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transcriptomics and single-cell
RNA sequencing analysis
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Weijiang Liao1 and Jiangang Fan1*
1Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China, 2Department of
Otolaryngology Head and Neck Surgery, Chengdu Second People’s Hospital, Chengdu, China,
3Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital,
Chengdu University of Traditional Chinese Medicine, Chengdu, China

Introduction: Extensive efforts have been made to explore members of the IL-
10 family as potential therapeutic strategies for various diseases; however, their
biological role in chronic rhinosinusitis with nasal polyps (CRSwNP) remains
underexplored.

Methods: Gene expression datasets GSE136825, GSE179265, and GSE196169
were retrieved from the Gene Expression Omnibus (GEO) for analysis. Candidate
genes were identified by intersecting differentially expressed genes (DEGs)
between the CRSwNP and control groups (DEGsall) with those between the
high- and low-score groups within the CRSwNP cohort (DEGsNP). Biomarker
selection was performed using the Least Absolute Shrinkage and Selection
Operator (LASSO), Support Vector Machine Recursive Feature Elimination
(SVM-RFE), and the Boruta algorithm. Further refinement of biomarkers was
carried out using receiver operating characteristic (ROC) analysis, with genes
demonstrating an area under the curve (AUC) greater than 0.7 being considered
significant. Genes exhibiting consistent expression trends and significant
differences across both GSE136825 and GSE179265 were selected as potential
biomarkers. Cell-type annotation was performed on GSE196169, and the
expression profiles of the biomarkers across various cell types were analyzed. A
competing endogenous RNA (ceRNA) network and a biomarker-drug interaction

Abbreviations: CRSwNP, chronic rhinosinusitis with nasal polyps; CRS, Chronic rhinosinusitis; CRSsNP,
chronic rhinosinusitis without nasal polyps; SVM-RFE, support vector machine recursive feature
elimination; DEGs, differentially expressed genes; DEGs_all, differentially expressed genes in GRSwNP
and control groups; DEGs_NP, differentially expressed genes between high- and low-scores groups
in the GRSwNP group; LASSO, least absolute shrinkage and selection operator; scRNA-seq, single-
cell RNA sequencing data; RT-qPCR, reverse transcription-quantitative polymerase chain reaction;
PCA, principal component analysis; GEO, gene expression omnibus; GO, gene ontology; KEGG, kyoto
encyclopedia of genes and genomes; AUC, area under curve; BP, biological process; MF, molecular
function; CC, cellular component; ROC, receiver operating characteristic; GSVA, gene set variation
analysis; DECs, differentially infiltrated immune cells; GSEA, gene set enrichment analysis.
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network were also established. Additionally, the mRNALocater database was
utilized to determine the cellular localization of the identified biomarkers.

Results: The intersection of 1817 DEGsall and 24 DEGsNP yielded 15 candidate
genes. Further filtering through LASSO, SVM-RFE, and Boruta led to the
identification of seven candidate biomarkers: PRB3, KRT16, MUC6, SPAG4,
FGFBP1, NR4A1, and GSTA2. Six of these genes demonstrated strong diagnostic
performance in GSE179265, while four biomarkers, showing both significant
differences and consistent expression trends, were validated in both GSE179265
and GSE136825. Single-cell sequencing analysis of GSE196169 revealed seven
distinct cell types, including endothelial cells, with the biomarkers predominantly
expressed in epithelial cells. The ceRNA network comprised nine nodes and
eleven edges, with only FGFBP1 exhibiting a complete lncRNA-miRNA-mRNA
interaction.

Discussion: This study identifies several novel biomarkers and their associated
drugs for CRSwNP therapy, as well as potential therapeutic targets, such as
spiperone and arnenous acid, identified through molecular docking. Ultimately,
this work underscores the identification of four IL-10 family-related biomarkers,
providing a theoretical foundation for future clinical research in CRSwNP.

KEYWORDS

IL-10 family, chronic rhinosinusitis with nasal polyps, biomarkers, bioinformatics,
therapeutic targets

1 Introduction

Chronic rhinosinusitis (CRS) is a complex inflammatory
disorder of the nasal sinus mucosa, characterized by symptoms
such as nasal congestion, obstruction, edema, and discharge, often
accompanied by facial swelling and impaired olfactory function
(Almosnino and Little, 2023). The CRS phenotype is classified
into chronic rhinosinusitis with nasal polyps (CRSwNP) and
chronic rhinosinusitis without nasal polyps (CRSsNP) based on
the presence of nasal polyps (Striz et al., 2023). Although these
subtypes share overlapping symptoms, CRSwNP is associated
with more severe nasal symptoms and higher symptom scores
compared to CRSsNP (Lee et al., 2021). CRSwNP is primarily
driven by a Th2-skewed inflammatory response and eosinophil
infiltration. Its pathogenesis involves epithelial damage, disruption
of mucosal barriers, and increased exposure to pathogens,
antigens, and particles, which trigger both innate and adaptive
immune responses in subepithelial tissues (Vanderhaegen et al.,
2022). Patients with CRSwNP frequently experience severe
symptoms, high recurrence rates, and a greater risk of comorbid
asthma, significantly affecting their quality of life and work
productivity (Danielides et al., 2022).This highlights the urgent need
to identify novel biomarkers for early diagnosis and therapeutic
intervention in CRSwNP, alongside the development of new
treatment strategies.

Emerging evidence suggests that the pathogenesis of CRSwNP
involves not only impaired nasal epithelial barrier function,
dysregulated immune responses, and microbial colonization
but also mechanisms linked to autoimmunity (Huang and Xu,
2023). First identified in 1989, IL-10 was initially characterized
as a cytokine produced by Th2 cells (Ouyang et al., 2011). The
IL-10 family of cytokines, which share structural and receptor

similarities with IL-10, includes IL-19, IL-20, IL-22, IL-24, IL-
26, IL-28A, IL-28B, and IL-29 (Fickenscher et al., 2002). Despite
their structural resemblance, these cytokines have diverse roles
in immune regulation and are secreted by a wide range of
innate and adaptive immune cells, such as monocytes, B cells,
T cells, NK cells, and macrophages, as well as structural cells
like epithelial and endothelial cells (Ouyang et al., 2011). Their
broad immunomodulatory functions have prompted numerous
investigations into their therapeutic potential in autoimmune
diseases, cancer, and inflammatory conditions (Ouyang and
O'Garra, 2019). Within the context of CRSwNP, the IL-10 family
plays multifaceted roles, influencing epithelial integrity, allergen
responses, and viral or bacterial infections. Some IL-10 family
cytokines have already been evaluated in clinical trials targeting
airway inflammatory conditions (Xuan et al., 2022).Thus, they hold
promise as potential therapeutic agents in CRSwNP.

This study leveraged publicly available CRSwNP-related
datasets and applied comprehensive bioinformatics approaches
to identify IL-10 family-associated biomarkers. Through rigorous
screening and analysis, the study explored the involvement of
these biomarkers in key biological pathways and their molecular
regulatory mechanisms, including their interactions with disease-
related drugs. The findings provide valuable insights into the
pathogenesis and treatment of CRSwNP, offering a foundation for
future research and therapeutic advancements.

2 Materials and methods

2.1 Data source

Three datasets were retrieved from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The training set, GSE136825
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(GPL20301), included 42 CRSwNP tissue samples and 28 control
tissue samples. The validation set, GSE179265 (GPL24676),
comprised 17 CRSwNP tissue samples and 7 control tissue samples.
Additionally, GSE196169 (GPL21290) contained 9 CRSwNP
tissue samples. The IL-10 family genes analyzed in this study
included IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B,
and IL-29 (Xuan et al., 2022).

2.2 Differential expression analysis

For GSE136825, differential gene expression between CRSwNP
and control samples (DEG_all) was analyzed using the DESeq2
package in R (McDermaid et al., 2019). To evaluate IL-10 family
genes, the GSVA package in R (Lei et al., 2021) was used to calculate
sample-specific scores. Based on the median score, CRSwNP
samples were divided into high- and low-score groups. Differentially
activated pathways were identified between these two groups using
GSVA, while differential gene expression analysis (DEG_NP) was
performed using DESeq2. The thresholds for DEG screening (both
DEG_all and DEG_NP) were set at |log2 (fold change)| ≥1 and
adjusted p-value <0.05. Volcano plots were generated with the
ggplot2 package (v3.3.6) (Ren et al., 2022), and heatmaps were
created using the pheatmap package (v1.0.12) (Zhang et al., 2021).

2.3 Enrichment analysis of candidate genes

Candidate genes were identified by intersecting DEG_all and
DEG_NP. Enrichment analysis, including Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
was performed on these candidate genes using the ClusterProfiler
package (v3.18.1) in R (Zhou et al., 2021).

2.4 Machine learning

To further identify genes with strong diagnostic potential, this
study employed machine learning approaches to screen biomarkers
based on candidate genes. First, the expression levels of candidate
genes were analyzed using least absolute shrinkage and selection
operator (LASSO) regression, implemented through the glmnet
(v4.1-4) package in R (Wang et al., 2020), to identify feature genes.
Next, a support vectormachine-recursive feature elimination (SVM-
RFE) model was applied to assess differential gene expression
between groups, utilizing the e1071 package (v1.7-11) in R (Xu et al.,
2021), followed by recursive elimination of non-essential features.
Additionally, the Boruta algorithm was used to determine the most
important features by comparing the z-values of each gene (Yue et al.,
2022). Using a cutoff of 2.512, the Boruta algorithm screened for key
feature genes among the candidate genes.

2.5 Identification and validation of
biomarkers

The results from the three machine learning models were
intersected to obtain candidate biomarkers. Receiver operating

characteristic (ROC) curves for these biomarkers were generated
using the pROC package in R (Gong et al., 2020), and the area
under the curve (AUC) was calculated. Biomarkers with an AUC
greater than 0.7 in the training set (GSE136825) were selected
for further analysis. Subsequently, the expression levels of these
candidate biomarkerswere validated inGSE136825 andGSE179265.
Biomarkers with significant differences and consistent expression
trends across both datasets were identified as final biomarkers.

2.6 Establishment and assessment of a
nomogram

A nomogram was constructed to assess the risk of CRSwNP
based on selected biomarkers, assigning a score to each factor.
The total score, calculated by summing the scores of all factors,
corresponded to the predicted incidence of CRSwNP, with higher
scores indicating an elevated risk. The nomogram was developed
using the rms package (v6.3-0) in R (Liu et al., 2021). To evaluate
its predictive accuracy, calibration curves were generated.

2.7 Functional enrichment analysis

To further investigate the signaling pathways and biological
mechanisms associated with the identified biomarkers, correlation
analysis was performed to calculate correlation coefficients between
biomarkers and other genes. The correlated genes were ranked by
their coefficients and subjected to Gene Set Enrichment Analysis
(GSEA) using the KEGG gene set. The thresholds for GSEA were
set at adjusted p-value <0.05 and |NES| > 1. Interactions among the
biomarkers were examined using GeneMANIA, which integrated
data from multiple large-scale biological datasets to identify genes
involved in related pathways and processes.

2.8 Filtering and controlization of
single-cell RNA sequencing data
(scRNA-seq)

For GSE196169, data preprocessing and quality control were
conducted using the PercentageFeatureSet function from the Seurat
package (v5.0.1) (Hao et al., 2021). To mitigate dropout effects and
filter low-quality cells and genes, specific criteria were applied: the
number of expressed genes per cell was capped at 4,000, counts
per cell were limited to below 4,000 (with most below 3,000), and
mitochondrial genes were excluded. Cells were retained if they
expressed between 200 and 4,000 genes, total counts were below
4,000, and mitochondrial gene expression was less than 3% (4,000
> nFeature_RNA >200, nCount_RNA <4,000, percent_mito <3).

2.9 Dimension reduction, unsupervised
clustering, and visualization

Principal component analysis (PCA) was employed to reduce
data dimensionality while preserving key information, with a higher
principal component indicating richer differential component.
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Principal components were ranked by the percentage of variance
explained, and those preceding the PCA inflection point were
selected for further analysis. Clustering of all cells was performed
using the FindNeighbors and FindClusters functions in the
Seurat package (Yu et al., 2022). Nonlinear dimensionality reduction
using UMAP was applied to visualize clusters, grouping cells into
distinct subclasses. Annotation of these subtypes was conducted
using the singleR tool and the CellMarker database. Differential
gene expression analysis was conducted across different cell
clusters within CRSwNP samples using the FindMarker function
in GSE196169. The criteria for differential expression were set at
|log2FC| ≥ 1 and p-value <0.05. Finally, the expression levels of
the identified biomarkers were analyzed across different cell clusters
within GSE196169 to elucidate their distribution and roles at the
cellular level.

2.10 Regulatory network

To investigate the regulatory mechanisms of biomarkers in
CRSwNP, StarBase and miRWalk databases were utilized to
predict associated miRNAs. Subsequently, lncRNAs related to
these miRNAs were predicted using StarBase and miRcode. The
resulting competing endogenous RNA (ceRNA) network was
visualized using Cytoscape software. Given that single nucleotide
polymorphisms (SNPs) within coding regions can alter protein
amino acid composition, leading to structural or functional changes
and affecting gene activity, SNPs associated with miRNAs in the
ceRNAnetworkwere predicted using themiRNASNPdatabase.This
enabled the construction of miRNA-SNP-biomarker combinations
and interaction networks.

2.11 Subcellular localization

To understand the functional localization of biomarkers within
cells, subcellular localization was predicted using the mRNALocater
database. The sequences of the four biomarkers were obtained from
NCBI (https://www.ncbi.nlm.nih.gov/). Subcellular localization
predictions covered compartments such as the cytoplasm,
endoplasmic reticulum, extracellular region, mitochondria, and
nucleus. The expression of biomarkers at the single-cell level was
further analyzed to elucidate their functional roles.

2.12 Drug prediction

Considering the limitations of existing CRSwNP therapies,
potential biomarker-related drugs were predicted using the
Drug-Gene Interaction database (DSigDB) (http://dsigdb.tanlab.
org/DSigDBv1.0/), and biomarker-drug interaction networks were
constructed.

2.13 Molecular docking

To refine therapeutic targeting, molecular docking was
performed between biomarkers and candidate drugs. Protein

TABLE 1 Primer sequence lists.

Primer Sequences

PRB3 F CCAGAGCCTCCAGCAAGATG

PRB3 R GGAGATTCTTCCTGGCTGACA

KRT16 F CCTATTCTTCCCGCGAGGTC

KRT16 R GGGAGATAGCTGGGAACTGC

SPAG4 F TGGGTCTCCAGTAGTCTCTGA

SPAG4 R ACAGGAAGCGGATGGAACAG

FGFBP1 F AGGGAGCACATCAAAGGCAA

FGFBP1 R CGTGTCCTGCACTATGCTGA

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC

structures were obtained from the PDB database (https://www.
rcsb.org/), and ligand structures were retrieved from PubChem.
Files in PDB format were converted to PDBQT format using
AutoDockTools, and docking was conducted using AutoDock Vina.
Docking scores of ≤ −5 kcal/mol indicated strong binding affinities,
suggesting viable drug-target pairs.

2.14 Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

For RT-qPCR, 10 pairs of CRSwNP and control samples
were collected from Sichuan Provincial People’s Hospital.
The demographic characteristics of the participants are
provided in Supplementary Table S1. All participants provided
informed consent, and the study was approved by the ethics
committee of Sichuan Provincial People’s Hospital (NO. 2024-4
and date of approval:2023-12-20).

Total RNA was extracted from the 20 samples using TRIzol
reagent (Invitrogen, China) following the manufacturer’s protocol,
and RNA concentrations were measured with a NanoPhotometer
N50. cDNAwas synthesized using the SureScript First-Strand cDNA
Synthesis Kit (Servicebio, China). qPCR was performed on a CFX
ConnectThermal Cycler (Bio-Rad, United States), andmRNA levels
were quantified using the 2−ΔΔCT method. The sequences of all
primers are detailed in Table 1.

2.15 Ethics approval statement

The studies involving human participants were reviewed and
approved by the [Sichuan Provincial People’s Hospital’s ethics
committee (NO. 2024-4 and date of approval:2023-12-20)]. The
patients/participants provided their written informed consent to
participate in this study.
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2.16 Statistical analysis

Statistical analyses were conducted using R software (v4.2.2).
Differences between groups were assessed using the Wilcoxon test
and t-test. Statistical significance was defined as follows: ∗P‐value
<0.05; ∗∗P‐value <0.01; ∗∗∗P‐value <0.0005; and ∗∗∗∗P‐value
<0.00005. For GSEA, the criteria were set at |NES| > 1 and p.
adjust <0.05.

3 Results

3.1 Identification of 15 candidate genes

In this study, a total of 1817 DEGs (DEG_all) were identified
between the CRSwNP and control groups, comprising 744
downregulated and 1,073 upregulated genes (Figures 1A, B).
Disease group samples were stratified into high- and low-score
groups based on the median GSVA score. Distinct pathway
activations were observed between these groups: high-score
pathways were enriched for “ribosome” and “maturity-onset
diabetes of the young,” while low-score pathways included
“lysine degradation” and “galactose metabolism” (Figure 1C).
Furthermore, 24 DEGs (DEG_NP) were identified between the
high- and low-score groups in CRSwNP, comprising 21 upregulated
and 3 downregulated genes (Figures 1D, E). By intersecting
DEG_all and DEG_NP, 15 candidate genes were identified
(Figure 1F).

3.2 Enrichment analysis of 15 candidate
genes

KEGG pathway analysis of the candidate genes revealed
enrichment in “cortisol synthesis and secretion,” “glutathione
metabolism,” and “drug metabolism-other enzymes” (Figure 2A).
GO enrichment analysis highlighted processes such as “cellular
response to fibroblast growth factor stimulus,” “response
to fibroblast growth factor,” and “epithelial cell migration”
(Figure 2B).

3.3 Identification and validation of 4
biomarkers

Feature gene selection using machine learning methods
yielded the following results: LASSO regression identified
10 feature genes—PRB3, KRT16, FAM177B, MUC6, SPAG4,
CXCL13, FGFBP1, NR4A1, GSTA2, and GFRA2—at a minimum
lambda of 0.0213, where the residual sum of squares was
minimized (Figure 3A). SVM-RFE selected 11 feature genes,
including MUC6, PRB3, FGFBP1, GSTA2, FOSL1, KRT16,
SPAG4, GP2, NR4A1, RP11.685N3.1, and GFRA2, when the
error was smallest (Figure 3B). The Boruta algorithm, with a
cutoff value of 2.512, identified 12 feature genes: PRB3, KRT16,
FAIM3, FAM177B, KRT6C, MUC6, SPAG4, CXCL13, FGFBP1,
NR4A1, GP2, and GSTA2 (Figure 3C). By intersecting the
results of these machine learning approaches, seven candidate

biomarkers were identified: PRB3, KRT16, MUC6, SPAG4,
FGFBP1, NR4A1, and GSTA2 (Figure 3D). ROC curve analysis
demonstrated that all candidate biomarkers, except GSTA2
(AUC = 0.643), had AUC values greater than 0.7, indicating
robust diagnostic value (Figure 3E). Among these, biomarkers
with consistent inter-group expression trends were selected. Four
genes showed consistent trends across training and validation
sets: FGFBP1, KRT16, and SPAG4 were significantly upregulated
in the disease group, while PRB3 was notably downregulated
(Figures 3F, G). These findings were further validated by RT-
qPCR, which confirmed the upregulation of FGFBP1 and
SPAG4 and the downregulation of PRB3 in the CRSwNP group
(Figure 3H).

3.4 Assessment of the risk of CRSwNP
based on biomarkers

A nomogram was constructed using the four biomarkers
(PRB3, KRT16, SPAG4, FGFBP1) to predict the risk of
CRSwNP. The total risk score was calculated by summing the
individual factor scores (Figure 4A). The predictive accuracy of
the nomogram was assessed using a calibration curve, which
showed a C-index of 0.957, indicating excellent performance
(Figure 4B).

3.5 Functional enrichment analysis of
biomarkers

According to ssGSEA analysis, the biomarkers exhibited
pathway-specific enrichment patterns: FGFBP1 was primarily
enriched in the P53 signaling pathway (Figure 5A), KRT16 was
enriched in the glycolysis disease-related pathway (Figure 5B),
and PRB3 showed enrichment in the protein export pathway
(Figure 5C). Additionally, SPAG4 was predominantly linked
to the systemic lupus erythematosus disease-related pathway
(Figure 5D). Notably, FGFBP1, SPAG4, and KRT16were collectively
enriched in ribosome-associated pathways. To explore biomarker
interactions, GeneMANIA was used to integrate data on
physical interactions, co-expression, predictions, co-localization,
genetic interactions, pathways, and shared protein domains
(Figure 5E).

3.6 Data controlization and dimensionality
reduction

Through data normalization, a total of 18,576 genes and
17,702 cells were obtained (Supplementary Figure S1A, B).
To streamline computations, the vst method was applied
to extract the top 2000 genes with the highest inter-cell
variation coefficients, which were subjected to further analysis
(Supplementary Figure S2). PCA showed that cells from different
samples were well-mixed without distinct clumps or abnormalities
(Supplementary Figure S3). The first 30 principal components,
capturing significant variance, were selected for subsequent
clustering (Supplementary Figure S4).
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FIGURE 1
Identification of candidate genes. (A) Volcano plot depicting differentially expressed genes. (B) Heatmap illustrating the expression patterns of
differentially expressed genes. (C) Bar chart showing differential gene expression between high and low score subgroups. (D) Volcano plot comparing
differentially expressed genes between high and low score subgroups. (E) Heatmap of differentially expressed genes between high and low score
subgroups. (F) Venn diagram for the identification of candidate genes.

3.7 Annotation of seven cell types and
expression of biomarkers in different cells

In dataset GSE196169, all cells were grouped into 24 subtypes
(Figure 6A). Based on annotations using the singleR tool and
the CellMarker database, seven major cell types were identified:

endothelial cells, epithelial cells, monocytes, B cells, T cells, mast
cells, and NK cells (Figure 6B). Marker gene analysis revealed
that CST3 and LYZ were highly expressed in monocytes, while
GNLY and NKG7 were highly expressed in NK cells (Figure 6C).
The proportional distribution of different cell types in CRSwNP
samples indicated that T cells constituted the largest proportion,
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FIGURE 2
Enrichment analysis of candidate genes. (A) KEGG pathway enrichment analysis results for candidate genes. (B) GO enrichment analysis results for
candidate genes.

whereas epithelial cells represented the smallest (Figure 6D).
Using the FindMarker function, DEGs in each cell cluster were
identified, and the top five genes for each subpopulation were
visualized in a heatmap (Figure 6E). Biomarker expression was
further analyzed across different cell clusters. Results showed that
KRT16 and FGFBP1 were predominantly expressed in epithelial
cells, SPAG4 was primarily expressed in immune cells, while
PRB3 expression was not detectable in any specific cell type
(Figure 6F).

3.8 Regulatory network of biomarkers

This study identified 24 miRNAs from the StarBase database
and 111 miRNAs from the miRWalk database. By intersecting
the results, three miRNAs (miR-5010-5p, miR-24-3p, and miR-
4525) were identified. Additionally, five lncRNAs (LINC00313,
XIST, PVT1, DIO3OS, and NEAT1) associated with these miRNAs
were predicted using StarBase and miRcode. A ceRNA network
was constructed, comprising 9 nodes and 11 edges, including
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FIGURE 3
Identification of biomarkers. (A) LASSO regression analysis for screening signature genes. (B) Plot showing generalization error versus the number of
features. (C) Signature gene selection via the Boruta algorithm. (D) Machine learning-based identification of candidate biomarkers. (E) Diagnostic value
assessment of candidate biomarkers. (F) Biomarker expression in the training set GSE136825. (G) Biomarker expression in the validation set GSE179265.
(H) RT-qPCR validation of biomarkers.
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FIGURE 4
Construction of nomogram. (A) Column line diagram based on biomarker construction. (B) Calibration curves to assess the predictive accuracy of the
nomogram model.

interactions such as FGFBP1-miR-5010-5p, FGFBP1-miR-4525, and
miR-24-3p-LINC00313 (Figure 7A). Furthermore, six SNPs related
to FGFBP1 and its associated miRNAs were predicted (Table 2),
and a miRNA-SNP-mRNA network was constructed. This network
included 10 nodes (3miRNAs, 6 SNPs, and 1mRNA) and 12 edges (6
mRNA-SNP and 6 miRNA-SNP interactions) (Figure 7B). Notably,
FGFBP1 was the only biomarker with a complete lncRNA-miRNA-
mRNA structure in the ceRNA network.

3.9 Biomarker distribution in different cells

Subcellular localization analysis of the biomarkers using
mRNALocater revealed their distribution across various subcellular
compartments, with the highest expression levels observed in
the cytoplasm and the lowest in mitochondria (Figure 8). The
localization sequences for the biomarkers were as follows: FGFBP1:
cytoplasm > nucleus > endoplasmic reticulum > extracellular region
> mitochondria; KRT16: cytoplasm > endoplasmic reticulum >
nucleus > extracellular region > mitochondria; PRB3: cytoplasm
> nucleus > endoplasmic reticulum > extracellular region >
mitochondria; SPAG4: cytoplasm > endoplasmic reticulum >
nucleus > extracellular region > mitochondria.

3.10 Biomarkers-related drugs were
obtained

A wide range of drugs associated with the biomarkers was
identified, including spiperone PC3 UP, H-7 MCF7 UP, and
syrosingopine PC3 UP (Table 3). A biomarker-drug network was
constructed, comprising 34 nodes and 32 edges (Figure 9). Examples

of interactions in this network include FGFBP1-orciprenaline
PC3 UP, PRB3-H-7 MCF7 UP, and KRT16-calcipotriol hydrate
CTD 00002337.

3.11 Molecular docking

Molecular docking was performed to evaluate the effectiveness
of newly predicted drugs. Docking results were visualized using
PyMol, and the binding energy between protein receptors
and small molecule ligands was used to assess binding
activity. Lower binding energy indicated stronger binding
affinity and stability. A docking score of ≤ −5 kcal/mol was
considered indicative of strong compound-target binding affinity,
suggesting potential therapeutic targets. Among the predicted
drugs, spiperone and arsenous acid were selected for further
evaluation. The binding energy for the interaction between
spiperone and FGFBP1 was −6.63 kcal/mol, indicating a strong
binding affinity (Figure 10), supporting its potential as a therapeutic
compound for CRSwNP.

4 Discussion

CRS affects over 10% of the adult population in Europe
and the United States, while its prevalence ranges from 5%
to 10% among adults in Asia (Bachert et al., 2020). CRSwNP
is a distinct phenotype of CRS, characterized by a significant
disease burden and symptoms such as facial pain and anosmia
(Stevens et al., 2016).The etiology of nasal polyps has been attributed
to factors like pseudocyst formation, edema, and structural or
functional alterations in the submucosal glands (Takabayashi et al.,
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FIGURE 5
Functional enrichment analysis of biomarkers. (A) GSEA of FGFBP1. (B) GSEA of KRT16. (C) GSEA of PRB3. (D) GSEA of SPAG4. (E) Interaction network
diagram of biomarkers.

2013). Recent studies suggest that epithelial dysfunction, type 2
inflammation, and fibrin deposition may play a pivotal role in polyp
development (Takabayashi et al., 2013). Notably, approximately
85% of patients with CRSwNP exhibit eosinophilic or type 2
inflammation (Bachert et al., 2021), marked by elevated levels
of interleukins (IL) such as IL-4, IL-5, IL-9, IL-13, IL-25, and
IL-33 (Bachert and Akdis, 2016). The roles of the IL-10 family
of cytokines in CRSwNP have recently garnered increasing
attention due to their involvement in the diagnosis and treatment
of autoimmune diseases, cancer, and inflammatory disorders
(Calimeri et al., 2024; Salkeni and Naing, 2023; Kotlarz et al.,
2012). However, their specific biological functions in CRSwNP

remain underexplored. In this study, bioinformatics methods were
used to identify four IL-10 family-related biomarkers and novel
drug candidates for CRSwNP treatment. Potential therapeutic
targets for spiperone and arsenous acid were also identified
via molecular docking, providing a theoretical basis for future
clinical research.

The results demonstrated that FGFBP1,KRT16, and SPAG4were
significantly upregulated in CRSwNP samples, whereas PRB3 was
markedly downregulated. Analysis of the biomarkers revealed that
all had AUC values exceeding 0.7, indicating their diagnostic utility.
An AUC greater than 0.7 generally reflects good discriminatory
capacity (Davies et al., 2023). The selection of this threshold
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FIGURE 6
Single-cell analysis results. (A) t-SNE distribution map for different cluster samples. (B) t-SNE distribution map for samples from different cell types. (C)
Biomarker expression distribution map. (D) Distribution of cell types in CRSwNP. (E) Heatmap of differential gene expression in different cell clusters in
CRSwNP samples. (F) Biomarker expression in different cell clusters.
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FIGURE 7
Construction of regulatory networks. (A) Diagram of mRNA-miRNA-lncRNA regulatory network. (B) Construction of miRNA-SNP-biomarker
interaction network.

TABLE 2 SNPs for mRNA and miRNA matching.

Gene SNP miRNA (loss)

FGFBP1 rs1449243881 miR-24-3p

FGFBP1 rs768693029 miR-24-3p

FGFBP1 rs1213610618 miR-4525

FGFBP1 rs902995471 miR-4525

FGFBP1 rs34711227 miR-4525

FGFBP1 rs780975569 miR-5010-5p

FIGURE 8
Subcellular localization analysis map of biomarkers.

was based on the characteristics of the study samples and the
diagnostic requirements of CRSwNP. Comparisons with other
studies revealed that many similarly employed an AUC >0.7 as
a valid biomarker criterion (Wang H. et al., 2024), while some
adopted a stricter threshold of AUC ≥0.8 for higher diagnostic
performance. Nevertheless, in this study, an AUC >0.7 was sufficient
to demonstrate clinical significance. Notably, the application of these
four IL-10 family-related biomarkers in CRSwNP has not been
previously reported.

Poly-L-arginine has been shown to stimulate angiogenesis
in asthma by inducing the expression of Fibroblast Growth
Factor Binding Protein 1 (FGFBP1) in epithelial cells. This
effect is mediated through the activation of the mTORC1-STAT3
signaling pathway, positioning poly-L-arginine as a potential
therapeutic target for asthma treatment (Chen et al., 2021). A
recent study published in Cell identified a novel population of
regenerative stem cells expressing FGFBP1 within the upper
intestinal epithelial recesses. These cells, distinct from Lgr5+
cells, were demonstrated through time-resolved fate mapping
and lineage tracing to generate Lgr5+ basal columnar cells and
other intestinal lineages. Moreover, these FGFBP1-expressing
stem cells persisted in intestinal epithelial regeneration following
Lgr5+ cell depletion (Capdevila et al., 2024). Conditional knockout
experiments in mice further established that FGFBP1 expression
in upper crypt stem cells is critical for crypt regeneration and
maintaining intestinal epithelial homeostasis (Capdevila et al.,
2024). The 2012 European Position Paper on Rhinosinusitis and
Nasal Polyps highlighted abnormal epithelial remodeling and
chronic inflammation as key pathological features of CRSwNP
(Fokkens et al., 2012). By analogy, FGFBP1 is hypothesized to
play a significant role in the dysregulated remodeling of nasal
epithelium in CRSwNP. Analysis using ssGSEA revealed that
FGFBP1 is predominantly enriched in the p53 signaling pathway.
Experimental studies on exosomes derived from nasal lavage fluid
and mucosal epithelial cells of patients with CRSwNP and healthy
controls indicated that exosomes from impaired epithelial tissues
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TABLE 3 Drugs associated with biomarkers.

Gene Drug

FGFBP1 spiperone PC3 UP

KRT16 spiperone PC3 UP

KRT16 Calcipotriol hydrate CTD 00002337

FGFBP1 tetrandrine PC3 UP

FGFBP1 metixene PC3 UP

FGFBP1 dobutamine PC3 UP

FGFBP1 LY-294002 PC3 DOWN

FGFBP1 fenoterol PC3 UP

PRB3 H-7 MCF7 UP

FGFBP1 orciprenaline PC3 UP

FGFBP1 syrosingopine PC3 UP

KRT16 withaferin A MCF7 UP

SPAG4 ciclopirox PC3 UP

PRB3 N-acetyl-L-aspartic acid PC3 DOWN

SPAG4 ciclopirox MCF7 UP

KRT16 Arsenous acid CTD 00000922

FGFBP1 Arsenous acid CTD 00000922

FGFBP1 0297417-0002B PC3 UP

PRB3 flunixin HL60 UP

SPAG4 daunorubicin PC3 UP

FGFBP1 VANADIUM CTD 00006979

FGFBP1 N-NITROSODIETHYLAMINE CTD 00005817

KRT16 niclosamide PC3 UP

SPAG4 5109870 MCF7 UP

PRB3 dirithromycin HL60 UP

FGFBP1 Pentadecafluorooctanoic acid CTD 00001078

KRT16 Mustard gas CTD 00006356

KRT16 EINECS 250-892-2 CTD 00001193

PRB3 clidinium bromide HL60 UP

PRB3 levonorgestrel HL60 UP

PRB3 bucladesine HL60 UP

SPAG4 8-HYDROXYQUINOLINE CTD 00007045

contain differentially expressed proteins primarily associated with
epithelial remodeling via the p53 signaling pathway (Zhou M. et al.,
2020). Additionally, analysis of the ceRNA network identified
FGFBP1 as the only biomarker with a complete lncRNA-
miRNA-mRNA regulatory structure, participating in multiple
interactions as a central node. These findings underscore the
pivotal roles of FGFBP1 and the p53 signaling pathway in the
pathogenesis of CRSwNP.

KRT16 has been significantly upregulated in metastatic lung
cancer tissues and identified as a prognostic marker associated with
poor overall survival (Wang et al., 2023). Mechanistic studies using
transwell assays and xenograft mouse models demonstrated that
KRT16 knockdown reduces lung cancer metastasis in both in vitro
and in vivo settings (Wang et al., 2023). In the context of CRSwNP,
KRT16 is implicated in epithelial cell proliferation, differentiation,
and repair, processes that parallel epithelial dysfunction, including
compromised barrier integrity. Its role in CRSwNP may involve
modulating chronic inflammation in the nasal cavity and sinuses
through effects on epithelial stress responses, repair mechanisms, or
immune modulation.

Further research demonstrated that KRT16 knockdown
significantly affects LUAD cell migration, invasion, proliferation,
and EMT. TFAP2A was identified as a transcriptional regulator
driving KRT16 overexpression and enhancing its tumorigenic
potential. High KRT16 levels were associated with poor prognosis
in patients with LUAD, establishing it as an independent prognostic
marker (Nicholson, 1988). Additionally, studies on skin barrier
disorders revealed that KRT6, KRT16, and KRT17 serve as early
indicators of barrier damage. Elevated expression of these proteins
disrupts cell proliferation, adhesion, migration, and inflammatory
balance in keratinocytes, leading to excessive growth and immune
activation. This cascade triggers autoimmune responses driving the
development of psoriasis (Zhang et al., 2019).

According to ssGSEA, KRT16 was enriched in the glycolysis
disease-related pathway in CRSwNP. Single-cell RNA sequencing
studies in CRS have demonstrated increased expression of genes
encoding glycolytic enzymes in epithelial cells, stromal cells,
and memory T-cell subsets in patients with CRSwNP compared
to healthy controls, highlighting the critical role of glycolytic
reprogramming in tissue remodeling (Huang et al., 2024).
Glycolysis, a fundamental pathway for cellular energy metabolism,
likely influences epithelial cell proliferation, immune responses, and
inflammatory processes in nasal polyps. The aberrant metabolic
state observed in CRSwNP, including enhanced glycolysis, may
contribute to epithelial dysfunction and chronic inflammation,
thereby promoting nasal polyp formation. In this context, KRT16
is proposed to regulate cell proliferation, repair, and immune
responses via glycolysis, closely linking it to the tissue remodeling
processes characteristic of nasal polyps. Although direct evidence
connecting KRT16 to CRSwNP remains unavailable, further
investigation is warranted to clarify its role as a potential therapeutic
target. Future research will focus on elucidating the molecular
mechanisms underlying KRT16’s involvement in CRSwNP to
enhance both understanding and therapeutic interventions.

Database analysis and immunohistochemistry have revealed
elevated SPAG4 levels with prognostic significance in liver cancer.
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FIGURE 9
Biomarker-drug regulatory network.

FIGURE 10
Docking interaction diagram between spiperone and FGFBP1.

RNA sequencing studies indicate that SPAG4 overexpression
activates the lipogenesis state and the SREBP1-mediated pathway,
providing evidence for its role in lipidmetabolism dysregulation and
tumor progression in hepatocellular carcinoma (Liu et al., 2022).
Analogously, recent studies on CRS, using animal models, in vitro
human cell cultures, and dietary analyses, suggest that significant
alterations in lipid mediator signaling are involved in the disease’s

pathophysiology (Robinson et al., 2023). In CRSwNP, SPAG4 may
influence biological signal transduction through its impact on
lipid metabolism, potentially contributing to disease progression.
Furthermore, SPAG4 upregulation in renal clear cell carcinoma
(RCC), regulated by hypoxia via HIF-1 and VHL, has been shown
to enhance tumor cell migration and invasion, while SPAG4
knockdown reduces RCC cell invasiveness in vitro (Knaup et al.,
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2014). In CRSwNP, the upregulation of SPAG4 might similarly play
a role in the invasion of the sinus wall, positioning it as a compelling
target for clinical intervention.

A study of prolactinomas using exon gene sequencing and RT-
qPCR quantitative analysis revealed that PRB3 mRNA levels were
approximately four times lower in drug-resistant prolactinomas
compared to responsive tumors (p = 0.02). Additionally, reduced
PRB3 expression was associated with tumor recurrence, suggesting
that low PRB3 mRNA levels may contribute to dopamine
agonist resistance and tumor recurrence in prolactinomas
(Wang et al., 2014). Similarly, the present study identified significant
downregulation of PRB3 in CRSwNP compared to the control
group, prompting the hypothesis that it may play a role in the
recurrence ofCRSwNP. ssGSEAanalysis further indicated that PRB3
was enriched in the natural killer (NK) cell-mediated cytotoxicity
pathway. NK cells, multifaceted lymphocytes of the innate immune
system, are essential for executing key functions in host defense
and immune regulation. Impaired NK cell function in individuals
with CRS has been correlated with poor prognostic outcomes,
potentially contributing to the development of asthma. Moreover,
NK cells are integral to regulating both the initiation andprogression
of CRS, underscoring their critical role in maintaining immune
homeostasis and mitigating disease severity (Kim et al., 2013).
Thus, it is hypothesized that PRB3 may influence NK cell-mediated
cytotoxicity, contributing to the pathophysiological progression
of CRSwNP. This hypothesis emphasizes the necessity for further
investigation into the complex interaction between PRB3 and NK
cell function in the context of CRSwNP.

Epithelial-mesenchymal transition (EMT) is a critical cellular
process in the pathogenesis of CRSwNP, where epithelial cells
play a central role (Zhou X. et al., 2020). Apical epithelial cells,
located at the luminal surface, are crucial for maintaining the
integrity of the epithelial barrier. A reduction in these cells signifies
compromised barrier function in nasal polyps and peripolyposis
tissues, leading to increased epithelial permeability and facilitating
the transmigration of microbial agents and antigens. This enhanced
permeability triggers an inflammatory cascade that exacerbates
CRSwNP (Wang Y. et al., 2024). Additionally, colonization by
Aspergillus flavus has been identified as a key initiator of nasal
polypogenesis, recruiting T cells to the nasal mucosa. This
recruitment not only accelerates nasal polyp progression but
also contributes to the inflammatory environment characteristic
of CRSwNP (Rai et al., 2023). In the present study, biomarker
expression was meticulously analyzed across discrete cellular
clusters. Our findings revealed that KRT16 and FGFBP1, markers of
epithelial differentiation, are predominantly expressed in epithelial
cells. In contrast, SPAG4, a gene associated with immune cell
function, is primarily expressed in immune cell populations. These
findings highlight the cellular heterogeneity inCRSwNPandprovide
a robust framework for understanding the pathobiology of this
disease, offering valuable insights for the development of targeted
therapeutic strategies.

In this study, numerous drugs associated with biomarkers
were identified. Drug-target docking studies were employed to
assess the efficacy of newly predicted drugs, with spiperone and
arsenous acid selected as promising candidates. Spiperone, an
antipsychotic drug, is known to interact with dopamine receptors,
particularly the D2 receptor (Im et al., 2020). It has been

shown to mediate endothelial regeneration in an animal model of
chronic obstructive pulmonary disease (COPD) by enhancing the
mobilization and migration of endothelial progenitor cells (EPCs,
CD45−CD34+CD31+), CD309+-endothelial cells, and angiogenesis
precursors (CD45−CD117+CD309+) to the lung (Skurikhin et al.,
2021). Given that the nasal passages and lungs are part of the same
respiratory tract, spiperone may have a beneficial effect in patients
with CRSwNP. Arsenous acid has been reported to suppress the
production of pro-inflammatory cytokines and alleviate respiratory
tract infections (Islam et al., 2022). In conclusion, spiperone and
arsenous acid show potential as therapeutic agents for CRSwNP,
though continued exploration of additional therapeutic options is
necessary.

In recent years, biologics targeting type 2 inflammation,
including IL-4, IL-5, IL-13, and IgE, have demonstrated efficacy in
treating severe cases of CRSwNP that are resistant to glucocorticoids
and surgical interventions. Despite this advancement, a significant
proportion of patients, ranging from 40% to 60%, continue
to show insufficient responses to these biologics (Han et al.,
2021). Three type 2 biologics—dupilumab, mepolizumab, and
omalizumab—have received FDA/EMA approval for the treatment
of severe, uncontrolled CRSwNP. Mepolizumab targets IL-5 to
inhibit eosinophil activity, dupilumab blocks IL-4 and IL-13
signaling by targeting the IL-4 receptor α subunit, and omalizumab
prevents IgE from interacting with mast cell and basophil receptors,
thereby inhibiting IgE-mediated allergic responses (Fujieda et al.,
2024; Gevaert et al., 2020; Bachert et al., 2019). However, the efficacy
of these drugs may vary among individuals, highlighting the need
for personalized treatment strategies and continuous monitoring of
patient responses.

This study is the first to identify four IL-10 family-related
biomarkers in CRSwNP, an important contribution to the diagnosis
and treatment of the disease. However, the study has several
limitations. In the RT-qPCR validation phase, only 10 pairs of
samples were analyzed, resulting in a small sample size. This limited
the accuracy of the results and may not fully represent the broader
patient population, potentially introducing biases. Future studies
should expand the sample size and conduct large-scale cohort
studies to validate the findings, thus enhancing the reliability and
generalizability of the results.

While molecular docking in the current study provided
preliminary insights into the interactions of spiperone and
arsenous acid with CRSwNP, the precise relationship between
these compounds and the disease pathophysiology remains
unclear. Relying solely on molecular docking may not capture
the full complexity of their mechanisms in the biological context.
Furthermore, there is insufficient data to compare these compounds
directly with existing therapeutic agents, which could lead
to an incomplete assessment of their relative advantages or
disadvantages. Without such comparisons, it is challenging to
ascertain whether these compounds hold true therapeutic potential
for CRSwNP.

Future research should delve deeper into the specific target
sites and signaling pathways of spiperone and arsenous acid in
CRSwNP. Various experimental approaches, such as gene knockout
or knockdown animal models, can be employed to observe disease
progression in the absence of specific targets and to examine the
modulation of disease-related signaling pathways by these drug
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candidates. For instance, CRSwNPmouse models can be developed,
specific target genes identified through molecular docking can be
knocked out, and the effects of spiperone and arsenous acid on nasal
polyp formation, inflammatory cell infiltration, and other disease
markers can be studied to better understand their therapeutic
potential.

If established ligands for CRSwNP are available, detailed
comparative studies of molecular docking binding energies
should be conducted. In parallel, it is essential to evaluate
not only the binding energies but also the pharmacokinetics,
pharmacodynamics, and other relevant drug properties. In vitro
assays using nasal mucosal epithelial cells or inflammatory cell
lines derived from patients with CRSwNP can serve to compare
the cellular uptake and inflammatory factor secretion profiles of
spiperone, arsenous acid, and existing ligands. Additionally, in vivo
animal models are crucial to assess the therapeutic potential of these
compounds in alleviating CRSwNP symptoms and reducing nasal
polyp size, thereby offering a more comprehensive basis for their
clinical application.

Multi-omics approaches, encompassing transcriptomics,
proteomics, metabolomics, and other techniques, should be
employed to investigate the broader effects of spiperone and
arsenous acid on CRSwNP. Through multi-omics analysis of
pre- and post-treatment tissue or blood samples from patients
with CRSwNP, novel biomarkers and mechanisms of action can
be identified. Specifically, transcriptomic analysis can elucidate
the regulatory effects of these drugs on disease-associated gene
expression, proteomics can reveal alterations in protein expression
and post-translational modifications induced by the drugs, and
metabolomics can provide insights into the impact of the drugs on
metabolic profiles. Collectively, these approaches will enhance the
understanding of drug-disease interactions from a systems biology
perspective.
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