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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder, hallmarked
by the gradual deterioration of motor neurons, culminating in muscle weakness
and fatal paralysis. The exact etiology of ALS remains elusive, and there is
a critical need for reliable biomarkers to aid in diagnosis and monitoring of
disease progression. Extracellular vesicles (EVs) have emerged as promising
candidates for biomarker discovery in neurodegenerative diseases such as ALS,
giving access to pathologically relevant tissues otherwise typically challenging
or invasive to sample. Indeed, EVs can derive by many cell types within the
central nervous system, cross the blood-brain barrier and reach the blood,
where they can be easily measured. One of the central mechanisms implicated
in ALS pathology is glutamate excitotoxicity, which involves excessive glutamate
accumulation due to impaired uptake by astrocytes and other glial cells, leading
to neuronal damage. GLAST is a key glutamate transporter responsible for
maintaining extracellular gluta-mate levels, and its dysregulation is thought to
contribute significantly to ALS development and associated neuropathogenesis.
Here, we applied a quick and validated method, to evaluate GLAST+ EVs in ALS
patients’ plasma and age-matched healthy controls. We found an increase in
GLAST+ EVs that holds promise for uncovering novel diagnostic and therapeutic
avenues in ALS research.

KEYWORDS
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by
the progressive degeneration of motor neurons in the brain and spinal cord (Rojas et al.,
2020). ALS leads to muscle weakness, paralysis, and ultimately respiratory failure, with a
fatal outcome of the disease within 3–5 years from symptom onset (Wijesekera and Leigh,
2009). Despite extensive research efforts, the exact etiology of ALS remains elusive, and
there is a critical need for reliable biomarkers to aid in early diagnosis and monitoring
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of disease progression. Extracellular vesicles (EVs) have gained
significant attention in the field of ALS research as potential carriers
of diagnostic biomarkers (Barbo and Ravnik-Glavač, 2023), since
in the brain they are released by various cell types, both neuronal
and non-neuronal, including astrocytes, neurons and glial cells
(Schnatz et al., 2021). Size and mechanisms of biogenesis are the
conventional classification approaches for EVs (Théry et al., 2018).
Exosomes (30–150 nm in diameter) are derived from endosomes
released from multivesicular bodies (MVBs) after fusion with
the plasma membrane. In contrast, microvesicles (also termed
ectosomes, 100–1,000 nm in diameter) are larger EVs generated by
direct shedding from the plasma membrane. CD9, CD63 and CD81
are major members of the tetraspanin family frequently used as EVs
markers. However, tetraspanins are not equally expressed in all EVs,
but rather show heterogeneity that reflects the expression levels in
their secretory cells (Kugeratski et al., 2021).

In human body, the most relevant reservoir of EVs is the
bloodstream. Within this milieu, the most abundant EVs are
originated from resident cells, namely, leukocytes, endothelial
cells, and platelets (Alberro et al., 2021). Among these, EVs
derived from platelets may play a crucial role in modulating
optimal brain function and serve as a significant reservoir
of neurotransmitters, hence potentially facilitating intercellular
communication and contributing to the regulation of neural activity
(Leiter andWalker, 2020). Upon activation, platelets release EVs that
encapsulate a variety of bioactivemolecules, carrying them to distant
cellular recipients, that are otherwise inaccessible to the platelets
themselves. This capacity underscores the emerging role of EVs as
critical mediators in facilitating cell-to-cell communication across
substantial distances, thereby coordinating intercellular interactions
within the body (Maione et al., 2020).

In ALS pathology, glutamate, which is the primary excitatory
neurotransmitter in central nervous system (CNS), plays a pivotal
role in maintaining neuronal health and function. Its extracellular
concentration is intricately regulated by astrocytic glutamate
transporters, specifically knownas excitatory amino acid transporter
1 (EAAT1 or GLAST or GLT-1). Dysregulation of GLAST has been
associated with neuronal death (Pajarillo et al., 2019). Interestingly,
Silverman et al. showed increased concentration of astrocyte-
derived EVs, expressing GLAST on their surface, in the brain and
spinal cord of SOD1G93A ALSmice (Silverman et al., 2019).However,
as of today, no data regarding the presence of GLAST+ EVs in
humans are available.

Given the significance potential of EVs as biomarkers, their
identification is challenging due to the lack of appropriate methods.
Current ones (i.e., ultracentrifugation and ultrafiltration, among
the others) necessitate sample manipulation which may represent
a stressing condition that can promote the release of EVs during
processing and/or induce cell damage (Zhao et al., 2021).

In the present study, we have applied and adapted a
commercially available flow cytometric kit, which does require
neither EVs isolation nor extensive sample manipulation and it
has been validated in our laboratory (Cappellano et al., 2021;
Raineri et al., 2022) and by others (Marchisio et al., 2020), to
type the most abundant EVs (platelet-, endothelial- and leukocyte-
derived EVs) on plasma of ALS patients. As a proof of concept of
the existence of GLAST+ EVs, we refined this method to detect

TABLE 1 Clinical characteristics.

Features N (%)

Gender
M 39 (63.93)

F 22 (36.07)

Diabetes

Yes 4 (6.67)

No 56 (93.33)

Missing 1

Type of disease
Spinal 41 (67.21)

Bulbar 20 (32.79)

Endocrine diseases

No 54 (93.1)

Yes 4 (6.9)

Hypothiroidism 3 (75)

Dyslipidemia 1 (25)

Missing 3

Mutations

C9Orf72 8 (13.11)

KIF5A 1 (1.64)

No 49 (80.33)

SOD1 2 (3.28)

TDP-43 1 (1.64)

Progression
Slow 34 (55.74)

Fast 27 (44.26)

Cognitive impairment

Normal 39 (63.93)

ALS-ci 20 (32.79)

ALS-bi 1 (1.64)

FTD 1 (1.64)

Phenotype

Classic 32 (52.46)

Bulbar 20 (32.79)

PUMN 6 (9.84)

Respiratory 3 (4.92)

Parameters/Scores

Age at blood collection,
average (SD)

62.88 (12.60)

Average monthly change in
FVC, median (Q1-Q3)

−1.93 (−3.78;-1.00)

Average monthly change in
BMI, median (Q1-Q3)

−0.02 (−0.16; 0.15)

Average monthly change in
ALFRSR, median (Q1-Q3)

−0.60 (−1.31;-0.27)
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FIGURE 1
Absolute counts of (A) leukocytes-(leuko), (B) endothelial-endo and (C) platelets-derived EVs in ALS (n = 61) compared to HC (n = 30).

FIGURE 2
Gating strategy. The custom kit from BD incorporates an APC-emitting lipophilic cationic dye (LCD), which permeates double-layer structures assisted
by membrane potential. This dye effectively stains EVs and cells, both dotated of a lipidic membrane. Additionally, Phalloidin-FITC selectively binds to
the cytoskeleton protein actin, specifically targeting EVs/cells with damged membrane. To exclude platelets from the analysis, anti-CD41-FITC
antibody was used. EVs were then characterized based on their LCD positivity and smaller size as measured by forward scatter (FSC) (EVs area). Within
intact EVs region (defined as LCD+/phalloidin-), GLAST+ EVs were identified. To verify the specificity of staining, an isotype-PE antibody served as a
negative control. Lastly, samples were treated with Triton X-100 solution and re-acquired in order to confirm the specificity of LCD staining for EVs.
Samples were acquired using FACSymphony A5 and data were analyzed using FACSDiva software.
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FIGURE 3
GLAST+ EVs counts in ALS patients (n = 61) and HC (n = 30).
Mann-Whitney test was used,∗∗∗∗p < 0.0001.

within the plasma of ALS patient’s astrocyte derived-EVs expressing
GLAST marker on their surface.

Our findings showed that GLAST+ EVs are increased in ALS
patients compared to age-matched healthy control. No discernible
association with clinical data from ALS patients was identified.

2 Materials and methods

2.1 Study design

Peripheral venous blood samples were collected from ALS
patients (n = 61) and healthy age and sex matched controls,
HC (n = 30). Subjects were recruited at the Regional Expert
ALS Center (CRESLA) at the Neurology Clinic of the “Maggiore
della Carità” University Hospital in Novara. All enrolled subjects
provided written informed consent to participate in the study. The
ethical committee has been approved (CE n. 184/20). Inclusion and
exclusion criteria for patients are summarized in the supplementary
material. After enrollment, subjects were assessed and monitored
throughout the course of their disease until the terminal stage using
the Amyotrophic Lateral Sclerosis Functional Rating (ALSFRS-R)
scale, Forced Vital Capacity (FVC)%, Body Mass Index (BMI), and
neurological objectivity.Monthly changes inALSFRS-R, FVC%, and
BMI between the first and last assessments were calculated using the
formula: (measurement at the first assessment - measurement at the
last available assessment)/(date of the first assessment - date of the
last assessment). Samples were collected at the time 0 (T0).

2.2 Blood sampling and plasma isolation

Samples of peripheral venous blood from ALS patients and HC
were collected in sodium-citrate pre-coated vials (BD Vacutainer).
Blood samples was centrifuged at 3,500 rpm for 15 min and plasma
was frozen at −80°C until further analysis.

2.3 Flow cytometry analysis of circulating
EVs

A customized EVs detection kit (Becton and Dickinson, NJ,
United States) was employed to characterize EVs derived from
the whole blood of both patients and HC, following a previously
established protocol (Cappellano et al., 2021; Raineri et al., 2022).
Briefly, 0.5 μL of APC-conjugated lipophilic cationic dye (LCD)
and FITC-conjugated phalloidin, along with 5 μL each of anti-
CD31-PECy7, anti-CD41a-PE, and anti-CD45-BV510 were added
in 184 μL of filtered phosphate buffer sulphate (PBS). Subsequently,
5 μL of whole blood was incubated with this mix. To exclude
apoptotic bodies or damaged EVs, phalloidin was added to
each sample. Before staining, the reagent mixture underwent
centrifugation at 13,200 rpm for 15 min to prevent antibody
aggregates. After incubation for 45 min at room temperature (RT),
2 mL of filtered PBS were added, and the samples were analyzed
by flow cytometry (FACSymphony A5, Becton and Dickinson, NJ,
United States), with the threshold set in the fluorescent channel
as recommended in the literature (Mobarrez et al., 2010) allowing
the identification of either exosomes and microvesicles. FACSDiva
software (Becton and Dickinson, NJ, United States) was employed
for flow cytometry data analysis. The calculation of EVs per
microliter (EVs/μL) was determined using the following formula:

Number of EV events for a given population x dilution factor
acquired volume

Instrument stability was assessed by acquiring data from four
independent true count tubes, each measured three times (Becton
and Dickinson, NJ, United States).

2.4 Flow cytometry analysis for GLAST+

EVs identification

GLAST+ EVs were detected in a volume of 50 µL of
plasma from both ALS patients and HC, without the need for
ultracentrifugation, utilizing the aforementioned protocol with
some adaptations. Specifically, within the staining anti-CD31 and
anti-CD45 monoclonal antibodies (mAbs), were replaced by 2 µL
of anti-GLAST PE-conjugated antibody (Miltenyibiotec, Teterow,
Germany). To exclude platelet (PLT)-derived EVs from the analysis,
anti-CD41-FITC mAb was employed, whereby CD41+ events
were excluded in the gating strategy. The isotype-PE antibody
(Miltenyibiotec, Teterow, Germany) served as a control to draw the
GLAST+ EVs region. Samples were processed using FACSymphony
A5 (Becton and Dickinson, NJ, United States), and FACSDiva
software (Becton and Dickinson, NJ, United States) was employed
for flow cytometry data analysis. The GLAST+ EV count per
microliter was determined utilizing the formula above.

2.5 Flow cytometry analysis for CD63 and
CD81 tetraspanin identification

Tetraspanin were detected using the same protocol described for
GLAST+ EVs adding 5 µL of anti-CD63BV605-conjugated and anti-
CD81 BV711-conjugated together with anti-GLAST PE-conjugated
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FIGURE 4
Gating strategy. The custom kit from BD incorporates an APC-emitting lipophilic cationic dye (LCD), which permeates double-layer structures assisted
by membrane potential. This dye effectively stains EVs and cells, both dotated of a lipidic membrane. Additionally, Phalloidin-FITC selectively binds to
the cytoskeleton protein actin, specifically targeting EVs/cells with damged membrane. To exclude platelets from the analysis, anti-CD41-FITC
antibody was used. EVs were then characterized based on their LCD positivity and smaller size as measured by forward scatter (FSC) (EVs area). Within
intact EVs region (defined as LCD+/phalloidin-), GLAST+ EVs were identified. Finally, tetraspanin positive events were identified according to the
expression of CD63 and CD81 in BV605 and BV711, respectively.

and anti-CD41 FITC-conjugated. Samples were processed using
FACSymphony A5 (Becton and Dickinson, NJ, United States), and
FACSDiva software (Becton and Dickinson, NJ, United States) was
employed for flow cytometry data analysis.

2.6 Statistical analysis

Data from the flow cytometry analysis were analyzed by
GraphPad Prism Software for comparisons between ALS patients
and HC using non-parametric Mann-Whitney U-test. The level of
significance was set at p-value < 0,05.

3 Results

3.1 Clinical characteristics

Relevant clinical data regarding enrolled patients and their
stratification are summarized in Table 1.

3.2 Circulating EVs profile did not differ
between ALS patients and HC

By applying flow cytometry (Cappellano et al., 2021;
Raineri et al., 2022), we found that the absolute count of leukocytes-,
endothelial- and PLT-derived EVs was similar in both ALS patients
and HC (Figures 1–C; Supplementary Figure S1).

3.3 GLAST+ EVs counts are increased in
ALS patients compared to HC

By modifying a commercially available kit’s method
(Cappellano et al., 2021; Marchisio et al., 2020; Raineri et al., 2022),
we were able to identify GLAST+ EVs in plasma specimens of
ALS patients and HC by flow cytometry. Figure 2 shows the gating
strategy in detail.

Absolute counts of GLAST+ EVs were found to be significantly
increased in ALS patients compared to HC (Figure 3). To
confirm that the events evaluated as GLAST+ were really EVs,
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co-expression of tetraspanins was evaluated (CD63 and CD81).
As shown in Figure 4, all GLAST+ events were also positive for
both the evaluated tetraspanins. Lastly, the correlation between
all EVs counts with clinical data of ALS patients, that included
mutations, form of the disease, phenotype, cognitive profile,
and progression rate (fast or slow), as well as non-categorical
clinical variables, including delta ALSFRS-R, delta BMI, and
delta FVC was performed. No significant correlations were
observed among all the variables considered, as shown in the
Supplementary tables.

4 Discussion

The identification of EVs in biological fluids presents a
challenge due to the lack of standardized methods. Nowadays the
principal requirements for diagnostic methods are to be quick
and reliable, criteria that many existing methods often fail to
meet. In this study, we introduce a modified method for cell-
specific EVs identification that offers both speed and reliability. This
method has been rigorously tested and validated in independent
laboratories, comprising Lanuti’s one (Marchisio et al., 2020) and
ours (Cappellano et al., 2021; Raineri et al., 2022). This method
allows the identification of a range of EVs from 100–1,000 nm,
including either microvesicles (MVs) (around 95%) and exosomes
(around 5%) (Marchisio et al., 2020).

In ALS neuroinflammation involves the activation of
immune cells and release of inflammatory molecules within
the CNS. This inflammatory response contributes to the
progressive degeneration of motor neurons characteristic of ALS.
Interestingly, neuroinflammation can also influence peripheral
blood components, including platelets. In ALS, neuroinflammation
can lead to alterations in platelet function and activation. Studies
have suggested that platelets in ALS patients may exhibit abnormal
activation states, release pro-inflammatory factors, and interact
with immune cells, potentially exacerbating neuroinflammation
and neuronal damage (Leiter and Walker, 2020). Additionally,
platelets serve as a primary reservoir of serotonin and several
other neurotransmitters including γ-aminobutyric acid (GABA),
dopamine and glutamate. All these neurotransmitters can be
found as cargo of platelet derived EVs and are essential for the
intercellular communication between brain cells. Studies have
demonstrated significantly reduced platelet serotonin levels in
ALS patients, which positively correlate with patient survival
(Dupuis et al., 2010).

As of today, there is no clear consensus on the numerical
differences in EVs between ALS patients and HC. Some authors
have reported increased concentration and size of EVs in the
plasma of ALS patients (Sproviero et al., 2019), while other
reported no numerical variation in number of EVs between
ALS patients and HC, whether the evaluation of EVs have been
performed in plasma (Sproviero et al., 2018), cerebrospinal fluid
(CSF) (Thompson et al., 2020) or serum (Lo et al., 2021).
Interestingly, Lo et al. have evaluated the number of EVs isolated
from human frontal cortex, spinal cord, and serum samples
of ALS and HC demonstrating that numbers of EVs did not
significantly differ between two cohorts, regardless of tissue type
(Provenzano et al., 2023).

In our study, we observed similar counts of PLT-EVs in
ALS patients compared to HC. Additionally, no differences
were found in the counts of leukocyte-derived and endothelial-
derived EVs between the two groups thus aligning our results
to those of several other groups. Variations between studies,
particularly among control participants, may arise from differences
in isolation and size determination methodologies, as well as
various biological factors such as age, sex, tissue of origin,
cargo composition, time of sample collection, EVs phenotype,
and disease status. Additionally, we believe that part of the
discrepancy with our data might be due to the different method
applied to identify leukocytes-derived EVs. Indeed, we analyze only
integer EVs, while other methods use a standardized calibrated-
bead strategy, using polystyrene beads (Megamix-Plus, Bio-Cytex,
France), that lacks the capability to discriminate between intact and
damaged EVs.

Our study’s primary finding highlights a significant increase
in GLAST+ EV levels in ALS patients compared to HC. Our
experimental conditions impede to rule out if the identified
GLAST+ EVs are exosomes or ectosome, since the method used
to identify EVs only detects vesicles bigger that 100 nm. Moreover,
understanding the biological origin and functional effects of
EVs subtypes is challenging due to the moderate differences in
their physical properties and the absence of reliable markers.
Exosomes are composed of endosomal sorting proteins required
for transport (ESCRT) and tetraspanins (Jeppesen et al., 2019). In
contrast, ectosomes are enriched in cytoskeletal proteins, glycolytic
enzymes, integrins and annexins but may also express tetraspanins.
Nevertheless, for the purpose of this study, the exact biogenesis of
these EVs is beyond the scope.

Glutamate excitotoxicity, a process implicated in ALS pathology
(Provenzano et al., 2023), is closely tied to our findings. GLAST is
responsible for synaptic glutamate clearance thus playing a crucial
role in maintenance of optimal extracellular glutamate levels. This
crucial function prevents the accumulation of glutamate in the
synaptic cleft, mitigating the risk of excitotoxicity. Dysregulation of
GLAST function may play a significant role in excitotoxicity and its
associated neuropathogenesis, as it occurs in ALS (Silverman et al.,
2019). Notably, Silverman et al. demonstrated GLAST+ EVs in
the brain and spinal cord of SOD1G93A ALS mice, suggesting
a potential link between GLAST+ EVs and ALS pathogenesis
(Silverman et al., 2019). Indeed, EVs from brains and spinal cords
of the SOD1G93A ALS mouse model, as well as from the spinal cords
of human familial ALS patients with SOD1 mutations, contained
abundant misfolded, non-native, disulfide-cross-linked aggregated
SOD1 (Silverman et al., 2019). One of the mechanism responsible
of protein aggregation maybe mediated by the heparan sulfate (HS)
chains, essential components of the extracellular matrix (ECM) and
cell surface proteoglycans, that are cleaved by heparinase; this is of
particular interest in the context of neurodegenerative diseases such
as Alzheimer’s disease, where HS-rich Aβ deposits are commonly
formed (Snow et al., 2021), and Parkinson’s disease, in which HS
are present in Lewy bodies (Cohlberg et al., 2002). Heparinase also
plays a critical role in autophagy (Shteingauz et al., 2015) and in the
exosome generation by modulating the structural integrity of ECM
promoting the release of exosomes from cells (Ramani et al., 2013).
Autophagy and lipid rafts together facilitate the selective sorting,
formation, and release of EVs. Lipid rafts provide the structural basis
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for EV membrane curvature and stability, while autophagy enables
selective cargo packaging and recycling processes, ensuring that EVs
serve specific signaling functions in intercellular communication
(Pollet et al., 2018; Zubkova et al., 2024). Interestingly, it has
been shown that heparinase inhibitor blocks autophagy leading to
induction of apoptosis in glioblastoma cells (Manganelli et al., 2023).
Given this background, although the potential role of HS in ALS
pathogenesis warrants further investigation, we can hypothesize
that a similar mechanism involving HS and protein aggregation
could be at play also in ALS. This may open a new avenue for
ALS treatment.

In humans, prior research has shown GLAST protein loss in
the motor cortex and spinal cord of ALS patients, along with
abnormal glutamate metabolism (Bristol and Rothstein, 1996;
Rothstein et al., 1995; Sugiyama et al., 2017).

While our study did not find a clear association of GLAST+

EVs with any evaluated clinical parameter, we hypothesize
that these EVs may influence glutamate excitotoxicity once
released by astrocytes, potentially impacting neuronal viability
(Rothstein et al., 1995).

This study is subject to several limitations that necessitate
consideration. Firstly, we acknowledge the absence of a longitudinal
evaluation of GLAST+ EVs in the course of the disease.
Moreover, additional cohorts comprising patients with various
neurodegenerative disorders. The inclusion of such cohorts would
allow for a comprehensive assessment of the specificity of GLAST+

EVs in facilitating a differential diagnosis of ALS from these
diseases. Future research endeavors should prioritize exploring
the role of GLAST+ in other neurodegenerative conditions, such
as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease,
and Frontotemporal Dementia.

Secondly, the protein cargo of GLAST+ EVs remains a topic
of interest that warrant further investigation. These vesicles may
contain additional biomarkers or molecular constituents that could
offer valuable insights into the pathogenesis of ALS.

Lastly, functional studies aimed at understanding the precise
impact of GLAST+ EVs on cellular processes associated with ALS,
could contribute significantly to the understanding of the disease.

The absence of reliable markers for ALS diagnosis, prognosis,
and therapeutic assessment underscores the urgent need for
innovative approaches. EVs have emerged as promising candidates
for liquid biopsies, given their ability to transport disease-related
molecules even in complex biological environments and given
the access to pathologically relevant tissues otherwise typically
challenging or invasive to sample. Here, we have introduced a
modified method for cell-specific EVs, demonstrating the presence
of EVs expressing GLAST in healthy human blood, and their
increased levels in ALS patients. Neuroinflammation, a hallmark
of ALS, impacts systemic biology beyond the CNS, including
the release of EVs. The increased levels of GLAST+ EVs in ALS
patients suggest a potential link between neuroinflammation and
dysregulated glutamate metabolism in ALS pathology. Despite
limitations, our study underscores the potential of EVs as reservoirs
of biomarkers for ALS and other diseases.The discovery of increased
levels of GLAST+ EVs in ALS patients in our study represents a
novel avenue for further investigation and offers significant potential
for the development of new diagnostic and therapeutic strategies in
ALS research.
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