers for predicting eight disease categories.The results
demonstrated good performance (Khalilia et al., 2011).

However, RF does not perform as well for regression problems
as it does for classification and may not produce good classification
results for small or low-dimensional datasets (datasets with fewer
features).

3.1.2.4 Support vector machine (SVM)
Support vector machine (SVM) is a supervised algorithm that

learns from examples to assign labels to objects (Boser et al.,
1992). Compared to other ML methods, SVM is highly effective
at identifying subtle patterns in complex data sets (Aruna and
SP, 2011). The purpose of SVM is to create a decision boundary
between two categories, facilitating the prediction of a label
based on one or more feature vectors (WS, 2006). This decision
boundary, called a hyperplane, should be oriented as far away as
possible from the nearest data point for each class, referred to a
support vector (Huang et al., 2018).

The computational complexity of SVM depends on the number
of support vectors rather than the dimension of the sample space,
thereby avoiding the “curse of dimensionality” (Markowetz, 2001).
However, SVM is sensitive to missing data and is difficult for
solving multi-classification problems (Cervantes et al., 2020). In
areas where SVMperforms poorly, researchers have developed other
applications such as SVM for large datasets, multiple classifications,
and imbalanced datasets (Cervantes et al., 2020).

Mavrogeorgis et al. (2023) obtained urine peptide data of
1850 healthy controls (HC) and CKD (diabetic nephropathy-DKD,
IgA nephropathy-IgAN, vasculitis) participants from the Human
Urine Proteome Database. UMAP was combined with SVM for
binary (DKD, HC) and multi-class (DKD, HC, IgAN, vasculitis)
classification.

3.1.2.5 K-Nearest neighbor (k-NN)
K-Nearest Neighbor (k-NN) is a simple and practical supervised

learning algorithm frequently used to deal with classification
problems (Boateng et al., 2020). It examines the k nearest sample
points closest to the new sample point in the training set, using a
specific distance metric, and classifies the new sample point into
the category with the most occurrences among the k sample points
(Abu Alfeilat et al., 2019). The parameter k is crucial, and its value
should be optimally chosen (Zhang et al., 2017a). A value that is too
low will increase the error rate, while a value that is too high can
render the model ineffective (Zhang et al., 2017b).

The algorithm is simple in principle, easy to understand and
implement, applicable tomulti-classification problems, and requires
no additional processing (Chaubey et al., 2020). However, k-NN
involves substantial computational effort and requires considerable

memory resources. Its performance is influenced by the parameter
k and it tends to perform poorly on unbalanced datasets.

3.1.2.6 eXtreme gradient boosting (XGBoost)
eXtreme Gradient Boosting (XGBoost) is a machine learning

model built on a decision tree ensemble and is among the most
widely used machine learning algorithms (Kavzoglu and Teke,
2022). The algorithm has the following features:

a. It excels in processing both structured and unstructured
data, frequently achieving higher accuracy compared to other
algorithms (Arif Ali et al., 2023).

b. It relies on on decision tree integration, offers excellent
interpretability, and provides insights into the importance of
each feature (Kavzoglu and Teke, 2022).

c. It employs parallel computing technology and demonstrates
high computational efficiency in processing large-
scale data (Nalluri et al., 2020).

Li et al. (2024) developed a model incorporating 17 feature
variables using XGBoost, based on the multidimensional data from
a retrospective cohort of 274 papillary thyroid carcinoma (PTC)
patients. This model demonstrated strong predictive performance
in differentiating between low-risk and medium/high-risk PTC
cases and was designated as the PTC Preoperative Risk Assessment
Classifier (PRAC-PTC).

However, it is sensitive to parameters settings, with the choice of
parameters significantly influencing the results (Demir and Şahin,
2022). In some cases, XGBoost may be overly complex and prone to
overfitting the training data.

3.2 Applications of machine learning in
MS-based multi-omics in thyroid disease

3.2.1 Applications in MS-based multi-omics data
analysis

Extracting valuable insights from MS-based multi-omics data
presents a significant challenge in bioinformatics (Tang et al.,
2019). The complexity and high dimensionality of MS-
based multi-omics datasets make traditional analysis methods
challenging (Krassowski et al., 2020). Combining ML methods
with MS-based multi-omics analysis mainly involves integrating
various ML techniques to manage the complexity and volume
of multi-omics data, aiming to enhance both accuracy and
interpretability.

3.2.1.1 Missing data imputation
Missing data refers to the situation where data is incomplete due

to some reasons during the process of data collection, transmission,
and processing (Du et al., 2020). It is a common problem in MS-
based omics data analysis (Huang et al., 2023). The simplest way to
deal with missing values is to remove samples with missing values.
However, if there are many missing values, such as the missing data
of LC-MS-based omics datamay be in the range of 30%–50%, a large
number of samples will be eliminated, resulting in the loss of more
useful information (Liebal et al., 2020).

Imputation methods provide an alternative way of handling
missing data rather than discarding missing values and associated
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data (Huang et al., 2023). The mean, median, mode, etc., of the
feature can be used to fill the missing values (Emmanuel et al.,
2021). However, these simple methods do not consider the
relationship between data variables, which sometimes makes
the results of data analysis unreliable. Among the methods for
dealing with missing values, many other filling methods consider
the relationship between data variables (Baraldi and Enders,
2010). ML algorithms, such as regression, k-NN, and RF, can
help resolve missing data problems in multi-omics datasets by
inferring values based on observed patterns in existing data
(Emmanuel et al., 2021; Mirza et al., 2019).

3.2.1.2 Dimensionality reduction
MS-basedmulti-omics datamayhavemultiple layers of variables

and a large number of attributes, so-called high-dimensional data
(Arjmand et al., 2022). While high-dimensional data will cause
great trouble for subsequent data processing (Cao and Lin, 2015),
dimensionality reduction is a crucial step (Fanaee and Thoresen,
2019). It aims to reduce the number of variables considered, making
the data more manageable and easier to analyze while retaining
as much information as possible. Before applying dimensionality
reduction, multi-omics data need to be preprocessed, such as
normalization and missing value filling, to ensure that the data is in
a form suitable for analysis (Reska et al., 2021). Dimensionality
reduction improves computational efficiency, reduces noise
while retaining important information, facilitating data
processing (Alhassan and Wan Zainon, 2021). Many ML algorithms
can facilitate data processing by reducing data dimensionality
while retaining important information, such as PCA, t-SNE,
PLS-DA, and UMAP.

3.2.1.3 Clustering and classification
Clustering is an unsupervised learning method that groups

data based on the attributes of the input features (Reel et al.,
2021). Classification is a supervised learning method that provides
predicted output as a discrete class (Reel et al., 2021). ML algorithms
can group samples into clusters or classify them based on distinct
patterns present in multi-omics data which can discover subtypes or
stratify patients and identify similarities among clustered patients
(Goecks et al., 2020).

3.2.1.4 Feature selection
Feature selection is a key step in multi-omics analysis and

helps reduce data dimensionality. In this sense, feature selection
has similar motivations to dimensionality reduction as described
above. Feature selection can remove irrelevant features and reduce
the number of features used in the analysis, thereby reducing the
difficulty of the learning task (Li et al., 2017a). It should be noted
that the feature selection process must ensure that no important
features are lost.

For a multi-omics dataset, a set of attributes is included, some
of them may be critical and useful, while others may be useless.
Attributes are called features, those that are useful for the current
learning task are called relevant features, and those that are useless
are called irrelevant features (Kotsiantis, 2011). The process of
selecting a subset of relevant features from a given set of features
is called feature selection (Jović et al., 2015).

Feature selection is an important data preprocessing process. In
real machine learning tasks, feature selection is usually performed
after obtaining multi-omics data, and then the learner is trained.

In practical applications, feature selection methods are mainly
divided into filter, wrapper, and embedded methods (Venkatesh and
Anuradha, 2019).

a. Filter Selection

Filter selection first selects features from the data set and then
trains the learner (Li et al., 2017a). The feature selection process is
independent of the subsequent learner. It is the simplest and most
commonly used method to implement feature selection. The core
of the filtering method selection is to sort the features according
to their value, to achieve the selection or elimination of any
proportion/quantity of features.

Filter selection is computationally efficient and relatively
simple to implement, but it ignores the interactions
between features (Jiliang et al., 2014).

b. Wrapper Selection

Unlike filter-based feature selection, which does
not consider subsequent learners, wrapper selection
directly uses the performance of the most important
learner as the evaluation criterion for the feature subset
(Wald et al., 2013; Cadenas et al., 2013).

Since wrapper selection directly optimizes a given learner,
it is better than filter selection in terms of the final learner
performance (Cadenas et al., 2013).However, since the learner needs
to be trained multiple times during the feature selection process, it
requires a huge amount of computation.

c. Embedded selection

Embedded selection integrates the feature selection process with
the learner training process, that is, feature selection is automatically
performed during the learner training process (Li et al., 2017b).
The most commonly used are tree models and a series of ensemble
algorithms based on tree models because the model provides
important information about feature importance.

Embedded selection combines the advantages of filter
selection and wrapper selection in terms of computational
cost and performance, but it cannot identify highly
relevant features (Remeseiro and Bolon-Canedo, 2019).

3.2.2 Applications in clinical researches
The contribution of ML to thyroid disease is not only in

processing data, but also in the classification, clinical diagnosis,
treatment, prognosis and risk stratification of thyroid diseases. In
clinical researches, ML is beneficial and essential (Komuro et al.,
2023). ML enables efficient analysis of extensive data sets
and improve disease diagnosis and classification by building
predictive models of disease, and has a particularly important
impact on improving MS-based clinical multi-omics research
(Perakakis et al., 2018; Arjmand et al., 2022). ML models
primarily select important features from complex data to construct
predictive models and output data as predictive labels based
on identified patterns (Ngan et al., 2023). Using models like
decision trees, RF, SVM, and XGBoost to predict outcomes
based on data facilitates predictive models, including disease
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diagnosis, prognosis, and treatment, based on multi-omics data
(Quazi, 2022; Wekesa and Kimwele, 2023). Validation and
evaluation are critical steps inML formulti-omics analysis to ensure
that the models and methods used are reliable and robust. There are
several approaches:

Cross-Validation: Use k-fold cross-validation to assess model
performance.

External Validation: Validate results with independent datasets
to ensure robustness.

Performance Metrics: Use appropriate metrics to evaluate the
model (e.g., accuracy, precision, recall, area under curve (AUC),
F1-score for classification; R 2, RMSE for regression).

The trained and validated ML models are expected to be able
to assess cancer risk and facilitate the development of preoperative
cancer diagnosis (Ngan et al., 2023).

3.2.2.1 Diagnosis and classification
The classification model is the most commonly used type of

ML models in clinical researches which can output the type of
thyroid disease it predicts based on the input features, such as clinical
factors and omics data, thereby providing insights into clinical
diagnosis (Figure 4). For thyroid disease prediction, ML methods
have been applied in various existing research works. Prediction of
thyroid disease at its early stages and categorization into cancer or
other thyroid disease is very helpful for treating and recovering the
maximum number of patients (Gupta et al., 2024). MS-based multi-
omics have become a powerful technique for biomarker discovery
which is significant for clinic (Torun et al., 2022). However,
screening biomarkers from complex MS data requires reliable
bioinformatics tools and ML can be a good choice (Torun et al.,
2022). Analyzing large and complex datasets by ML models enables
the identification of subtle biomarkers and disease signatures, which
leads to earlier and more accurate diagnoses (Ng et al., 2023).
This is particularly beneficial in complex diseases specially cancer,
where early detection can significantly improve prognosis. The
integration of ML and MS-based multi-omics not only improves
the efficiency of biomarker discovery but also helps develop
more accurate and reliable diagnostic tools, ultimately advancing
the field of precision medicine and improving patient outcomes
(Johnson et al., 2021; Krishnan et al., 2023).

From the perspective of classification, existing researches
mainly focused on binary classification problems in thyroid disease
classification based on ML models. Kumari et al. (2024) used
age, gender, and hormone levels as features and combined them
with 3 ML models to classify hyperthyroidism and hypothyroidism.
Results showed that XGBoost was the top-performing model for
this task (Kumari et al., 2024).

Al-muwaffaq and Bozkus (2016) developed the Machine
Learning tool for Thyroid Disease Diagnosis (MLTDD) mainly
focused on thyroid gland medical diseases caused by underactive
or overactive thyroid glands. The prediction accuracy was in range
between 98.7% and 99.8% for testing. MLTDD can effectively help
to make the right clinical decision.

Xi et al. (2022) constructed 6 ML models to predict the
malignancy of thyroid nodules. RF and Gradient Boosting Machine
(GBM) showed better overall diagnostic accuracy and ability to
identify malignant nodules. Their method can be used as additional
evidence in the preoperative diagnosis of thyroid cancer.

Guo et al. (2022b) constructed a diagnostic model of benign and
malignant thyroid tumors. The benign group contained 5 thyroid
diseases and the malignant group contained six thyroid diseases.
Clinical factors were used as features and RF, XGBoost, LightGBM,
and AdaBoost models were constructed. RF model showed the
best performance. Their research proposed a model incorporating
novel biomarkers which could be a powerful and promising tool for
predicting benign andmalignant thyroid tumors (Guo et al., 2022b).

Recently, some researches have begun to focus on multi-
classes classification problems. Chaganti et al. (2022) used ML
models to predict five thyroid diseases. Results showed that the
extra tree classifier-based selected feature yields the best results
with 0.99 accuracy and an F1 score when used with the RF
classifier (Chaganti et al., 2022).

Gupta et al. (2024) used ML models to predict ten thyroid
diseases. Results suggested that an accuracy of 0.998 can be
obtained using the optimized AdaBoost model by differential
evolution (Gupta et al., 2024). These researches applied ML models
to a variety of thyroid diseases, which helped to diagnose diseases
more conveniently and comprehensively in clinical practice.

ML models can not only be used to classify the types of
thyroid disease, but also to determine whether there is a certain
gene mutation in the disease. Kwon et al. (2020) used ML models
combined with radiomics to predict the presence or absence of B-
Raf proto-oncogene, serine/threonine kinase (BRAF) mutation in
PTC and the results showed that the classification accuracy of these
models was higher than 60%. Although this research provided a new
perspective of application ofML in thyroid disease which focused on
the gene mutation, the classification model did not show excellent
performance in predicting the presence of BRAF mutation in PTC
and need to be further validated in a larger dataset to better assess
their potential clinical use.

In addition, ML models can also be used to predict treatment
trends and prognosis. Aversano et al. (2021) combined ten different
ML models with parameters related to the person being treated to
predict whether the LT4-based treatment needs to be increased or
decreased for the patients with hypothyroidism. This study provides
reference insights for clinical treatment plans.

Wang et al. (2024a) presented ML models based on
comprehensive predictors to predict the structural recurrence risk of
PTC patients. All the patients were treated with thyroid surgery and
radioiodine. Twenty-nine perioperative variables consisting of four
dimensions (demographic characteristics and comorbidities, tumor-
related variables, lymph node-related variables, and metabolic and
inflammatory markers) were analyzed (Wang et al., 2024a). The
results showed that the RF model achieved the expected prediction
effect, with good discrimination, calibration, and interpretability,
and revealed the potential of ML models in improving the accuracy
of risk stratification of PTC patients (Wang et al., 2024a).

It is also an important task for ML models to classify clinical
patient samples based on MS-based multi-omics data. In many
cases, it can be used to determine which ion m/z values contribute
most to the models, thereby facilitating the identification of
biomarkers and further facilitating the diagnosis and classification of
thyroid disease (Beck et al., 2024). Recently, an increasing number of
researches have focused on combining ML with MS data for thyroid
disease classification, even for further treatment strategies, which
have provided broader prospect.
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FIGURE 4
The workflow of ML for data processing and modeling.

Sun et al. (2022) proposed the first protein-based neural
network classifier for thyroid nodules. Their research was the first
to establish a deep proteome data repository for various thyroid

lesions, analyzed a larger sample size and obtained deeper proteome
coverage (Sun et al., 2022). The large-scale thyroid proteome map
combined with the neural network model demonstrated the power
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of the classifier and is expected to be quickly applied to clinical
practice to supplement the deficiencies of traditional cytopathology
(Sun et al., 2022). Their recent work (Sun et al., 2024) established
a protein-based model with targeted MS for the diagnosis of
FTC and FTA. This model used 24 proteins filtered by XGBoost
as features and performed better than gene-based model. The
protein model has 95.7% negative predictive value for ruling out
malignant nodules (Sun et al., 2024).

Wang et al. (2022b) develop a rapid classification method by ML
and MS-based metabolomics to diagnose PTC. The metabolomics
of frozen samples were performed by probe electrospray ionization
(PESI) mass and SVM and RF models were used. For the
classification of PTC from PTC adjacent tissues, SVM performed
better than RF. Their another work developed a rapid method to
classify the malignant and benign thyroid nodules by PESI-MS-
basedmachine learning (Wang et al., 2022c). For each FNAB sample,
only 10 min is needed to determine its malignancy, which is much
easier and faster than traditional diagnosis (Wang et al., 2022c).

Chen et al. (2024) explored the potential of rapid thyroid
disease screening using the ZrMOF/Au-assisted LDI-MS platform,
enabling rapid screening of malignant thyroid disease from benign
patients. The authors constructed a panel of 43 key metabolites
as features for ML models to discriminate thyroid cancer from
thyroid nodules and NN, RF, LR, and SVM models were used for
classification (Chen et al., 2024). The results showed that NN had
the best classification performance.

Zhu et al. (2024) combined ML with MS-based proteomics and
selected four proteins as features with the highest contributions
to predict the efficacy of iodine therapy. This research showed the
ability to pre-identify PTC patients who are resistant to radioactive
iodine therapy (Zhu et al., 2024).

The above articles were retrieved by entering “machine learning”
and “thyroid disease” in Google Scholar and some representative
ones involving “application of ML in diagnosis of thyroid disease”
were selected by us. We showed them in Table 1 in the order we
mentioned in this section with three summary measures, sample
types, features, and supervised ML models.

By analyzing the above research works, we found that patients’
personal data and hormone parameters are often used as features,
such as age, sex, thyroid-stimulating hormone (TSH), total serum
triiodothyronine (T3), thyroid binding globulin (TBG) and total
serum thyroxin (T4). Among these features, almost every researcher
has selected some features for thyroid disease diagnosis work. MS-
based proteomics and metabolomics data are also often used but
almost only single type is used. In order to analyze thyroid disease
more comprehensively, combiningmetabolomics and proteomics or
combining themwith other omics data such as genomics and clinical
indicators should be further considered in future studies.

3.2.2.2 Risk stratification
A significant advantage of ML in the clinic is its ability

to facilitate early intervention (Adlung et al., 2021). By using
advanced algorithms and predictive models, ML algorithms can
detect potential health risks at an early stage, and effectively
classify diseases into different risk categories, which offer a nuanced
understanding of the likelihood of patients developing specific
health conditions and allowing clinicians to intervene promptly
and implement targeted treatments (Beaulieu-Jones et al., 2021;

Choudhury and Asan, 2020; Sun et al., 2023). This goes beyond
traditional diagnostic methods, providing a more personalized and
proactive approach to healthcare (Yadav, 2024).

Saima Sharleen Islam (Sun et al., 2023) et al. used 11 ML models
to predict thyroid risk and used accuracy and recall as evaluation
indicators. The results show that the ANN classifier outperforms the
others in terms of accuracy. Zhao et al. (2022a) et al. used 5 ML
models to predict the risk of nodular thyroid disease in coal miners,
with the XGBmodel having the best overall predictive performance.

Wang et al. (2022a) presented ML models based on
comprehensive predictors to predict the structural recurrence risk of
PTC patients. All the patients were treated with thyroid surgery and
radioiodine. Twenty-nine perioperative variables consisting of four
dimensions (demographic characteristics and comorbidities, tumor-
related variables, lymph node-related variables, and metabolic and
inflammatory markers) were analyzed Wang et al. (2022a). The
results showed that the RF model achieved the expected prediction
effect, with good discrimination, calibration, and interpretability,
and revealed the potential of ML models in improving the accuracy
of risk stratification of PTC patients Wang et al. (2022a).

MS-based multi-omics data can also be combined with ML
for risk stratification in thyroid disease. Li et al. (2024) first
reported a Preoperative Risk Assessment Classifier for PTC (PRAC-
PTC) which constructed by ML models used clinical indicators,
immune indices, genetic feature, and MS-based proteomics as
multidimensional features. The results showed that six proteins
(DPP7, PDLIM3, Col12A1, CTSL, TUBB2A, and ITGB5) were
identified as the best discriminable proteins between low-risk and
intermediate-risk/high-risk PTCs (Li et al., 2024). XGBoost showed
the best performance among these ML models authors used. PRAC-
PTC can increase the accuracy of the preoperative risk stratification
and decrease unnecessary surgery or overtreatment.

Wang et al. (2024b) used different ML algorithms to explore
the relationship between mixed-semi-volatile organic compounds
(SVOCs) exposure and thyroid nodule. The data was collected by
GC-MS/MS. RF and AdaBoost models were selected to screen out
the features based on their contribution to the models. Weighted
quantile sum (WQS) regression and Bayesian kernel machine
regression (BKMR) were used to assess the mixed effects of the
SVOCs exposure on thyroid nodule (Wang et al., 2024b). The
results showed that high levels of exposure to SVOCs increase the
risk of PTC and nodular goiters (NG), with Fluazifop-butyl and
Fenpropathrin playing a major role (Wang et al., 2024b).

Wang et al. (2024c) proposed a ML-based objective method
to individual to predict the risk of pediatric papillary thyroid
carcinomas (PPTCs). They collected the clinical factors and MS-
based proteomics data and nineteen proteins were selected by
ML models to construct a protein-based personalized prognostic
prediction model which can stratify PPTC patients into high- or
low-recurrence risk groups and provide a suggestion for clinical
decision-making and individualized treatment.

The combination of ML and MS-based multi-omics data in
thyroid disease not only enhances disease risk assessment but also
improves the approach to patient care. Through early intervention,
patient stratification, and the implementation of targeted preventive
measures, ML makes a significant contribution to improving patient
health and building a more personalized and efficient clinical
treatment system (Khalifa and Albadawy, 2024; Khalifa et al., 2024).
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TABLE 1 Applications of machine learning in diagnosis of thyroid disease.

References Year Sample types Features Supervised ML models

Gupta et al. (2024) 2024 Concurrent Non-thyroid Illness,
Compensated Hypothyroid,

Increased Binding Protein, Primary
Hypothyroid, etc

not given RF, SVM, LR, ADA, GBM, CNN,
RNN, LSTM

Kumari et al. (2024) 2024 Hyperthyroidism and
Hypothyroidism

age, sex, pregnancy, T3, T4, and TSH RF, SVM, XGB

Al-muwaffaq and Bozkus (2016) 2016 Hyperthyroidism, Hypothyroidism
and normal function of the thyroid

gland

age, sex, on_thyroxine,
query_on_thyroxine,

on_antithyroid_medication, sick,
pregnant, TSH, T3, T4, T4U, FTIetc.

DT

Xi et al. (2022) 2022 Thyroid Cancer demographic information,
ultrasound features, and blood test

results

RF, SVM, LR, LDA, GBM

Guo et al. (2022b) 2022 Benign and Malignant Thyroid
Tumors

Peripheral blood indicators,
BRAFV600E gene, demographic

indicators

RF, XGB, GBM, ADA

Chaganti et al. (2022) 2022 Hashimoto’s thyroiditis, binding
protein (increased binding protein),

Autoimmune Thyroiditis, and
Non-Thyroidal Syndrome (NTIS)

age, sex, on_thyroxine,
query_on_thyroxine,

on_antithyroid_medication, sick,
pregnant, TSH, T3, T4, T4U, FTI,

TBGetc.

RF, LR, SVM, ADA, GBM

Kwon et al. (2020) 2020 PTC radiomics features LR, RF, SVM

Aversano et al. (2021) 2021 Hypothyroidism personal information, family history,
physical characteristics, hormonal
and thyroid parameters, parameters

relating to blood tests

ADA, XGB, GBM, CAT, DT, RF,
ExtraTree, k-NN, Naive Bayes, MLP

Wang et al. (2024a) 2024 PTC demographic characteristics and
comorbidities, tumor-related

variables, lymph node (LN)-related
variables, metabolic and
inflammatory markers

LR, XGB, RF, SVM, NN

Sun et al. (2022) 2022 Thyroid Nodules MS-based proteomics NN

Sun et al. (2024) 2024 FTA and FTC MS-based proteomics XGB

Wang et al. (2022b) 2022 PTC MS-based metabolomics RF, SVM

Wang et al. (2022c) 2022 Thyroid Nodules MS-based ions RF, SVM, MLP

Chen et al. (2024) 2024 Thyroid Cancer and Thyroid Nodules MS-based metabolomics NN, RF, LR, SVM

Zhu et al. (2024) 2024 Radioactive Iodine Refractory
(RAIR) and Non-Radioactive Iodine

Refractory (Non-RAIR) PTC

MS-based proteomics XGB

ADA, adaptive boosting; CAT, CatBoosting; CNN, convolutional neural network; DT, decision tree; GBM, gradient boosting machine; k-NN, k-nearest neighbor; LDA, linear discriminant
analysis; LR, logistic regression; LSTM, long short-term memory; MLP, multilayer perceptron; NN, neural network; RF, random forest; RNN, recurrent neural network; SVM, support vector
machine; XGB, eXtreme Gradient Boosting.

4 Summary

In the 21st century, the development of medical science
has entered the era of big data, with ML algorithms, as a
cornerstone of artificial intelligence, beginning to emerge in clinical
disease research (Li et al., 2023b). From the clinical perspective,
the application of ML in thyroid disease can contribute to

the classification, diagnosis, treatment and prognosis. MS-based
multi-omics analysis utilizing ML technology, offers significant
prospects for early disease detection and prevention. However,
there are currently limited examples of successful application of
such technologies into clinical practice (Kelly et al., 2019). There
are also many challenges must be addressed. In the biomarker
field, the primary challenge is not in data analysis, but in the
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collection of comprehensive clinical data for each particular patient
(Desaire et al., 2022; Arzyeh et al., 2020). The success of ML
algorithms in the medical field largely depends on the quality,
diversity, and completeness of the training data (Sarker, 2021).While
the number of samples in some researches are not small, collecting
more data will increase the diversity of patients. Models trained
on broader and more diverse datasets will generalize better to new
patients when deployed in real-world scenarios (Xi et al., 2022).
Most researches mainly use publicly available datasets, and many
datasets have the problem of class imbalance, with a very small
number of samples in a certain class. Meanwhile, this phenomenon
also leads to the results not being universal. When ML models are
applied to such datasets, the models will overfit to the majority class,
resulting in incorrect predictions for the minority class. The other
limitation is that only a few types of thyroid diseases have been
used to classification problems in existing studies, and most studies
focus on binary classification, which has caused certain limitations
in the application of ML to clinical applications of thyroid diseases.
In disease research, this entails collecting detailed information about
a patient’s medical history, genetic profile, treatment response, and
long-term outcomes. Furthermore, patient privacy and data security
must be carefullymanaged and addressed. As data volume increases,
it is imperative to implement robust measures to protect patient
privacy and uphold ethical standards (Abouelmehdi et al., 2018).

In summary, while ML holds substantial for clinical disease
researches, it also encounters significant challenges to widespread
adoption. Addressing these challenges will pave the way for realizing
the full potential of ML in enhancing disease diagnosis, prognosis,
and personalized treatment strategies.
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