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Exploring the shared gene
signatures and mechanism
among three autoimmune
diseases by bulk RNA sequencing
integrated with single-cell RNA
sequencing analysis
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Lili Ma1, Xiaomeng Ma1, Xia Wang3, Nanjing Li3, Xiaoyun Liu4*
and Xiaohong Chen1*
1Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China,
2Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China, 3Department of Neurology, The Sixth People’s Hospital of Huizhou City, Huizhou,
China, 4Department of General Medicine, The Third Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China

Background: Emerging evidence underscores the comorbidity mechanisms
among autoimmune diseases (AIDs), with innovative technologies such
as single-cell RNA sequencing (scRNA-seq) significantly advancing the
explorations in this field. This study aimed to investigate the shared genes
among three AIDs—Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE),
and Rheumatoid Arthritis (RA) using bioinformatics databases, and to identify
potential biomarkers for early diagnosis.

Methods: We retrieved transcriptomic data of MS, SLE, and RA patients
from public databases. Weighted Gene Co-Expression Network Analysis
(WGCNA) was employed to construct gene co-expression networks
and identify disease-associated modules. Functional enrichment analyses
and Protein-Protein Interaction (PPI) network was constructed. We
used machine learning algorithms to select candidate biomarkers
and evaluate their diagnostic value. The Cibersort algorithm was and
scRNA-seq analysis was performed to identify key gene expression
patterns and assess the infiltration of immune cells in MS patients.

Abbreviations: MS, Multiple sclerosis; CNS, Central nervous system; AIDs, Autoimmune diseases;
SLE, Systemic lupus erythematosus; RA, Rheumatoid arthritis; ILCs, Innate lymphoid cells; GEO,
Gene Expression Omnibus; WGCNA, Weighted gene coexpression network analysis; MAD, Median
absolute deviation; TOM, Topological overlap matrix; scRNA-seq analysis, Single-cell RNA-sequencing
analysis; FDR, False discovery rate; GO, Gene Ontology; BP, Biological process; CC, Cellular
component; MF, Molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-
protein interaction; LASSO regression, Least absolute shrinkage and selection operator regression;
SVM-RFE, Support vector machine-recursive feature elimination; qRT- PCR, Quantitative real-time
polymerase chain reaction; ISGs, Interferon-stimulated genes; MOG35-55, Myelin Oligodendrocyte
Glycoprotein 35–55.
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Finally, the biomarkers’ expression was validated in human and mice
experiments.

Results: Several shared genes among MS, SLE, and RA were identified, which
play crucial roles in immune responses and inflammation regulation. PPI
network analysis highlighted key hub genes, some of which were selected as
candidate biomarkers throughmachine learning algorithms. Receiver Operating
Characteristic (ROC) curve analysis indicated that some genes had high
diagnostic value (Area Under the Curve, AUC >0.7). Immune cell infiltration
pattern analysis showed significant differences in the expression of various
immune cells in MS patients. scRNA-seq analysis revealed clusters of genes
that were significantly upregulated in the single cells of cerebrospinal fluid in
MS patients. The expression of shared genes was validated in the EAE mose
model. Validation using clinical samples confirmed the expression of potential
diagnostic biomarkers.

Conclusion: This study identified shared genes among MS, SLE, and RA and
proposed potential early diagnostic biomarkers. These genes are pivotal in
regulating immune responses, providing new targets and theoretical basis for
the early diagnosis and treatment of autoimmune diseases.

KEYWORDS

multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
WGCNA, bioinformatics, DEGs, shared genes

Introduction

Multiple sclerosis (MS) is an immune-mediated inflammatory
demyelinating disease of the central nervous system (CNS),
predominantly affecting young and middle-aged women. Despite
advancements in understanding its pathogenesis, the precise
mechanisms remain unclear (Reich et al., 2018). Furthermore,
the unpredictable disease course and the potential for severe
complications underscore the urgency in developing effective
strategies to diagnose and treat MS. Comorbidity is an
area of increasing interest in MS as evidence emerges that
comorbidity is associated with diagnostic delays, disability
progression, health-related quality of life, and progression
of lesion burden on magnetic resonance imaging (MRI)
(Lo et al., 2021).

Autoimmune diseases (AIDs) are a series of conditions caused
by defects of the human immune system characterized by an
inability to recognize auto-antigens and subsequent pathological
responses. MS, systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), psoriasis, and type I diabetes (T1DM) are common
AIDs. These diseases affect 3%–8% of the general population,
with women making up 78%–85% of those affected. The potential
for shared pathogenic mechanisms among AIDs is suggested
by the significant presence of non-organ-specific autoantibodies
in conditions like Klinefelter syndrome (47,XXY), which is
closely associated with rheumatic diseases (Rovenský, 2006;
Seminog et al., 2015; Panimolle et al., 2021). Compared to the
46,XY control group, there is evidence of increased organ-specific
autoimmune conditions in individuals with severe and typical X

chromosome aneuploidies. This commonality in pathogenesis is
further supported by the significantly increased risk for various
autoimmune diseases in KS patients, including 7-Addison’s disease,
T1DM, MS, acquired hypothyroidism, RA, Sjögren’s syndrome, and
SLE (Panimolle et al., 2018). In the pathogenesis of autoimmune
diseases, certain genetic predispositions and environmental
triggers are common, exhibiting shared immune dysregulation
disorders. Most AIDs is systemic, while some primarily affect
a single organ or structure. Rarely, a few AIDs coexist in one
person, which can suggest similar pathogenetic mechanisms
(Belniak et al., 2007). Complex interactions between genetic,
infectious and/or environmental factors probably contribute to
the presence of these diseases. Although the detailed pathogenesis
varies in specific AIDs, multiple cellular andmolecular mechanisms
are considered to be shared among them (Liu et al., 2024).
Understanding these sharedmechanisms can facilitate the discovery
of novel diagnostic biomarkers and therapeutic targets, potentially
leading to more effective and personalized treatment regimens
for patients.

The most frequently studied comorbidities were RA and SLE,
as well as psychiatric conditions, and so on (Marrie et al.,
2015). MS-associated immune cells include CD4+ T lymphocytes,
CD8+ T lymphocytes, B cells, innate lymphoid cells (ILCs),
NK cells, monocytes, macrophages, dendritic cells and so on
(Attfield et al., 2022). SLE is an autoimmune disease that causes
chronic inflammation and is associated with the production of
autoantibodies, with a prevalence rate of 0.02%–0.15% worldwide
(Kuo et al., 2015; Rees et al., 2016). RA is a systemic autoimmune
disease characterized by arthropathy (Weyand and Goronzy, 2017).
As immune-mediated diseases, the pathogenesis of RA and SLE is
closely related to different immune cells (Zampeli et al., 2015).These
cells secrete pro-inflammatory factors and proteases that could
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destroy cartilage and bone (Fang et al., 2020). Chronic inflammation
in the articular joints leads to joint and bone destruction in
RA, whereas uncontrolled production of autoantibodies against
nuclear antigens leads to systemic inflammation in SLE (Fang et al.,
2021). A cross-sectional analysis of Australian MS Longitudinal
Study (AMSLS) participants (n = 902) showed that SLE, individual
comorbidities, were most strongly associated with overall health-
related quality of life (HRQoL), and SLE, RA and hyperthyroidism
with physical HRQoL. Comorbidities potentially make important
contributions to HRQoL in MS (Lo et al., 2021). Many case reports
have shown a coexistence of MS with SLE (Hietaharju et al.,
2001; Fanouriakis et al., 2014; Jácome Sánchez et al., 2018). A
study found that the RA inflammation subtype, and the MS
“inflammation and EGF” subtype share similarities, which display
a consistent pattern of inflammation driven by the activation
of the JAK-STAT pathway (Cheng et al., 2024). MS can coexist
with RA and may potentially impact treatment medications
(Hojjati et al., 2016; Brummer et al., 2021). Some studies have
also found links and patterns of comorbidities among various
types of AIDs, including lupus (SLE and RA), MS, and T1DM
(Wen and Yu, 2023). Furthermore, identifying new diagnostic
and detection targets, as well as pathophysiological biomarkers
for dual autoimmune diagnoses, may help to uncover shared key
genes and biological pathways between dual AIDs. The shared
genetic loci associated with RA and SLE are tumor necrosis factor

receptor-associated factor (TRAF1), tumor necrosis factor receptor
superfamily member 5 (CD40/TNFRSF5), TNF-α-induced protein
3 (TNFAIP3), interferon regulatory factor 5 (IRF5), B lymphoid
tyrosine kinase (BLK). The shared genetic loci associated with
RA and SLE are interleukin 12A (IL-12A), ribosomal protein L19
pseudogene 8 (RPL19P8), CD40/TNFRSF5, IRF8. The shared genetic
loci associated with RA and MS include kinesin family member
5A protein (KIF5A), DNAX accessory molecule-1(DNAM-1)/CD226
(Ahmad and Ahsan, 2022).

The coexistence mechanisms of SLE, RA and MS can pose
challenges to the diagnosis, therapies, and prognosis in clinical
practice. However, previous efforts primarily focused on identifying
diagnostic biomarkers of MS, SLE, and RA, respectively, and the
exact relationship between MS and SLE, RA has not been fully
established. Therefore, investigating the comorbidity mechanisms
of MS, SLE, and RA is of significant clinical importance for
early recognition and intervention. The development of current
transcriptome and single-cell sequencing technologies provides
multidimensional clues for us to study the connections between
these diseases. Using integrated bioinformatics approaches and
machine learning algorithms, we sought to find potential early
diagnostic biomarkers for MS incidence in patients with SLE and
RA and clarify the immunological mechanisms. We also illustrated
the hub gene expression profiles in single cells from MS patients.
Our findings highlight groups of and individual comorbidities
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that could provide the largest benefits for MS with RA or SLE
if they were targeted for prevention, early detection, and optimal
treatment. These genes may serve as potential therapeutic targets
and biomarkers, offering significant promise for clinical practice.

Materials and methods

Microarray data

The study design is depicted as a flowchart in Figure 1. Ten
publicly available microarray datasets (GSE135511, GSE108000,
GSE50772, GSE81622, GSE154851, GSE55457, GSE55235,
GSE55584, GSE12021 and GSE77298) representing transcriptome
profiles were retrieved from the NCBI Gene Expression Omnibus
database (GEO) (Barrett et al., 2013) (https://www.ncbi.nlm.nih.
gov/geo/). Detailed information about the datasets is given in
Table 1. Multiple GEO data sets were combined for analysis.
The ComBat function, which is based on the classical Bayesian
framework, was applied to remove batch effects among different
datasets via the sva package (Johnson et al., 2007).

Significant module identification via
weighted gene coexpression network
analysis (WGCNA)

WGCNA has been widely applied to construct a gene
coexpression network (Langfelder and Horvath, 2008). Herein,
we adopted WGCNA to identify significant module genes highly
correlated with SLE. First, every gene’s median absolute deviation
(MAD) was calculated, and 50% of genes with the smallest MAD
were eliminated. Subsequently, a scale-free coexpression network
was constructed by filtering the differentially expressed genes
(DEGs) expression matrix using the goodSamplesGenes function
in WGCNA. Next, the adjacency was calculated based on the
soft thresholding power β, derived from coexpression similarity,
using the pick-Soft-Threshold function. Then, the adjacency was
converted into a topological overlap matrix (TOM), followed by
the calculation of the gene ratio and corresponding dissimilarity
(1-TOM). Hierarchical clustering and dynamic tree-cutting were
then used to identify modules. To classify genes with similar
characteristics, TOM-based dissimilaritymeasures with aminimum
size (gene group) of 50 were used for the gene dendrogram, and
an average linkage hierarchical clustering was initiated. Finally, we
chose a cut-off for themodule dendrogram, and somemodules were
merged based on the dissimilarity of estimated module eigengenes.
The eigengene network was visualized with the “TOMplot” function
of WGCNA with heatmap.

Enrichment analyses of overlapping shared
genes

During Gene Ontology (GO) analysis, biological process
(BP), cellular component (CC) and molecular function (MF) are
identified (The Gene Ontology Consortium, 2019). The R package
“ClusterProfiler” was used to conduct functional enrichment

analysis, and the top 10 GO terms were visualized using the
R package “ggplot2″ in each category based on the screening
criteria: false discovery rate (FDR) < 0.05 and adjusted p-value
< 0.05 (Yu et al., 2012). Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis and Reactome functional enrichment analyses
were conducted and visualized.

Protein-protein interaction (PPI) network
construction and candidate hub genes
selection

Shared genes were mapped to the PPI network to further
explore their potential interplay. The PPI network was constructed
using the Search Tool for Retrieval of Interacting Genes (String)
database (Szklarczyk et al., 2021) (version 11.5; www.string-
db.org), with a minimum required interaction score of 0.400.
The genes that did not interact with each other were hidden.
Cytoscape software (Otasek et al., 2019) was used to visualize
the PPI network. To identify hub genes, the Cytoscape plug-
in CytoHubba was used for topological analysis using the
five different algorithms:Degree, Maximal clique Centrality
(MCC), Maximum Neighborhood Component (MNC), Density
of Maximum Neighborhood Component (DMNC), and Edge
percolated component (EPC) (Niu et al., 2020). Importantly,
nodes can be measured based on their network features to
determine their importance in biological networks and identify
central elements of biological networks. Finally, the top 30 DEGs
obtained from the intersection of the three algorithms were
visualized.

Machine learning algorithms

To further identify candidate biomarkers, three machine
learning algorithms were applied: least absolute shrinkage and
selection operator (LASSO) regression, random forest, and support
vector machine-recursive feature elimination (SVM-RFE). For
the diagnostic value assessment in this study, the intersection
of shared genes filtered by all 3 machine learning algorithms
was chosen.

Nomogram construction

The expression of each DEG between MS/SLE and the control
group in the dataset was compared using the Student’s t-test.
To evaluate the predictive value of each candidate biomarker, we
generated ROC curves and calculated the area under the curve
(AUC) and 95% confidence interval (CI). After that, the nomogram
was generated using the R package “rms”. Each gene’s relative
expression level corresponds to a score based on the nomogram.The
summation of each score was referred to as the total score, which
could be used to predict the incidence of SLE with AS. Meanwhile,
we constructed the ROC curve of the nomogram.The optimal AUC
for predicting the risk of SLE with AS was >0.7.
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FIGURE 1
Flowchart illustrating the study design.

Immune cell infiltration pattern analysis

The algorithm “Cibersort” can transform the normalized gene
expression matrix into the infiltrating immune cell composition.

The R package “Cibersort” has previously been used to quantify the
proportions of 22 kinds of immune cells between MS and control
(Newman et al., 2015). The proportion of each immune cell in
each sample was visualized from the barplot. The comparison of
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TABLE 1 Detailed information on transcriptome datasets used in the study.

ID GEO accession No Disease Control case Sample size Sourcetypes Platform Experiment type

1 GSE135511 MS 10 40 brain GPL6883 Expression profiling by
array

2 GSE108000 MS 10 30 brain GPL13497 Expression profiling by
array

3 GSE50772 SLE 20 61 Peripheral
Blood

GSE50772 Expression profiling by
array

4 GSE81622 SLE 25 30 Peripheral
Blood

GPL10558 Expression profiling by
array

5 GSE154851 SLE 32 38 Peripheral
Blood

GPL16699 Expression profiling by
array

6 GSE55457 RA 10 13 synovium GPL96 Expression profiling by
array

7 GSE55235 RA 10 10 synovium GPL96 Expression profiling by
array

8 GSE55584 RA 0 10 synovium GPL96 Expression profiling by
array

9 GSE12021 RA 9 12 synovium GPL96、GPL97 Expression profiling by
array

10 GSE77298 RA 7 16 synovium GPL570 Expression profiling by
array

MS, multiple sclerosis; SLE, system lupus erythematosus; RA, rheumatoid arthritis.

expression of the difference regarding each immune cell between
the two groups was displayed in a boxplot. A heatmap displaying
the correlation of different immune cells in MS pathogenesis was
constructed using the R package “corrplot” (Wu et al., 2024).

Single-cell RNA-sequencing (scRNA-seq)
analysis

The scRNA-seq data of GC was accessed from the GSE138266
dataset, which is established in the GEO database corresponding
to a published article “Integrated single cell analysis of blood
and cerebrospinal fluid leukocytes in multiple sclerosis”. The
raw gene expression matrix was imported and processed using
the Seurat package (version 4.4.0). First, we filtered out cells
expressing fewer than 200 genes and genes expressed in fewer
than 3 cells. The percentage of mitochondrial genes was evaluated
using the PercentageFeatureSet function. Cells with >200 and
<2,500 expressed genes were kept and those with below 5%
mitochondrial content were removed. Then an expression matrix
comprising 33,879 cells and 19,650 genes was generated for further
analysis. Next, the FindVariableFeatures function was used to
discover hypervariable genes. The data were normalized using
the ScaleData function, and principal component analysis (PCA)
was then performed with 30 PCs selected. The RunHarmony
function was applied for data integration to remove the batch effect
between samples. Subsequently uniform manifold approximation
and projection (UMAP) analysis was used to reduce the dimensions.

Cell types within the obtained clusters were annotated by the cell
marker genes from previous studies (Schafflick et al., 2020) and the
CellMarker database (http://117.50.127.228/CellMarker/).

Animals and EAE induction

Six-to eight-week-old female C57BL/6 mice, weighing 16–20 g,
received subcutaneous injections of 200 μgMyelin Oligodendrocyte
Glycoprotein 35–55 (MOG35-55) emulsion at both the upper
and lower back (100 μL per injection site) to induce EAE. The
emulsion, prepared under sterile conditions, included MOG35-55
(purity > 95%, Guidechem, Shanghai, China) in 200 μL of complete
Freund’s adjuvant (CFA, Sigma F5881, United States), containing
Mycobacterium tuberculosis (5 mg/mL; strain H37Ra, BD 231141,
United States) and emulsified with phosphate-buffered saline (PBS).
All animalswere administered 250 ng pertussis toxin (List Biological
Laboratories, PTX181, United States) intraperitoneally on the day
of immunization and on the second day post-initial injection. Daily
weight measurements and clinical symptom monitoring for EAE
were conducted, following this scale: grade 5, death; grade 4.5,
near death, moribund; grade 4, complete paralysis of two limbs;
grade 3, complete paralysis of a single limb; grade 2.5, partial limb
paralysis and ataxia; grade 2, dysfunctional gait with limp tail and
ataxia; and grade 1, dysfunctional gait with tail tonicity or limp tail.
Intermediate clinical signs were scored by adding a value of 0.5.
All experimental protocols were approved by the Animal Care and
Use Committee of South China Agricultural University (Approval
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ID: 2022D157) in adherence with the Guide for the Care and
Use of Laboratory Animals and in compliance with the ARRIVE
guidelines.

Clinical samples collection

The selection of SLE patients is based on The 2019 SLE
EULAR/ACR classification standards (Assan et al., 2021) and RA
patients is based on The 1987 ACR guidelines (Arnett et al.,
1988). The study was approved by the Ethics Committee of
the Third Affiliated Hospital of Sun Yat-sen University (Ethical
number: II 2024-184–01) and was performed in accordance with
the Declaration of Helsinki. Written informed consent was obtained
from all participants.The selection criteria for the screening samples
were defined as follows: 1) Samples were exclusively derived from
a single hospital; 2) Each cohort comprised no fewer than 10
individuals; 3) Participants were newly identified with RA or SLE,
admitted for inpatient care with a confirmed diagnosis, exhibiting
pronounced clinical signs, and presenting at the earliest phase of
their illness without a history of other concurrent diseases; 4) Patient
specimens were obtained promptly upon definitive diagnosis. Prior
to sample collection for this research, no study subjects had received
any formofmedical treatment.The control groupwere selected from
a pool of healthy volunteers at the Third Affiliated Hospital of Sun
Yat-sen University.

PBMCs were isolated by density-gradient centrifugation
with the Lymphoprep Premium kit (STEMCELL Technologies)
according to the manufacturer’s instructions. The cells were
resuspended in 10% fetal bovine serum containing RPMI 1640.

RNA isolation and quantitative real-time
polymerase chain reaction (qRT- PCR)

TRIzol reagent (Vazyme, Nanjing, China) was used to extract
RNA from PBMC samples, and cDNA was synthesized using
HiScript III RT SuperMix for qPCR (Vazyme, Nanjing, China).
Then RT-PCR was performed to quantitative the expression level of
GLIPR1 andMAMLD1 in the two diseases. Primer sequences of the
two genes were described in Supplementary Table S1.

Verifcation and localization of predictive
genes

The immunohistochemical (IHC) data were downloaded from
theHuman Protein Atlas (HPA) database (https://www.proteinatlas.
org/) to determine the localization characteristics of key genes in
human cortex. We further verifed the expression profle of five key
genes in the EAE mice brain by immunohistochemical.

Statistical analysis

R software version 4.2.1, GraphPad Prism Version 9.4.0
(GraphPad Software, San Diego, CA, United States) and SPSS
Version 26.0 (IBM Corporation, Armonk, NY, United States) were

used to perform statistical analyses. Using the Student’s t-test,
continuous variables were compared between the two groups. A
p-value < 0.05 was statistically significant.

Results

WGCNA analysis identified significant
module genes in MS, SLE and RA

UsingWGCNA, significant module genes ofMS were identified.
The Gray module was regarded as a junk module, meaning it
failed to cluster genes. The most acceptable soft thresholding
power β = 6 was chosen based on scale independence and average
connectivity (Figure 2A). Following module merging, 13 gene
coexpression modules related to MS were obtained, shown in
different colors (Figures 2B,C). The colors depict the relationship
between the modules and MS, with blue having the strongest
positive (1,267 genes; correlation coefficient (CC = 0.51; P = 3
× 10−7) and lightyellow the strongest negative correlation (95
genes; CC = −0.62; P = 7 × 10−11) with MS. Furthermore, a
significant correlation between blue (r = 0.68) and lightyellow
(r = 0.6) module membership and gene significance for MS
was observed (Figure 2D). Therefore, the 1,362 genes in the
blue and lightyellow modules most associated with MS were
recognized as crucial for further experiments. Similarly, WGCNA
was applied to the SLE and RA groups. WGCNA identified 1739
SLE module genes with the strongest positive green module and
the strongest negative cyan module (Figures 2E–H). Similarly,
WGCNA-identified 2,422 module genes associated with RA
(Figures 2I–L).

Functional enrichment analysis of shared
genes in MS, SLE and RA

To investigate the co-pathogenesis of MS, SLE and RA, 76
shared genes (Figure 3A) were selected from the genes identified
by WGCNA. Functional enrichment analyses of the 76 overlapping
shared genes were performed with GO, KEGG and Reactome
analysis. As shown in Figure 3B, the process includes: 1) biological
process, response to virus, defense response to virus, regulation
of leukocyte differentiation; 2) cellular component, external side
of plasma membrane, transcription regulator complex, RNA
polymerase II transcription regulator complex; and 3) molecular
function, enzyme inhibitor activity, cytokine receptor binding,
and tumor necrosis factor receptor superfamily binding. The
KEGG pathway enrichment analysis revealed that these genes were
primarily enriched in Epstein-Barr virus infection, TNF signaling
pathway, and cytokine-cytokine receptor interaction (Figure 3C).
Furthermore, the Reactome enrichment analysis revealed that
these core genes were significantly abundant in Epstein-Barr
virus associated Interferon signaling (Figure 3D). These results
suggest that the overlapping DEGs participate in response to virus,
Interferon signaling, inflammation and immunological response in
MS, SLE and RA.
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FIGURE 2
Selection of gene modules associated with MS with WGCNA. (A) Soft thresholding power (β) selection via scale independence and average
connectivity. (B) Gene clusters, or modules, associated with MS are shown in different colors under the cluster dendrogram. (C) The heatmap depicting
the correlation between gene modules and MS. The top digit represents the correlation coefficient, and the bottom digit shows the P-value. (D) The
scatter plot showing the correlation between module membership and gene significance in MS regarding the most positively (blue) and negatively
(light yellow) correlated modules. (E) Identifying the soft-threshold power in SLE. (F) Cluster dendrogram displaying highly connected genes in key
modules associated with SLE. (G) Interconnections among modules and traits in SLE. Correlation coefficients and P values are incorporated in each
cell. (H) The scatter plot showing the correlation between module membership and gene significance in SLE regarding the most positively (green) and
negatively (cyan) correlated modules. (I) Estimation of the soft-threshold power for RA. (J) Dendrogram clustering of RA modules featuring genes with
strong connectivity. (K) Associations between modules and traits in RA. (L) The scatter plot showing the correlation between module membership and
gene significance in RA regarding the most positively (Blue) and negatively (black) correlated modules. WGCNA, weighted gene co-expression
network analysis.

PPI network construction and hub gene
selection of intersection of significant
module genes of MS, SLE, and RA

Based on the 76 shared genes, a PPI network was preliminarily
constructed to select hub genes for MS. After eliminating DEGs
with poor interaction (n = 3), 73 genes were retained (Figure 3E).
Moreover, to identify the top 20 intersected genes, we used five
different algorithms (Degree, MCC,MNC, DMNC, and EPC) in the
Cytoscape plug-in CytoHubba (Figure 3F). Finally, 11 genes were
selected using Venn plots for further machine learning analysis.

Selection of candidate diagnostic
biomarkers of MS progression using
machine learning

To select shared genes for diagnostic evaluation, three different
machine learning algorithms were applied. LASSO regression
analysis revealed 8 genes with the lowest binomial deviance among
the top 30 node shared genes (Figure 4A). After ranking the
shared genes according to the gene importance score, the random
forest method was applied, recognizing 7 potential candidates
(Figures 4B,C). Furthermore, the SVM-RFE approach uncovered 8
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FIGURE 3
Functional enrichment analysis of shared genes associated with MS,SLE and RA and the node gene selection from PPI network. (A) The Venn plot
displays that the intersection of significant module genes in MS, significant module genes in SLE and significant module genes in RA yielded 76 DEGs.
(B–D) GO analysis (BP, CC, MF), KEGG pathway analysis and Reactome analysis of shared genes. The X-axis represents the gene ratio, Y-axis refers to
different ontologies, the circle size represents the gene number, and the color indicates the significance. (E) The whole PPI network of 76 DEGs was
visualized via STRING. (F) 11 DEGs were selected for further analysis based on the intersection of genes from five algorithms. GO, gene ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes. PPI, Protein-protein interaction.
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genes with the lowest error and highest accuracy after 100 folds for
diagnosing MS progression in SLE and RA (Figures 4D,E). Finally,
the DEGs detected by each method (LASSO, n = 8; random forest,
n = 7; and SVM-RFE, n = 7) were intersected and 6 genes were
visualized as aVenndiagram:Bonemarrow stromal antigen 2 (BST2),
Guanylate binding protein 1 (GBP1), MX Dynamin Like GTPase
1 (MX1), Interferon-induced with helicase C domain 1 (IFIH1),
Tripartite Motif Containing 22 (TRIM22), C-X-C Motif Chemokine
Ligand 10 (CXCL10) (Figure 4F).

Assessment and validation of biomarker
diagnostic value and nomogram
construction

To further explore the potential of these core shared DEGs as
clinical biomarkers in the disease, the ROC curves of 6 candidate
biomarkers were generated, and AUCs were calculated for the
candidates to assess their diagnostic value: BST2 (AUC, 0.779; 95%
CI, 0.678–0.881); GBP1 (AUC, 0.809; 95% CI, 0.712–0.907); MX1
(AUC, 0.519; 95% CI, 0.38–0.658); TRIM22 (AUC, 0.752; 95% CI,
0.636–0.868); IFIH1 (AUC, 0.867; 95% CI; 0.783–0.951); CXCL10
(AUC, 0.604; 95% CI, 0.436–0.771) (Supplementary Figure S1A).
The candidate expression was also evaluated in the GSE123496
validation dataset. Moreover, the AUCs for these 4 genes were
<0.7, while they were above this value for the remaining 2
(Supplementary Figure S1B).These 6 genes were ultimately selected
to construct a nomogram, after multiple rounds of selection
(Figure 5A).The relative expression level of each gene corresponded
to a score in the nomogram. Finally, the overall score was used to
forecast the incidence of MS progression in patients with SLE and
RA.The calibration curves uncovered that the predicted probability
of the constructed nomogramdiagnosticmodel was almost identical
to that of the ideal model (Figure 5B).

Immune infiltration analysis

Immune infiltration is a significant pathophysiological
characteristic and is associated with MS progression. To explore the
relationship between candidate biomarkers and MS, we conducted
the immune infiltration analysis. A barplot was generated to
visualize the proportions of immune cells in each sample. The
barplot (Figure 6A) showed that the proportion of memory B cells,
M1Macrophages, restingMast cells, andCD8+ T cells were higher in
MS,while activatedMast cells,Monocytes, restingNKcells,memory
resting CD4+ T cells, naive CD4+ T cells, andM0Macrophages were
lower inMS comparedwith control (Figure 6B).Moreover, we found
a positive correlation between the six shared genes and immune cell
infiltrations (Figure 6C).

The expression level of key signatures
based on scRNA-seq analysis

In this study, we analyzed a total of 10 samples from the
GSE138266 dataset, including CSF and PBMC from 5 patients and
5 controls. The number of genes (nFeature), the sequence count per

cell (nCount), and percentage of mitochondrial genes (percent.mt)
were displayed in Vlnplots (Figure 7A). Figure 7B illustrates the
single-cell transcriptome atlas across different samples, while
Figure 7C displays the single-cell transcriptome atlas for control
and MS samples. Cell annotation using Single R package revealed
11 cell types (Figure 7D): Tdg, Tregs, CD4+ T, CD8+ T, B Naïve, B
Activated, pDC, mDC1, mDC2, Mono, and Microglial. Figure 7F
shows the expression patterns of shared genes for each cell subtypes
in control and MS, including BST2, GBP1, MX1, IFIH1, TRIM22,
and CXCL10. Figure 7G shows the comparison of the contents of the
above six genes in the control group and theMS group, and therewas
no statistical difference in the content of theCXCL10 gene. Figure 7E
represents their proportions across different samples, with CD4+ T
cells and CD8+ T cells exhibiting higher proportions, while Tdg,
Tregs, B Naïve, B Activated, pDC, mDC1, mDC2, and Microglial
constituted a relatively smaller proportion.

Expression of six shared genes in human
and mice

We used the MOG35-55 induced EAE mouse model, the most
common MS mouse model, to isolate the lumbar spinal segment
of mice, and assessed the expression of the above six genes by
qRT-PCR. The results showed that BST2, GBP1, and MX1 mRNA
were increased in the spinal cord of EAE mice compared with the
control group with statistical significance. As for IFIH1, TRIM22,
and CXCL10, although their mRNA levels seemed to be increased
in EAE mice, the differences between the two groups showed
no statistical significance (Figure 8A). We also collected PBMCs
of SLE and RA patients for further validation. Compared with
HCs, the expression levels of BST2 and IFIH1 were both higher
in SLE and RA, while MX1 was only higher in RA. The GBP1,
TRIM22, and CXCL10 have no significant change in mRNA levels
in SLE or RA patients when compared with those in the HC group
(Figure 8B).

As shown in Figure 8C, there was a moderate positive area of
BST2 in glial cells, neuropil and neuronal cells in healthy human
cortex. GBP1 was lowly expressed in endothelial cells, while not
detected in glia and neuronal cells. MX1 expression was enriched
in glial cells. IFIH1 was not detected in glial cells, and it was
expressed at a moderate level in neuronal cells. TRIM22 were
hard to detect in the glial cells. The IHC results for CXCL10
are not shown in the HPA database. Based on mRNA expression
data and findings from the HPA database, we conducted IHC
analysis on brain sections from three control and three EAE mice
to further ascertain the differential protein-level expression of five
pivotal shared genes, with the exception of CXCL10. Likewise, the
protein expression level of BST2 (p < 0.001), GBP1 (p < 0.01),
and TRIM22 (p < 0.001) were remarkably higher in EAE mice
(Figures 9A, B).

Discussion

MS is currently believed to be a neuroinflammatory
disorder mediated by immune dysregulation, with both central
and peripheral immune components contributing to disease
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FIGURE 4
Candidate biomarker identification via machine learning algorithms. (A) Based on the Lasso regression algorithm, 8 genes were identified as the
biomarkers with the lowest binominal deviation. (B) The diagnostic error relating to MS,SLE and RA was visualized from the random forest. (C) The
column showing 11 DEGs ranked based on the importance score calculated from the random forest. (D) 11 genes were selected based on SVM-RFE
with the lowest error and highest accuracy. (E) DEGs were ordered based on the average rank from SVM-RFE. The lower rank indicates positions of
higher importance. (F) The intersection of 3 machine learning algorithms was obtained with a Venn diagram tool, yielding 6 DEGs selected as the
candidate biomarkers. LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination; AMI,
acute myocardial infarction.
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FIGURE 5
Nomogram construction and diagnostic performance validation. (A) The nomogram was established based on the 6 selected candidate biomarkers.
Each gene corresponds to a score. The total score of the 6 DEGs is used to predict the risk of MS in a population with MS and RA. (B) The calibration
curve of nomogram model prediction in MS with SLE and RA. The red solid line is marked as “Ideal”, which represents the standard curve, and is on
behalf of the perfect prediction of the ideal model. The dotted line is marked as “Apparent”, which indicates the uncalibrated prediction curve, while the
blue solid line is marked as “Bias-corrected” and represents the calibrated prediction curve.
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FIGURE 6
Quantification of immune cell infiltration in MS. (A) The relative
proportion of 22 types of immune infiltrating cells in MS samples is
shown as a barplot. (B) The boxplot compares the expression of
immune cells between MS and controls. (C) Correlation analysis of
immune cell infiltrations with six shared genes.∗p < 0.05;∗∗p <
0.01;∗∗∗p < 0.001;∗∗∗∗p < 0.0001.

development. However, its specific pathogenesis remains unclear.
Patients often present with or develop multiple systemic conditions,
including other AIDs, prior to or concurrent with symptom onset,
which suggests a potential common pathogenic mechanism in these
AIDs. Research indicates that comorbid conditions can lead to
delays in MS diagnosis, affecting treatment options, quality of
life, and even disability and mortality rates (Nociti and Romozzi,
2022). Autoimmune comorbidities might share a biological basis
with MS, such as immune dysregulation and genetic susceptibility,
possibly unveiling new therapeutic targets. An increasing body of

research supports the interrelationship between various AIDs. In
the present study, combining with multiple transcriptional analyses,
we found that BST2, GBP1, MX1, IFIH1, TRIM22, and CXCL10
as key diagnostic biomarkers. And further validation with animal
models and clinical samples also supported these findings. Our
results provide potential shared biomarkers for MS, SLE, and RA,
and shed light on further exploration in these molecules involved in
the development in these diseases.

WGCNA analysis revealed several genemodules associated with
MS, SLE, and RA. The intersection of module genes resulted in
76 common risk genes of interest. Functional enrichment analysis
indicated that these genes were mainly concentrated in “Epstein-
Barr virus infection”, “TNF signaling pathway”, and “Cytokine-
cytokine receptor interaction” in KEGG pathways. It is suggested
that this is related to the immune inflammatory response. A previous
study reported that people with mononucleosis, which is caused by
the EB virus, are at higher risk for MS (Lanz et al., 2022). Lupus
erythematosus and RA, like MS, have been significantly associated
with EBV infection in epidemiological studies. Inflammatory
factors, the TNF signaling pathway, and immune dysfunction are
also involved in the development of the three diseases (Picon et al.,
2021). In addition, cytokine-cytokine receptor interactions are
involved in innate and acquired inflammatory host defense,
angiogenesis, etc. GO terms significantly associated with BP are
numerous and include “response to virus”, “defense response to
virus”, and “regulation of leukocyte differentiation”, which are
involved in the pathogenesis of MS, SLE, and RA. In addition,
MF analysis and Reactome enrichment analysis of DEGs were
closely related to antiviral and inflammatory responses. Taken
together, these findings suggest that the significant role of these
genes in immune regulation and inflammatory responses, which
may explain the similar clinical manifestations observed in
these diseases.

PPI network analysis identified 11 hub genes with potential
roles in the diseases. The SVM-RFE algorithm in machine learning
can eliminate redundant factors, retaining only variables relevant
to the outcomes, showing broad potential applications in feature
ranking and selection of meaningful features for classification
purposes. Among the most effective feature selection methods,
SVM-RFE has successfully been used to identify hub genes in
various diseases (Zheng et al., 2022). In our study, we identified
6 hub genes (BST2, GBP1, MX1, IFIH1, TRIM22, CXCL10) by
employing three machine learning methods (SVM-RFE, Lasso, and
Random Forest). The candidate biomarkers selected by machine
learning methods have significant clinical potential and may aid in
the early diagnosis and personalized treatment of the diseases. We
constructed a nodal graph and evaluated its predictive value for MS
patientswith concurrent SLE andRASubsequent external validation
with two additional datasets indicated a close association of these six
hub genes with MS progression and demonstrated good predictive
value for MS in SLE and RA patients, suggesting their potential role
in the pathogenesis of MS.

SLE and RA are AIDs with a wide range of disease
manifestations. Both innate and acquired immune mechanisms
have been reported to be accelerated or suppressed, as described
in the literature. Our results of CiberSort analysis were also in
line with most previous studies in MS (Schafflick et al., 2020).
We further investigated the relationship between the identified
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FIGURE 7
Overview of single-cell atlases of normal and MS samples. (A) Quality control of scRNA-seq data of samples of HCC cells. (B) UMAP visualization of
clustering plot of 10 samples. (C) UMAP visualization of clustering plot comparing control and MS tissues. (D) UMAP visualization of plot depicting
clustering of single-cell samples into 11 clusters. (E) Proportional representation of different cell types in 10 sampes. (F) UMAP plot highlighting the
expression patterns of marker genes for the 11 cell types. (G) Boxplots displaying expression of marker genes for the 8 cell types across cells. UMAP,
Uniform Manifold Approximation and Projection.
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FIGURE 8
The mRNA expression of six shared genes in human and mice. (A) qRT-PCR showing increased mRNA levels of BST2, GBP1, MX1, IFIH1, TRIM22, and
CXCL10 in the spinal cord of EAE mice. (B) The expression of six hub genes in SLE and RA patients. qRT-PCR showing increased mRNA levels of BST2,
GBP1, MX1, IFIH1, TRIM22 and CXCL10 in PBMC of SLE and RA patients. (C) IHC results in the expression of the five key genes for normal people cortex
in the HPA database. HPA, Human Protein Atlas.

Frontiers in Molecular Biosciences 15 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1520050
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Liu et al. 10.3389/fmolb.2024.1520050

FIGURE 9
The expression of five shared genes in EAE mice brain. (A) Representative IHC staining images of BST2, GBP1, MX1, IFIH1, and TRIM22 in control and
EAE mice. (B) Comparison of protein expression differences of five hub genes according to IHC results.∗∗p < 0.01,∗∗∗p < 0.001.

genes (BST2, GBP1, MX1, IFIH1, TRIM22, CXCL10) with the
immune system. BST2, also known as CD317, is a type II integral
membrane protein primarily involved in interferon-mediated
antiviral pathways. Studies have reported that this protein anchors
enveloped viruses to the surface of infected cells via its N-terminal
transmembrane domain and C-terminal GPI anchor, inhibiting
viral budding and thereby suppressing viral release. BST2 serves as
a host intrinsic antiviral factor, offering a new target for antiviral
drug development. Apart from its role in inhibiting viral release,
BST2 also functions as an innate immune sensor during viral
infections, activating NF-κB through interaction with ILT7/LILRA4
to induce inflammatory responses (Swiecki et al., 2013). Enrichment
analysis of proteomic data revealed mapping of type I interferon
signaling and neutrophil activation networks to both male and
female SLE, with higher levels of neutrophil activation observed

in male SLE compared to female SLE. Western blot confirmed the
higher abundance of PGAM1, BST2, and SERPINB10 involved in
neutrophil activation inmale SLE compared to female SLE (Cai et al.,
2022).We observed significantly reducedmethylation of interferon-
regulated genes, including IFIT1, IFIT3, MX1, STAT1, IFI44L,
USP18, TRIM22, and BST2, in naïve CD4+ T cells of lupus patients,
indicating epigenetic transcriptional accessibility at these gene loci
(Coit et al., 2013).

Viral infection triggers the expression of IFNs and interferon-
stimulated genes (ISGs), which are crucial for regulating antiviral
responses. GBP1 is an ISG that exhibits antiviral activity against
various viruses (Bender et al., 2024). In infected tissues, infected
cells activate their own inflammatory response and release innate
and adaptive immune stimulatory cytokines, such as interferon
IFN-γ, to halt pathogen dissemination. Surrounding uninfected
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cells, in order to prevent their own infection, preemptively
initiate a cascade of ISGs to establish robust antipathogenic
activity. Although this process can potentially lead to self-damage,
uninfected cells typically do not undergo excessive inflammatory
reactions. The significant expression of GBP1 maintains cellular
viability under IFN-γ treatment (Fisch et al., 2023). qRT-PCR
analysis of GBP1, CXCL10, and MX1 mRNA expression in
peripheral blood mononuclear cells of SLE patients revealed
significantly higher levels in SLE patients compared to healthy
donors (Liu et al., 2018). Inflammatory RA synovium, CXCL10+

CCL2+ inflammatory macrophages exhibit distinct profiles of
proinflammatory and interferon response genes, including elevated
levels of CXCL10, CXCL9, CCL2, CCL3, GBP1, STAT1, and IL1B
(Zhang et al., 2021).

MX1 gene belongs to a class of ISGs. MX1 is an important
antiviral protein that can inhibit the replication of various RNA
viruses and some DNA viruses. The expression of the MX1 gene is
tightly regulated by type I and type III interferons. Upon binding of
interferons to their receptors, downstream JAK1 and TYK2 undergo
cross-phosphorylation and activation. Subsequently, activated JAKs
phosphorylate downstream signaling molecules STAT1 and STAT2,
inducing the formation of a STAT1-STAT2 heterodimer. This
heterodimer then recruits interferon regulatory factor 9, forming
the trimeric complex ISGF3, which upon nuclear translocation
binds to interferon response elements, promoting MX1 expression
(Haller and Kochs, 2020). In patients with MS undergoing IFN-
β therapy, there is a significant increase in the expression of two
key IFN-regulated genes, IFI44 and MX1, compared to newly
diagnosed MS patients. Furthermore, the expression of IFI44 and
MX1 after IFN-β treatment may be positively correlated, serving as
responsive indicators of IFN-β therapy. The IFI44/MX1 axis may
be one of the crucial regulatory factors in disease following IFN-
β therapy (Jabbari et al., 2023). In kidney tissue of MRL/lpr mice
and peripheral blood of LN patients, KLF5 andMX1 are both highly
expressed (Tao et al., 2023).

IFIH1 gene, which encodes the cytosolic viral RNA receptor that
activates type I interferon signaling, is considered a risk factor for
various AIDs, including classical psoriasis. A recent study suggests
that gain-of-function mutations in the IFIH1 gene encodingMDA5
lead to upregulated type I interferon responses, and individuals
harboring thesemutations exhibit phenotypes consistent with AIDs.
It is speculated that AID may be triggered by viral infections
in genetically susceptible individuals. Recent research has also
shown that mutations in the MDA5 helicase domain can result in
spontaneous SLE in mice. These IFIH1 (MDA5) mutation alleles
can activate Mitochondrial Antiviral Signaling Protein-dependent
signaling pathways in the absence of viral infection orwithout bound
viral RNA ligands (Wu et al., 2021). The IFIH1 rs1990760 T allele
is associated with susceptibility to T1D, SLE, MS, and RA. Our
results further demonstrate that common genetic factors underlie
multiple AIDs (Cen et al., 2013).

The TRIM family members are characterized by an N-terminus
containing three conserved domains, including a zinc finger domain
(RING finger), one or two B-box domains, a coiled-coil domain,
and a variable C-terminus, hence also known as the RBCC (RING,
B-box, and Coil-coil) family. The RING domains of most TRIM
proteins possess E3 ubiquitin ligase activity, playing crucial roles in
regulating viral replication, host antiviral innate immune responses,

and inflammatory reactions (Koepke et al., 2021). Several TRIM
molecules are known to inhibit the process of IAV infection.
TRIM19, TRIM22, and TRIM56 exhibit broad-spectrum antiviral
activity, with TRIM22 directly targeting the influenza virus NP
protein,mediatingNPprotein ubiquitination and its degradation via
the proteasomal pathway (van Gent et al., 2018). The TRIM protein
family, also known as the Tripartite Motif protein family, previous
studies on the expression patterns of human and murine TRIM
families have found that certain genes in this family, such as TRIM5,
TRIM19, TRIM22, and TRIM25, are induced and upregulated by
IFNs. Following viral invasion, the activated IFN response pathway
induces the expression of TRIM proteins. TRIM-α can directly
bind to viral capsid proteins upon cell entry, inhibiting viral RNA
uncoating.The expression of TRIM is a response to IFN stimulation
and is essential for controlling viral infections. Changes in TRIM22
expression are also associated with diseases such as MS, cancer, and
other AIDs (Kelly et al., 2014).These findings confirm the significant
role of these six immune-related genes in the development of MS.
Importantly, these six genes are closely associated with dysfunction
of different types of immune cells in immune infiltration, suggesting
their potential utility in predicting the risk of MS coexisting
with SLE and RA, and in reducing immune responses during
adjunctive therapy.

MS is considered the cornerstone of central nervous system
autoimmune demyelinating diseases, while systemic AIDs serve
as important analogs of MS. Our research indicates that potential
systemic autoimmunity is not uncommon in patients undergoing
possible CNS demyelination assessment (Karathanasis et al., 2022).
Here, we assessed the pathogenic genes shared by MS, SLE, and
RA: BST2, GBP1, MX1, IFIH1, TRIM22, and CXCL10. Our study
findings suggest that IFN-related gene expression and pathways
are common features in the pathogenesis of MS, SLE, and RA.
The activation of the type I interferon pathway may be a key
mediator of systemic AIDs presenting with features similar to
MS, providing potential avenues for future drug development to
enhance the diagnosis and treatment of comorbidities of MS with
rheumatic conditions. However, our study has several limitations.
Firstly, the diversity of sample types in the selected dataset may
introduce bias, and further validation is needed with more clinical
samples. Sencondly, although the validation dataset GSE123496 was
used to analyze predictive value, critical biomarkers and underlying
mechanisms still require validation in experimental studies. Finally,
the shared pathogenic mechanisms of MS with other AIDs, such
as autoimmune thyroid diseases and psoriasis, still require further
exploration.

Conclusion

This study identified key shared genes among MS, SLE, and
RA, proposing them as potential early diagnostic biomarkers. Our
findings provide the foothold for future studies on potential crucial
candidate genes for MS in SLE or RA patients. Additionally, the
dysregulated immune cell proportions and immune checkpoint
expressions in MS highlight the potential of these genes in disease
pathogenesis and treatment.
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