& frontiers | Frontiers in Molecular Biosciences

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Kishor Pant,

University of Minnesota Twin Cities,
United States

REVIEWED BY

Sanjeeb Kumar Mandal,
Chaitanya Bharathi Institute of
Technology, India

Daniel Gideon,

St Joseph'’s University, India

*CORRESPONDENCE
Takeshi Furuhashi,
TAKESHIF@nus.edu.sg

RECEIVED 20 September 2024
ACCEPTED 18 December 2024
PUBLISHED 07 January 2025

CITATION

Furuhashi T, Toda K and Weckwerth W (2025)
Review of cancer cell volatile organic
compounds: their metabolism and evolution.
Front. Mol. Biosci. 11:1499104.

doi: 10.3389/fmolb.2024.1499104

COPYRIGHT
© 2025 Furuhashi, Toda and Weckwerth. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences

TYPE Review
puBLISHED 07 January 2025
pol 10.3389/fmolb.2024.1499104

Review of cancer cell volatile
organic compounds: their
metabolism and evolution

Takeshi Furuhashi*, Kanako Toda? and Wolfram Weckwerth3+>

INUS Environmental Research Institute, National University of Singapore, Singapore, Singapore,
?Department of Oral Health Sciences, Health Sciences, Saitama Prefectural University, Koshigaya-shi,
Japan, *Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria, “Molecular Systems
Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna,
Austria, *Health in Society Research Network, University of Vienna, Vienna, Austria

Cancer is ranked as the top cause of premature mortality. Volatile organic
compounds (VOCs) are produced from catalytic peroxidation by reactive
oxygen species (ROS) and have become a highly attractive non-invasive cancer
screening approach. For future clinical applications, however, the correlation
between cancer hallmarks and cancer-specific VOCs requires further study. This
review discusses and compares cellular metabolism, signal transduction as well
as mitochondrial metabolite translocation in view of cancer evolution and the
basic biology of VOCs production. Certain cancerous characteristics as well
as the origin of the ROS removal system date back to procaryotes and early
eukaryotes and share commonalities with non-cancerous proliferative cells. This
calls for future studies on metabolic cross talks and regulation of the VOCs
production pathway.

KEYWORDS
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1 Introduction

A potential relationship between odors emitted by the human body and malignant
diseases (e.g., cancer) is an intriguing current topic that has been investigated since
Hippocrates’ time (Adam, 1947). VOCs (volatile organic compounds) are the main
components of such odors, and a major advantage of analyzing VOCs in clinics is
that it represents a non-invasive approach. The odor of various specimens (breath,
urine, feces, the body surface, sweat) has been used as a sample source, and various
types of VOCs (e.g., hydrocarbons including alkanes and alkenes, aldehydes, alcohols,
ketones, aromatics, carboxylic acids, esters, ethers, nitrogen- or sulfide-containing volatile
compounds) have been reported (Filipiak et al., 2016; Gouzerh et al., 2022). In particular,
VOC:s application for cancer detection is an emergent topic because cancer has one of the
highest mortality rates and most severe patient suffering. At the same time, cancer care costs
have exploded (Mariotto et al., 2020).

Further advancing the application of VOCs in cancer detection and care requires
developing both basic biology and applied science approaches. To date, many of the
analyses have solely involved VOCs profiling. Little is known about the enzymes related
to VOCs production, VOCs metabolism control, environmental cues influencing VOCs
metabolism, and the gene expression involved in VOCs metabolism. Moreover, the
essential reasons for cancer cells to emit cancer-specific VOCs as well as the evolutionary
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origin of VOCs metabolism have never been fully addressed. Here
we review cancer-dependent VOCs metabolism and evolution to
summarize and improve our basic understanding. This approach
will eventually contribute to non-invasive VOCs analysis, enabling
the detection of cancer-specific biomarkers and pointing to direct
therapeutic strategies.

2 Basic biology of VOCs

2.1 Cancer evolution and cellular VOCs
production

Studying the production of cancer VOCs benefits from
reviewing cancer evolution itself. Cancer is clearly observed only
in multicellular organisms (animals, plants, fungi), mostly in the
animal kingdom (Aktipis et al., 2015). Cellular differentiation is
not stable in fungi, and abnormal growth in fruit bodies has been
detected (e.g., Ascomycota and Basidiomycota). Dedifferentiation of
hyphal cells and subsequent fungal fruit renewal are characteristic
features (Umar and Van Griensven, 1999), but metastasis has not
yet been observed and no vascularization occurs. In plants, cacti
fasciation or cristation and crown galls can be formed. These are
often provoked by bacterial infection with the upregulation of
hypoxia responsive genes (Kerpen et al., 2019) and sometimes even
by parasitization by parasitic plants correlating with upregulation
of auxin and cytokinin (Furuhashi et al, 2014). Similar to
animal cancer, vascularization has also been observed in plant
gall tissues. Only “metastasis-like” phenomena have been reported
(Braun, 1943), but metastasis as documented in animals has not
been documented in plants. Plant cells are less mobile/flexible
due to the presence of more rigid cell walls, and a circulation
system such as blood vessels in animals is missing. In the
animal kingdom, cnidarians were probably the first phylum in
which neural tissue, muscular tissue and mesoderm appeared in
evolution (Aktipis et al., 2015).

ROS are divided into two categories encompassing radical
and non-radical forms (Chiurchit and Maccarrone, 2011). ROS
include not only the widely known superoxide radical, hydrogen
peroxide, and the hydroxyl anion, but also peroxinitrite and the
sulfonyl radical, which contain nitrogen (RNS: reactive nitrogen
species) and sulfide (RSS: reactive sulfide species), respectively
(Moulian et al., 2001; Giles and Claus Jacob, 2002). ROS signaling is
major cellular trend. For example, physiological signaling functions
of ROS are reported in tissue, iPSCs regeneration, and pluripotency
of stem cell (Sinenko et al., 2021). In fact, a change in cellular ROS
level is associated with a metabolic shift between glycolysis and
mitochondrial respiration during cellular differentiation process.

ROS function in cellular signal transduction, called redox
signaling, is currently an emergent topic. Mostly, ROS influence
or inactivate proteins, such as enzymes and transcriptional factors,
but there are cases that ROS is required for cellular function, such
as disulfide bond formation. Examples are redox regulation of the
insulin signaling pathway (e.g., PTEN inactivation), transcription
(e.g, DNA methylation),
mitochondrial energy metabolism (e.g., inactivation of aconitase),

factors (e.g., NRF2), epigenetics

circadian rhyme (e.g., sleep-wake rhythm) and proteostasis (e.g.,
disulfide formation) (Lennicke and Cochemé, 2021).
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In the case of plant metabolism, not only ROS but also RNS
is involved in cell signaling and plant-microbe interaction, in
view of resistance against pathogen/symbiont and program cell
death (PCD) (Khan et al., 2023).

In VOC:s production in cells, ROS (reactive oxygen species) play
a role in catalytic peroxidation and are key for our understanding
of this process (Figure1). H,O, exposure leads to oxidative
stress and eventually to VOCs production in A549 lung cancer
cell lines in vitro, making ROS a conspicuous source of VOCs
production (Fenn et al., 2022).

The consequences, and the ROS-mediated signal transduction,
differ depending on ROS concentration as well as its source: low
ROS tend to promote cancer proliferation (e.g., PI3K/Akt activation
through PTEN inhibition) and invasion (e.g., NF-kB activation
by PP2A inhibition), whereas high ROS lead to oxidative stress,
apoptosis (p38 activation through ASK-1) as well as metastasis
inhibition (Foo et al., 2021). Moreover, ROS induce not only lipid
peroxidation but also DNA damage, autophagy and ferroptosis
(Sainz et al., 2012; Su et al., 2019).

ROS can be produced in several sites inside the cell and can
be derived from both endogenous and exogenous sources (e.g.,
pathogens and radiation) (Dayem et al., 2010). As an endogenous
source, in humans, O, (ROS) are generated not only by incomplete
reaction in the mitochondrial electron transport system (ETC),
but also by NADPH oxidase on plasma membranes, cytosolic
xanthine oxidase, peroxidase and cytochrome P450 (Bechtel and
Bauer, 2009; Collin, 2019). As there are several ROS production
sites, ROS has been considered to be randomly diffused, but
the possibility exists that cells can strictly control ROS source
activation, localization as well as the amount and duration of ROS
production (Herb et al., 2021).

Generated ROS can provoke oxidative stress, usually reflecting
an imbalance between antioxidant systems and various pro-
oxidants, which can be related to disease. Accordingly, loss of
this balance leads to oxidation of biomolecules. In general, 90%
of the oxygen uptake by cells is used for energy production by
mitochondrial respiration, while the remaining 10% is consumed
for non-enzymatic chemical reactions (Calenic et al., 2015).
Considering that peroxidation constitutes a mixture of non-
enzymatic and enzymatic chemical reactions, the role of ROS in the
peroxidation pathway is not negligible (Higdon et al., 2012).

Regarding oxidation targets, proteins, nucleic acids and lipids
can be targets for ROS. As an example, Arg and Pro in proteins
can be converted into y-glutamyl semialdehyde by protein oxidation
by H,0,, indicating that lipids as well as proteins and nucleic
acids could be targets for ROS-mediated oxidation (Calenic et al.,
2015). Another piece of evidence is that some cancer cell VOCs
contain nitrogen and sulfide, e.g., pyrrole and dimethyl sulfide
(Filipiak et al., 2010; Mochalski et al,, 2018). The data suggest
that some VOCs are probably derived from amino acid oxidation
because sulfide is present only in proteins, not in nucleic acids
or fatty acids. Consistent with this, a recent study showed that
methanethiol is converted into dimethyl sulfide in cancer due to
blockage of SELENBP1 (Selenium-binding protein 1) by mutation
(Philipp et al, 2023). Presumably, methionine is an origin of
methanethiol (Yeretzian et al., 2017).

In the case of DNA bases, such bases are oxidized by
radicals, leading to deamination (Cooke et al., 2003), or aldehydes
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Cellular metabolic pathways potentially related to VOCs production. Glucose and glutamine are two main energy sources for cancer cells. ROS
generated by Nox (NADPH oxidase), for example, will cause lipid peroxidation and eventually generate VOCs such as volatile alcohols.

produced by lipid peroxidation react with DNA (Medeiros, 2019).
Lipid peroxidation typically involves oxidation of fatty acids in
lipid membranes, especially PUFA (polyunsaturated fatty acids).
It can generate aldehydes, which are toxic reactive compounds
for cells, so that aldehydes need be converted into more stable
forms such as smaller-sized volatile compounds (e.g., alcohol and
carboxylic acids) (Ayala et al., 2014).

From an evolutionary viewpoint, several aspects of VOCs
production merit discussion. These include ROS removal systems
together with lipid peroxidation, the metabolisms that potentially
regulate VOCs production (e.g., energy metabolism), metabolic
interactions between cells, and responses to hypoxia.

As an ROS removal system, SOD (superoxide dismutase) is
one of the most important enzymes for antioxidant defense, and
SOD-based antioxidative systems already evolved in single-cell
organisms (e.g., bacteria and protozoans). Here, the ocean evolution
event involving an euxinic ocean [e.g., Great Oxygenation Event
(GOE) and Neoproterozoic Oxygenation Event (NOE)] appears to
be associated with the evolution of sulfur and oxygen metabolisms
(Feelisch et al, 2022). Interestingly, one phylogenetic study on
cyanobacteria antioxidant enzymes showed that the type of metal
(e.g., Cu and Zn) incorporated into SOD metalloenzymes differed
based on the distribution and availability in the environment at
each paleontological stage (Boden et al, 2021). CuZnSOD was
probably already acquired by non-marine cyanobacteria in the
Archaean, which was prior to the GOE. In contrast, in NOE,
the utilization of FeSOD and MnSOD increased concomitantly
with the requirement for an ROS defensive system. Antioxidative
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systems are present in fungi (Aguirre et al, 2006). In the
unicellular fungus Schizosaccharomyces pombe, this system involves
a prokaryotic-type multistep phosphorelay coupled to a stress-
response MAP kinase pathway and an AP-1 type transcription
factor. Many phosphorelay sensor kinases, antioxidant enzymes
and antioxidative secondary metabolites are apparently present
in filamentous fungi (e.g., Aspergillus nidulans), which express
Nox-like enzymes producing ROS. Importantly, ROS mediated
AP-1, a redox regulated transcriptional factor, is well known in
cancer ROS signaling (Liou and Storz, 2010). Moreover, Blackstone
(2000) reported that the evolution of a redox system can be
implicated with multicellularity, whereby a hypoxic effect is avoided
by terminal differentiation based on ROS signal transduction. In
addition, the thylakoid membrane can be a site that generates
ROS during photosynthesis in lower plants and algae, using
enzymes for an antioxidative defense system (e.g., superoxide
dismutase, catalase, ascorbate peroxidase, glutathione reductase)
(Rezayian et al., 2019). Some of these enzymes are used in higher
plants as well (Huang et al., 2019).

The lipoxygenase (LOX) family related to lipid peroxidation is
also observed in prokaryotes, and two animal LOX superfamilies
(LOXL2/L3/L4 and LOX/L1/L5) presumably evolved during
metazoan evolution (Grau-Bové et al., 2015). ROS-mediated LOX-
based lipid peroxidation itself is common, but downstream of
LOX the pathways differ between organisms. For example, plants
use hydroperoxide lyase (HPL) belonging to the CYP 74 family,
generating COX (Riley et al., 1996), whereas HPL has not been
reported in animals.
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Regarding peroxidases, studies on animal
the

and vertebrate peroxidasins

phylogenetic
of at
in which

peroxidase infer presence least five clades
the metalloprotein
peroxidase-cyclooxygenase superfamily (related to prostaglandin
synthesis) belongs (Soudi et al., 2012).

Certain radicals can be converted into stable VOCs compounds
by multiple functional enzymes. Accordingly, previous research
on lung cancer cell lines A549 reveals that some cancer VOCs
can be catalyzed by ADH (Furuhashi et al, 2023), which is
known to catalyze various types of aldehydes into alcohols and
vice versa (Boleda et al, 1993). Cancer cells critically require
a set of multifunctional enzymes and/or isozymes to cope with
unexpected ROS generation and its toxicity, lending plasticity to
cancer cells. A link between detoxification based on enzymatic
promiscuity and multifunctionality is intriguing, while the presence
of multifunctionality and isozymes (e.g., ADH and ALDH families)
would make it difficult to specify target enzymes and to make
a knockout mouse for VOCs metabolism research. Another
technical difficulty is identifying VOCs products from in vitro
enzyme assays because the product of enzymatic reactions can
be volatile. Derivatization can be applied to improve sensitivity
and selectivity. Considering that in vitro enzymatic assays must be
conducted under aqueous conditions, this involves either (i) using
a derivatization reagent that can function in the presence of water
(e.g., chloroformate for short chain fatty acids) (Furuhashi et al,
2018), or (ii) transferring VOCs products into an organic solvent
phase prior to derivatization (e.g., Trans 2 hexenol to assess ADH
enzymatic activity) (Furuhashi et al., 2023).

ROS-based radical compounds in cancer cells are partly
generated non-enzymatically, producing a variety of radicals (e.g.,
different length and saturation of fatty acids). Confusingly, in some
studies, purely non-enzymatic chemical reactions, spontaneous
reactions on enzymes, and low specificity enzymatic reactions are
recognized as non-enzymatic reactions.

Multifunctionality of enzymes, e.g., protease (Lopez-Otin and
Bond, 2008), has been previously studied under the heading of
enzyme promiscuity (Piedrafita et al,, 2015). This has been classified
into three groups: substrate promiscuity (one enzyme can catalyze
several different substrates), catalytic promiscuity (an enzyme can
catalyze the same substrate into different products), and conditional
promiscuity (an enzyme can catalyze different substrates and
produce different products due to substrate concentration change
and translational modification). As an interesting example of
enzymatic multifunctionality, plant CYP450 promiscuity occurs
in diterpenoid metabolism (e.g., in monocots and conifers),
and also in sesquiterpenoid metabolism as a detoxification of
endogenous toxins, so-called phytoalexins (e.g., capsidiol in
Solanaceae) (Werck-Reichhart, 2023). Multiple functions are
also observed in AhR (aryl hydrocarbon receptor), which is
a xenobiotic-receptor to eliminate exogenous toxic or harmful
chemical compounds (Tomkiewicz et al., 2024).

Conformational flexibility - the ability of conformation
change between different substrates, observed in various
organisms including prokaryotes - is a key to understand
enzymatic promiscuity providing multifunctionality (Petrovi¢ et al.,
2018). Conformational flexibility involves acquiring additional
promiscuous catalytic activities or even completely new activities

on scaffolds that were previously non-catalytic, for example, by gene
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duplication. Moreover, coenzymes (i.e., NADH and NADPH) are
required for conformational change (Plapp, 2010), which could be
influenced by the environment (e.g., balance between oxidation and
reduction).

There is an interesting case that ROS can also induce
of
peroxiredoxins (Detienne et al., 2018). ROS can alter cysteine

multifunctionality of enzymes, as seen in example
residues into cysteine sulfinic acid. A peroxidase activity is
inactivated and then it turned into a multimeric complex with
chaperone function. While, still there is no evidence that cellular
VOC production is influenced by ROS-induced enzymatic
function change.

Finally, the regulation of these enzymes differs under various
environmental conditions and can expand multifunctionality
and also provide further plasticity to cellular metabolism. For
example, ADH and LDH can be upregulated under hypoxia
in plants (Lin et al., 2017), indicating that searching for hallmarks

related to cancer VOCs production is crucial.

2.2 Cellular metabolism and VOCs
production

Considering ROS as a result of a metabolic shift between
glycolysis and mitochondrial respiration, energy metabolism has
been of particular interest. Rapid cell proliferation is a key cancer
characteristic that affects metabolism. This per se involves how to
utilize metabolites (e.g., glucose) as an energy source under certain
environmental conditions. Regarding metabolism evolution, two
different metabolic effects already appeared in single-cell bacteria
and protozoans (e.g., Saccharomyces). One is the Pasteur effect in
which yeast glycolysis is suppressed and the TCA cycle is extensively
used under aerobic conditions. This was reported by Pasteur in
1861, originally called the Pasture reaction by Warburg in 1926
(Racker, 1974). This effect was later commonly observed in human
tissue as well (Ramaiah, 1974).

Secondly, when cells are under nutrient-rich conditions (i.e.,
high glucose), the glycolysis pathway needs to be activated. At the
same time, an oxygen supply is also required for the subsequent
TCA cycle and oxidative phosphorylation. Respiration ability and
glucose availability are related to each other (Dashko et al., 2014).
For instance, if the glucose supply is in excess or the oxygen
supply is relatively insufficient, cells suppress oxygen consumption
in mitochondria and the end product of glycolysis turns toward the
fermentation process. Consequently, cells tend to produce energy
without using oxygen and utilize NADH generated in glycolysis
for the fermentation process. Today, this phenomenon (particular
in yeast) is recognized as the Crabtree effect (Malina et al., 2021).
Nonetheless, Crabtree originally followed the Warburg study (i.e.,
aerobic glycolysis) by using a rat carcinoma and calculating excess
fermentation from respiration Qgn, and anaerobic glycolysis Qy,
(Qu -2x Qg,) (Crabtree, 1929), stating that glycolytic activity exerts
a checking effect on respiration. Although Crabtree used cancer
tissue and used the term “fermentation” (i.e., lactate was recognized
as a waste product), the term “Crabtree effect” nowadays pertains
more to the alcoholic fermentation process in yeast (i.e., ethanol
production) than to lactate metabolism in metazoans (exclusively
cancer cells). Historically, the term Crabtree effect was applied
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to avoid confusion with the Pasteur effect. The former has, in
turn, been used rather for yeast fermentation metabolism than for
cancer. De Deken (1966) suggested using the term Crabtree effect
instead of “contre-effet (counter effect in French) Pasteur” to explain
yeast fermentation under high glucose conditions. Regarding the
Warburg effect, glycolysis is active both under aerobic and anaerobic
conditions. Accordingly, oxygen concentration changes do not
suppress glycolysis (Warburg et al., 1927). An evolutionary origin of
the Warburg effect is still enigmatic, and the TCA cycle and oxidative
phosphorylation are not suppressed even under hypoxia in cancer,
which is far different from single cell metabolism. Among these three
metabolic effects, the Warburg effect appears to be closely related to
cancer proliferation. Note, however, that the Warburg effect can also
be observed in proliferating animal cells including non-cancerous
cells (e.g., immune T-cells) (Abdel-Haleem et al., 2017).

In a previous study comparing non-cancerous proliferating lung
cells (HLB) and cancerous A549 lung cells, both cell types showed
extensive glucose use under aerobic conditions, but the VOCs
profiles differed (Furuhashi et al., 2020). That insight suggested
that cancer-specific VOCs production is not caused solely by the
Warburg effect. At the same time, a positive influence of lactate
on cancer VOCs production was investigated by comparing lung
primary cells, non-cancerous proliferating cells and cancer cells
(Furuhashi et al., 2023). Lactate is recognized not only as an energy
metabolite but also as an extracellular messenger by interacting with
the GPR receptor, e.g., GPR81 (Brown and Ganapathy, 2020). This
makes the influence of lactate signaling on VOCs production an
interesting future research topic.

Extensive utilization of glycolysis leads to production of
pyruvate, and subsequently to lactate by LDH. This is characteristic
in higher animals (typically cancer) but has also been observed
in prokaryotes, e.g., Lactobacillus metabolism. The conversion of
pyruvate, however, differs among organisms. Some bacteria and
protostomes can produce opines, which are a conjugation of amino
acids with pyruvate by dehydrogenases (e.g., opine dehydrogenase)
(Sato et al., 1993). Kerpen et al. (2019) recently stated that plant
crown gall contains such opines that appear to be related to plant
cell proliferation. This phenomenon is thought to help avoid the
accumulation of individual metabolites.

Lactate as an end-product is reusable and can be translocated.
Cells extensively utilize glucose and produce lactate in glycolytic
status, while neighboring oxidative status cells uptake lactate and
convert it into pyruvate by LDH-B to generate ATP via the TCA
cycle. This has been called the lactate shuttle (Brooks, 2018).
Regarding lactate utilization, recent myotube flux analysis indicates
that the carbon of lactate can be ultimately used as a substrate for
glycogen as well as lipids (Lund et al., 2018).

Recent spatial transcriptomics revealed different cells in the
TME (tumor micro environment), consisting of heterogeneous
cancer cells including cancer stem cells and non-cancer cells
(e.g., CAE cancer-associated fibroblasts) (Sahai et al, 2020).
In TME, the lactate translocation from CAF to cancer cells
(Lietal, 2021) is probably important for cancer cells. Interestingly,
this lactate translocation can provoke metabolic reprogramming
(Li et al,, 2021). Such a translocation also occurs between glia
cells and neurons, e.g., primary cells (Liu et al, 2017). Further
investigation of metabolite translocation and the relationship with
VOCs would benefit from flux analysis using isotope labels as
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well as modeling and simulation (e.g., ENGRO model and FBA
analysis) (Damiani et al., 2017). Nevertheless, few studies have been
conducted on VOC:s flux analysis, possibly because of the difficulty
to detect VOCs generated by lipid peroxidation.

From an evolutionary perspective, metabolite translocation
between cells appeared in prokaryotes and single-cell eukaryotes,
as evident in microbial interactions in food fermentation (e.g.,
yogurt, Korean kimuchi, Japanese miso, and the Thai food
nham) (Sharma et al., 2020). Such translocation also occurss in
metabolic interactions involving host-pathogen interactions in the
gut (Llibre et al., 2021). Metabolic interactions might be correlated
with the acquisition of an acid tolerance system (e.g., acetic
acid tolerance) (Lynch et al., 2019). Mutually beneficial metabolic
interactions are well known, for example, interactions between lactic
acid bacteria and yeast in maize fermentation (Chaves-Lopez et al.,
2020). Note that competitive relationships are also possible, such
as in the relationship between aerobic Acetobacter pasteurianus and
anaerobic Lactobacillus helveticus in Chinese vinegar (Xia et al.,
2022). Utilization oflactate produced by anaerobic bacteria (uptake),
then converted into pyruvate and incorporated into the TCA cycle
by aerobic bacteria, is reminiscent of the lactate shuttle between
cancer cells.

Glutamine is another key metabolite in cancer cell metabolism.
It generates energy from amino acids instead of sugars and
is termed glutaminolysis (Yang et al, 2017). Glutamine is the
most abundant amino acid in blood and muscle, and can be an
alternative energy source instead of sugars (Yang et al, 2017).
Furthermore, in cancer cell line studies, glutamine deprivation
reduced VOCs production in cancer cells. That production level
was not recovered by adding sugars or lactate. Active glutaminolysis
can be observed in non-cancerous proliferative cells as well,
for example, in neural progenitor cells (NPCs) for neocortex
development and basal progenitor expansion (Gkini and Namba,
2023). Another example is that pluripotent stem cells (hPSCs) use
glutamine instead of pyruvate as a main energy source, whereas
cardiomyocytes can utilize lactate to synthesize pyruvate and
glutamate (Tohyama et al., 2016).

Focusing solely on single metabolic characteristics (e.g.,
Warburg effect) does not shed light on cancer-specific metabolisms.
Accordingly, the next step must involve regulating the metabolic
status in certain environments. For example, there is a crossroad
between glycolysis and glutaminolysis known as the CtBP-Sirt4-
GDH axis (Tomaselli et al., 2020; Li et al., 2022). In particular
under high glucose conditions, CtBP (C-terminal binding protein)
dimerizes and binds to the Sirt4 (Sirtuins4) promoter and represses
its expression; this consequently increases glutamate dehydrogenase
(GDH) activity (Wang et al., 2018a; Bai et al., 2021). Regarding
the relationship between lactate and glutaminolysis, lactate
converted into pyruvate inhibits the hypoxia-inducible factor
prolyl hydroxylase (PHD) and HIF-2a stabilization and c-Myc
transactivation. This in turn induces upregulation of the glutamine
transporter ASCT2 and of glutaminase GLS1, which is the first
step of glutaminolysis in mitochondria (Pérez-Escuredo et al,
2016). Nonetheless, few investigations have been conducted and
an influence of these crossroads on VOCs production might be
promising future work.

Responding to hypoxia is another hallmark of cancer: metastasis
(e.g., motility), invasion and vascularization can be induced by
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hypoxia (Wang et al., 2007; Balamurugan, 2016). Signal transduction
for responding to hypoxia is by HIF, and HIF can promote FFA
synthesis. HIFla affects glycolysis and lactate transport, while
HIF2a influences the glutamine transporter (i.e., glutaminolysis)
and fatty acid synthesis (Yoo et al, 2020). Moreover, the
L-2-hydroxyglutarate (L-2-HG) produced by lactate dehydrogenase
A (LDHA) and malate dehydrogenase (MDH) under hypoxia
contributes to regulating histone and DNA methylation levels. This
is because L-2-HG inhibits those epigenetic modification enzymes
that require glutamine-derived a-ketoacid as a cofactor. This insight
suggested a potential role of glutaminolysis in cancer epigenesis, one
that might promote cancer plasticity.

Compared with primary cells, cancer and non-cancerous
cells can proliferate under hypoxia. In addition, hypoxia can
promote cancer cell VOCs production, although the underlying
mechanism remains uncertain (Furuhashi et al., 2023) (Figure 2).
The assumption is that ROS formation decreases under hypoxia.
Note, however, that one study also showed that ROS generation
was paradoxically increased with a drop in oxygen concentration,
i.e., hypoxia (Zorov et al., 2014).

ROS appears to be generated in mitochondria, but the
phenomenon is lost when mitochondria are isolated. This points
to an extramitochondrial factor. Regarding ATP production in
mitochondria, a high mitochondrial membrane potential (AY
above 150 mV) increases ATP production but also increases ROS
formation (Lee et al, 2001). Considering that cancer cells do
not decrease energy production under hypoxia, mitochondria
in cancer cells need to balance between ATP production and
ROS formation, which may involve metabolic alterations in
cancer cells. Finally, hypoxia can also induce ROS by Nox,
subsequently activating HIF signaling, upregulating the glycolysis
pathway and lactate production (typically HIFla) (Forrester et al.,
2018). It would be intriguing to determine whether the hypoxia
inducible factor (HIFI)
by constraining metabolic reprogramming, for example, by

could maintain stemness of MSC

activating anaerobic glycolysis and suppressing mitochondria
respiration (Mohammadalipour et al., 2020).

2.3 Mitochondria and VOCs production

Mitochondria are the main organelle responding to hypoxia and
possess two membranes. The outer membrane is a signaling platform
where the phosphorylation of many proteins occurs, while the inner
membrane is an ATP factory generating energy by TCA and ETC
complexes (Grasso et al., 2020). Furthermore, the LDH and ADH
complexes apparently localize onto the outer membrane in mouse
liver mitochondria (Zimin and Solovyova, 2009), suggesting that
mitochondria are potential VOCs production sites. In this section,
we review mitochondria evolution, the response to hypoxia, as
well as the organic acid (i.e., lactate) including amino acid (i.e.,
glutamine) transfer between cells.

Lynn Margulis in 1970 proposed that mitochondria were
originally symbionts in host cells, and they are now known
to have originated from the bacterial phylum a-Proteobacteria
(Alphaproteobacteria) (Gray, 2012).

Consistent with this idea, a-proteobacteria (e.g., Paracoccus
denitrificans) possess a respiratory chain similar to ETC and
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release superoxide as a byproduct; ROS interact with cysteine
residues within transcription factors that activate prokaryotic genes
(Chandel, 2015). A recent study showed that these ancestral
bacteria are present in the marine environment and feature
aerobic traits (Geiger et al., 2023).

Mitochondria can be classified into 5 types based on function:
(i) aerobic, (ii) anaerobic, (iii) H,-producing mitochondria,
(iv) hydrosomes and (v) mitosomes that do not generate ATP
(Miller et al., 2012), although there is some room to discuss a
functional continuum between them (Roger et al., 2017).

Eukaryotes diversified in the Proterozoic era, when the oxygen
concentration was low, (Zimorski et al., 2019), so that the evolution
of mitochondrial morphology may well be associated with the
evolution of anaerobic energy metabolism in eukaryotes, e.g.,
adaptation to a hypoxic or anoxic environment. Eukaryotes with
facultatively anaerobic mitochondria would be capable of utilizing
fumarate reductase and RQ.

Recently, biochemical and genetic investigations of the o-
proteobacterium Rhodospirillum rubrum demonstrated that UQ is
a precursor to RQ (Brajcich et al., 2010). Moreover, the function of
a putative methyltransferase (RquA) in the mitochondrion-related
organelles of the anaerobic protist Pygsuia was correlated with the
presence of RQ (Stairs et al., 2018).

There are several morphological types in mitochondria,
including fragmented (fission), tubular and filamentous
(balanced), and hyperfused (fusion) (Wang et al., 2022). Cancer
tissue is heterogeneous, i.e., a mixture of cancer cells with
fragmented mitochondria and cancer stem cells (CSC) with
tubular mitochondria (possibly due to a high mitochondria
turnover rate) (Kim and Cheong, 2020). Nothing is known about
whether these mitochondrial morphological differences influence
VOCs, and getting the whole picture of the VOCs production
mechanism from cancer cell tissue remains a major task.

Organic acid transport between cytosol and mitochondria
would be key for understanding energy metabolism (e.g., amino
acid-based energy production) as well as the adaptation to
hypoxia (i.e., anaerobic conditions). Typically, glutamine is initially
uptaken into cytosol by SLC1A/38A on the plasma membrane and
then moves into mitochondria by SLC1A (Hewton et al, 2021).
In particular, a variant of SLC1A5 can be induced by HIF2a
under hypoxia (Yoo et al., 2020). Glutamine is firstly converted into
glutamate by GLS, then converted into a-ketoglutarate, and energy
is generated by the TCA cycle. Such an amino acid-based energy
production differs between organisms (e.g., glutamate, aspartate,
malate, pyruvate or phosphoenolpyruvate) and could be related
to the diversification of amino acid transporters in the inner
mitochondrial membrane (e.g., SLC25A) to adapt to anaerobic
conditions.

The SLC25 family, for example, is common in eukaryotes (e.g.,
Saccharomyces, Caenorhabditis elegans, Drosophila melanogaster,
Danio rerio) (Byrne et al., 2023), with three characteristic contact
points at the central substrate binding site (Ruprecht and Kunji,
2020). In a recent human SLC25 phylogenetic study, SLC 25 was
divided into three groups based on substrates (i.e., amino acids,
carboxylates, nucleotides), and SLC25 diversification could reflect
intron repositioning and exon shuffling (Monné et al., 2023).

Examples include the aspartate-glutamate anti-transporter
SLC25A12 (AGC) and the malate-oxoglutarate anti-transporter
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SLC25A11 (Amoedo et al., 2016). Between these, malate and
pyruvate are emphasized in anaerobic energy metabolism. Malate
is uptaken by mitochondria and utilized as an energy source in
molluscs, pyruvate in algae (Chlamydomonas) (Miiller et al., 2012).
In cancer cells, glutaminolysis is an important energy source.
Here, malate transport, typically known as the malate-aspartate
shuttle (MAS), is important to maintain a high NADH/NAD
ratio in mitochondria to cytosol (Borst, 2020), and AGC is
potentially important to regenerate cytosolic glutathione, i.e., an
antioxidant (Amoedo et al., 2016).

Pyruvate transport, in turn, involves the mitochondrial
pyruvate carrier (MPC), and the expression of mpc2 and mpc3
was specified to the fermentation process (ethanol production
by pyruvate decarboxylase) and to the respiration process (TCA
cycle and energy production by pyruvate dehydrogenase) in
yeast, respectively (Bender et al, 2015). In cancer, glutamine
deprivation leads to activation of MPC, driving the TCA
cycle, and can also induce the amino acid (Asp and Arg)
carrier SLC1A3 and SLC37A3 expression (Jin et al, 2023).
Onterestingly, MPC expression can also negatively influence
cancer cell proliferation, and even MPC disruption can promote
glutaminolysis (Rauckhorst and Taylor, 2016). In fact, MPC
is classified into the SLC54 family, which differs from most
of amino acid transport by the SLC25 family (Ferrada and
Superti-Furga, 2022).

Pyruvate kinase is an enzyme in glycolysis and catalyzes
phosphor enol pyruvate (PEP) into pyruvate, a process that
is conserved among living organisms from prokaryotes to
higher vertebrates (Oria-Herndndez et al, 2006). The presence
of mitochondria implicates pyruvate kinase activity in the
evolutionary context. In fact, both Entamoeba histolytica
(mitochondria-lacking parasitic amoeboid protozoan) and Giardia
intestinalis (intestinal unicellular parasite with reduced form of
mitochondria) convert phosphoenolpyruvate (PEP) to pyruvate
by pyruvate:orthophosphate dikinase (PPDK) rather than by
pyruvate kinase (Miller et al., 2012).

Based on enzymatic assays in the 1970s, pyruvate kinase
was classified into several isoforms based on location in
tissue, e.g, K, L and M, named after kidney, liver and
1973; 1977).
Today, pyruvate kinase isoenzymes are mostly classified as

muscle, respectively (Carbonell et al, Ibsen,
type M1 and type M2, both showing an allosteric effect
and being derived from alternative splicing regulated by
the SMARI1 tumor suppressor (Choksi et al, 2021). PKM
form homo tetramers, and the ratio between PKMI:PKM2
alters metabolism, influencing glutaminolysis and lactate
certain PKM also
2018). Notably, hypoxia-induced
transcription, indicating that the
PKM

selection as well (Luo et al., 2011). The relationship between VOCs

production. Importantly, reflect tumor
(Morita et al,
PKM2

transition is

origin
HIF-1
aerobic/anaerobic

activates

related to isoform

production and pyruvate kinase is not known and would be an
intriguing topic of future research.
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3 Conclusion

The origin of the ROS removal system dates back to prokaryotes
and early eukaryotes. Cellular VOCs derived from lipid peroxidation
might be linked to adapting to anaerobic conditions, and
metabolite (e.g., organic acid) translocation could be a key to
understanding VOCs production. A link between rapid growth
and ROS generation leads to lipid peroxidation, making cancer
cell VOCs an intriguing topic. Nonetheless, cancer VOC studies
have left certain open questions. For example, many metabolic
characteristics (e.g., the Warburg effect) that have been recognized
as cancer-specific hallmarks are also occasionally common in
non-cancerous proliferative cells. Future studies are required to
strengthen our understanding of multifunctional enzymes (e.g.,
functional change induced by ROS) and the regulation of the lipid
peroxidation-based VOCs production under various conditions

(e.g., hypoxia).
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