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Dietary intake of Vaccinium berries has demonstrated significant potential
in preventing many risk factors associated with metabolic syndromes in the
human population. In recent years, a multitude of research has shown the
role of antioxidants derived from Vaccinium berries on chronic diseases such
as cardiovascular disorders, diabetes, obesity, and cancer. Several studies
have also investigated the effect of Vaccinium berry consumption on their
ability to modulate the risk factors associated with oxidative stress, vascular
function, inflammation, and lipidmetabolism. Regarding cancer, studies showed
that the consumption of berries reduces inflammation, inhibits angiogenesis,
protects against DNA damage within the cell, and controls apoptosis and
proliferation rates in malignant tumours. However, which components are
responsible for the health benefits is still unclear. Reports show that whole
berry consumption usually confers positive effects on human health, and the
health-promoting potentials are likely due to the presence of polyphenols
with antioxidant activities. Among these polyphenols, various Vaccinium berry
species have been reported to contain anthocyanins and flavonoids. These two
polyphenolic compounds are known to have higher antioxidant activity and
are beneficial for human health. There are now several studies and human
clinical trials documenting the beneficial effects of Vaccinium berries, and
these findings suggest that they may be promising for preventing and treating
neurodegenerative diseases. This review focuses primarily on dietary Vaccinium
berries consumption effects on human health and their potential role as
therapeutic agents.
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1 Introduction

The eternal pursuit of finding and identifying health-promoting agents has changed
how we view our food sources. We have introduced superfoods, food supplements, and
nutraceuticals in developed countries, reinforcing the food industry’s further growth
(European Commission, 2006). Berries represent a large group of functional foods, also
popularly known as “superfoods” due to their high content of disease-preventing and
health-boosting chemicals (Ferlemi and Lamari, 2016). The genus Vaccinium L. (Ericaceae)
includes approximately 450 diverse species, including these main commercial crops such as
highbush blueberry (V. corymbosum L.), rabbiteye blueberry (V. virgatum Aiton, formerly
known as V. ashei J.M.Reade), lowbush blueberry (V. angustifolium Aiton), bilberry
(V. myrtillus L.), cranberry (V. macrocarpon Aiton), and lingonberry (V. vitis-idaea L.)
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(Retamales andHancock, 2018). In general, berry fruit consumption
has increased in recent years. Several research papers show that
the increased consumption of berries is associated with a reduced
risk of disorders linked with reactive oxygen species (ROS),
such as cardiovascular disorders, cancer, and other inflammatory
processes (Gomes-Rochette et al., 2016). A large number of
scientific research cites the effect of berry consumption in three
major groups: (a) physical and mental health maintenance;
(b) reduction of the rate of obesity; and (c) decreased rate of
chronic diet-related diseases, e.g., cardiovascular and metabolic
disorders, type II diabetes (Giampieri et al., 2015). Vaccinium
berries contain high concentrations of beneficial nutrients and
other bioactive phytochemicals, which has led them to become
the center of attraction for researchers working on the potential
role of these phytochemicals in preventing chronic diseases
(Colak et al., 2016). Many research papers have shown that
these active compounds, which are present in phenolic form, are
associated with high antioxidant activity. Additionally, there are
several studies suggesting that wild Vaccinium Berries contain
higher phenolic content and antioxidant activity than cultivated
berries (Braga et al., 2013; Dinstel et al., 2013; Kanget al.,
2015). Phenolic compounds present in Vaccinium berries are
classified into diverse groups, which include phenolic acids
such as hydroxybenzoic and hydroxycinnamic acids and their
derivatives, flavonoids (flavonols, flavanols, and anthocyanins,
and tannins. Tannins are further sub-grouped into condensed
tannins like proanthocyanidins and hydrolysable tannins (Ferlemi
and Lamari, 2016). Blueberries (Vaccinium spp.) contain the
highest amount of p-coumaric acid, chlorogenic acid, and other
caffeic acid derivatives, which are types of hydroxycinnamic acids
(Mattila et al., 2006; Määttä-Riihinen et al., 2004a; Kylli, 2010;
Häkkinen et al., 1999; Taruscio et al., 2004). When it comes to
flavonoids among the Vaccinium berries, lingonberries (V. vitis-
idaea L.), highbush blueberries, and American cranberries (V.
macrocarpon) are known to be the richest source of flavonols such
as quercetin and myricetin derivatives and aglycones (Määttä-
Riihinen et al., 2004b; Määttä-Riihinen et al., 2004a; Kylli, 2010;
Häkkinen et al., 1999; Taruscio et al., 2004). These chemical
compounds possess high antioxidant activity (Wilms et al., 2005)
and play a major role in preventing many chronic diseases
(Castañeda-Ovando et al., 2009; Duthie et al., 2006). However,
the concentration of these compounds depends on the species,
genotype, growing condition and their post-harvesting techniques
(Manganaris et al., 2014; Kresty et al., 2006).

Anthocyanins are important secondary plant metabolites,
primarily occurring as glycosides of their aglycone anthocyanidins.
The contents of the small edible berries are responsible for
their bright colours as this pigment is evenly distributed in the
epidermal tissues of the berries (Del Bo et al., 2015). The pigment
in anthocyanins is water-soluble and responsible for orange, red,
purple, and blue in fruits and vegetables (Delgado-Vargas et al.,
2000). Anthocyanins are present in substantial quantities in
glycosylated and various other forms in European cranberries
(V. oxycoccus) and blueberries (Del Bo et al., 2015). European
blueberries or bilberries contain fifteen anthocyanins, such as
delphinidin and cyanidin monoglycosides, malvidin glycosides,
petunidin, and peonidin. In the case of American cranberries, the
principal anthocyanins are cyanidins, while in the case of European

cranberries, it is peonidins (Norberto et al., 2013; Kaume et al.,
2012; Gopalan et al., 2012; Seeram, 2008; Paredes-López et al.,
2010). Similar to American cranberries, lingonberries also mainly
contain cyanidin monoglycosides. Besides cyanidins, high and
lowbush blueberries, lingonberries, and American cranberries
contain procyanidins such as catechin and epicatechin polymers
(Norberto et al., 2013; Zafra-Stone et al., 2007).

Commonly consumed Vaccinium berries have been studied for
their effects on human health, but the nature and extent of their
impact on humans remain vague. Hence, this article aims to provide
a comprehensive overview of human clinical trials investigating
the acute and chronic effects of Vaccinium berry polyphenols
derived from fruits, their extracts and their derived products on
inflammation, gut microbiota, diabetes, heart health, cancer, and
brain activities.

2 Bioactive compounds

Plants produce numerous bioactive compounds, which belong
to different classes of secondary metabolites including polyphenols,
phytosterols, lipoates, carotenoids, etc. (Acquaviva et al., 2021;
He et al., 2024). In berries, the most abundant bioactive compounds
are phenolics, which are mostly found in leaves, fruits, and
seeds but can also be present in other parts of plants. The
chemical structure of the phenolic compounds carries one or
more aromatic rings with one or more hydroxyl groups (Szajdek
and Borowska, 2008; Nile and Park, 2014; Del Bo et al., 2015;
Skrovankova et al., 2015). Phenolics are either present in free or
conjugated forms with water or fat-soluble compounds (Figure 1).
Conjugated forms of phenolics are predominantly present as
conjugated hydroxycinnamic acids, flavonol glycosides, and
anthocyanins (Määttä-Riihinen et al., 2004a). These phenolics
are not species-specific but shared across the genera. Among the
berry polyphenols, anthocyanins constitute a large percentage.
They have a characteristic C6−C3−C6 carbon structure and are
glycosylated polyhydroxy and polymethoxy derivatives of flavylium
salts (Wallace, 2011). A study has reported that anthocyanins have a
glycosidic structure containingmore than two sugarmolecules, such
as galactose, arabinose, xylose, and glucose, that effectively connect
with aglycon and form through the phenylpropanoid pathway.
Anthocyanins have more than 600 compounds and more than 30
anthocyanidin compounds (Bilawal et al., 2021).Themajor phenolic
compounds (anthocyanins) found in Vaccinium berries are listed in
Table 1. Anthocyanins are uniquely characterized by an oxonium
ion on the C ring and are highly pigmented (Pandey and Rizvi,
2009). Among these anthocyanin compounds, quercetin, myricetin
and their glycosidic derivatives reach up to 30%. Anthocyanins,
including procyanidins and anthocyanidins such as cyanidin,
malvidin, peonidin, delphinidin, and petunidin, can account for up
to 24% of all polyphenolic compounds. Phenolic acids primarily
include p-coumaric acid, chlorogenic acid, caffeic acid, ferulic
acid and vanillic acid. They account for up to 12% of the total
polyphenols (Nemzer et al., 2022).

Plant phenolics were regarded as antinutritional and toxic for
a long time as these compounds’ chemical nature of functioning
as an inhibitor to proteolytic, lipolytic and glycolytic enzymes
reduces their ability to absorb nutrients (Olas, 2018). However,

Frontiers in Molecular Biosciences 02 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1520661
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Ghosh et al. 10.3389/fmolb.2024.1520661

FIGURE 1
General classification of Vaccinium berry polyphenols and their main representatives.

the toxicity of the phenolic compounds derived from berries was
generally unnoticed in the previous studies, while the benefits were
observed. Apart from being a source of non-nutritive compounds

such as phenolics (Singh and Basu, 2012), Vaccinium berries also
contain a wide range of nutritive compounds such as simple
sugars like glucose and fructose, minerals, for example, phosphorus,
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TABLE 1 Major polyphenols found in Vaccinium berries.

Type of berry Scientific name Types of polyphenols References

Bilberry Vaccinium myrtillus delphinidin-3-O-glucoside, cyanidin-3-O-glucoside,
malvidin-3-O-glucoside

Määttä-Riihinen et al. (2004a)

Blueberry Vaccinium spp. delphinidin 3-O-galactoside, -arabinoside; malvidin
3-O-galactoside, petunidin 3-O-galactoside

Cho et al., 2004, Mäaättä-Riihinen et al., 2004a

Cranberry V. macrocarpon peonidin 3-O-galactoside, -arabinoside; cyanidin
3-O-galactoside

Zheng and Wang (2003)

Lingonberry V. vitis-idaea cyanidin 3-O-galactoside, peonidin 3-O-galactoside Määttä-Riihinen et al. (2004a)

calcium, iron, potassium, magnesium, manganese, sodium and
copper, etc. (Del Bo et al., 2015; Szajdek and Borowska, 2008).
Iron and manganese are essential components of antioxidant
enzymes among these above-mentionedminerals.Moreover, berries
contain vitamins A and E, reducing inflammation and acting
as antioxidants (Skrovankova et al., 2015). Apart from that,
berries contain high concentrations of dietary fibres and low
concentrations of lipids. These fibers reduce the concentration of
low-density lipoproteins (LDL) in blood serum and reduce the
chances of occurrence of cardiovascular and neurodegenerative
diseases and cancer. All these nutritive, non-nutritive compounds,
vitamins, andminerals in theVaccinium berries synergistically affect
human health (Olas et al., 2016).

Apart from the polyphenolic compounds, Vaccinium berries
also contain major lipid groups such as unsaturated fatty
acids, sterols, terpenoids, and others that have high biological
activity. These lipids are different from those found in mammals,
which is why consuming these lipids has a significant role in
human metabolism (Klavins et al., 2015). The first report of the
presence of lipids was investigated in cranberries (Croteau and
Fagerson, 1969). Klavins et al. (2015) studied the lipid profile of
blueberry, bilberry, lingonberry and cranberry grown in the wild
in Latvian forests and bogs. The lipid profile revealed 111 different
types of lipid fractions, including fatty acids, sterols, triterpenoids,
alkanes, phenolic and carboxylic acids and carotenoids. Since
then, this group of compounds has been studied in many berry
species. However, there is no detailed report on lipids found in
Vaccinium berries.

3 Biological activities

3.1 Overview of biological activities

Due to the response to the biotic and abiotic stresses, plants
produce phytochemicals. They are also known as secondary
metabolites. Like other fruits and vegetables, berries were found to
be a great source of bioactive phytochemical components. Berry
phytochemicals comprise bioactive components such as tannins,
polysaccharides, alkaloids, vitamins, flavonoids, and other trace
elements. They also contain sugar and fiber, which increases fruit
taste and possesses many biological properties. In berries, these
bioactive properties are directly related to the concentrations of

the various phytochemicals in these fruits. Berry research has
always been generally focused on their antioxidant properties. The
antioxidant properties of these phytochemicals reduce oxidative
damage to DNA, RNA, proteins and lipids at the cellular level by
scavenging reactive oxygen species (ROS) (Bilawal et al., 2021).
ROS are responsible for triggering aging and several inflammatory
conditions, as well as cancer (Sosa et al., 2013; Nemzer et al.,
2022). They also promote the regeneration of other antioxidants
and endogenous antioxidant defense systems (Bujor et al., 2019).
The imbalance between oxidants and antioxidants results in
abnormalities. It produces significant ROS, includingO2

−, HO−, NO,
and RO−, which interferes with the cellular processes (Bujor et al.,
2019; Maya-Cano et al., 2021). These superoxide ions can convert
into hydrogen peroxide (H2O2), which can further convert into
the highly reactive hydroxyl radical (OH−). Hydroxyl radicals, due
to their high reactivity, cause oxidative damage, including lipid
peroxidation in membranes, oxidative modification of proteins, and
oxidative damage to DNA (Sosa et al., 2013).

Various methods have been used to determine the antioxidant
activity of Vaccinium berries. Among them, the Folin-Ciocalteu
method, the copper ion reducibility assay (CUPRAC), the ferric
ion reducibility assay (FRAP), the DPPH (2, 2-diphenyl-1-
picrylhydrazyl) radical scavenging method, and the ABTS method
were mostly used in the scientific literature (Bujor et al., 2019).
Goyali et al. (2013) examined the oxidative capacity of lowbush
blueberry (V. angustifolium). It was found that the total phenolic
content (TPC) value ranged from 34.2 to 42.7 mg GAE/g FW,
total flavonoid content (TFC) from 12.7 to 22.3 mg CE/g FW,
and proanthocyanidin content (PAC) from 4.7 to 6.5 mg CE/g
FW in the greenhouse-grown and their cutting counterparts. In
another study on half-high blueberries, results of the biochemical
assays of the greenhouse-grown and somatic embryogenesis-
derived plants revealed that TPC varied from 0.26 to 0.46 GAE/g
lw, TFC varied from 7.93 to 11.65 CE/g lw, and antioxidant
activity (AA) varied from 0.08 to 14.85 GAE/g lw. The results
showed that the propagation method and genotype impact the
phenols and flavonoids in the leaves (Ghosh et al., 2018). A
study on V. oxycoccos and V. macrocarpon compared the AA
by the Folin-Ciocalteu method. It was found that polyphenol
quantity in V. macrocarpon was 296.3 mg/100 g fresh weight while
in V. oxycoccos, it was 288.5 mg/100 g fresh weight. However,
DPPH revealed that V. oxycoccos had a stronger antioxidant
potential (16.4 μmol TE/g FW) than V. macrocarpon varieties
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FIGURE 2
Bioactive properties of major Vaccinium berry-derived polyphenols.

(13.08 μmol TE/g FW), which led to the inference that the
concentration of resveratrol in the analyzed samples of both
the species that may have an impact on the AA of the varieties
(Borowska et al., 2009). The antioxidant capacity of the Vaccinium
species has been tested in in-vivo studies as well. A study was
conducted on male Drosophila melanogaster to analyze the anti-
aging effect of anthocyanins derived from the bilberry extracts. It
was reported that the administration of anthocyanin extracts at
the concentrations of 2.5, 5.0 and 10.0 mg/mL extended the life
of the flies by 9.16%, 11.90% and 6.88%, respectively, compared
to the control sample (Zhang and Dai, 2022). Several pieces of
research show that the effect of phytochemicals derived from
Vaccinium berries is directly associated with their anticancerous
activities (Juranić and Žižak, 2005). Not only anticancerous
properties, but numerous studies have shown that all these
components are believed to hold a broad spectrum of biomedical
functions, including anti-inflammatory, antimicrobial, antiviral
and antioxidant properties (Figure 2) (Puupponen-Pimia et al.,
2004; Seeram, 2008; Skrovankova et al., 2015). Due to their health-
promoting activities, these berries are highly recommended for
the human diet, as their antioxidant effects have been explored
in several in vitro and in vivo studies (Juranić and Žižak, 2005;
Skrovankova et al., 2015) (Table 2).

Studies have reported that adding fruits to our diet reduces
the risk of chronic diseases like cancer, type II diabetes, obesity,
and cardiovascular disorders (Skrovankova et al., 2015). It was
revealed that dietary intake of flavonoids is associated with a
lowered risk of all-cause mortality (Liu et al., 2017), including
CVD. However, it is important to understand that all subclasses of
flavonoids are not equally involved with cardioprotection, as there
is a huge gap between flavonoids’ bioavailability and bioactivity.
Anthocyanins, a subclass of flavonoids, are one of the main

phytochemicals present in Vaccinium berries. It was found that
anthocyanins have a greater bioavailability than was previously
estimated (Czank et al., 2013). Several in-vitro studies have shown
that anthocyanins are as bioactive as their parent compounds and
sometimes even more (Amin et al., 2015; Keane et al., 2016).
Anthocyanins are known to stimulate anti-inflammatory, anti-
atherogenic, antioxidant and vasodilatory actions (Castaneda-
Ovando et al., 2009; Edwards et al., 2015; Wang et al., 1999). Not
only that but there is also a growing body of evidence revealing
that dietary inclusion of anthocyanins improves in vivo vascular
health (Fairlie-Jones et al., 2017; Jennings et al., 2012) as they have a
potential underlyingmechanism of augmenting endothelial-derived
nitric oxide (NO) bioavailability. It was found that anthocyanins can
directly or indirectly increase NO availability either by upregulating
endothelial nitric oxide synthase and L-arginine pathways or
via optimizing nitrate-nitrite-NO pathway and reducing NO
degradation by their antioxidant activities (Edwards et al., 2015;
Rocha et al., 2014). NO is an important molecule as it regulates
endothelial homeostasis. Anthocyanin displays strong antioxidant
activities, and foods high in anthocyanin have been shown to
improve endothelial function (Rodriguez-Mateos et al., 2013).
Research on the effect of flavonoid intake on mortality showed that
intake of anthocyanidins is positively correlated with decreased
risk of CVD mortality (Summary relative risk = 0.89, 95%
CI: 0.83, 0.95) when tested amongst 5 cohorts (Grosso et al.,
2017). All the available research done in vitro and in vivo on
antioxidant and anticancerous properties of Vaccinium berries has
advanced our understanding of their effects on human health and
diseases.Therefore, the current review comprehensively summarizes
what is currently known about the medicinal potential of
these berries.
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TABLE 2 Effect of Vaccinium berry consumption on metabolic syndrome and risk factors modulation.

Type of berry Intervention Results References

Blueberry

8-week randomized (R), single bound
(SB), placebo-controlled (PC), parallel
intervention (PI)

Reduced systolic and diastolic blood
pressure

Basu et al. (2010)

Diabetic C57b1/6J mice model with
acute feeding of blueberry extracts with
Labrasol (Gavage- 500 mg/kg body wt.)

Lowered elevated blood glucose levels Grace et al. (2009)

8-week, R, double-blind (DB),
PC, PI

Reduced systolic and diastolic blood
pressure, increased NO plasma levels
and superoxide dismutase activity

Johnson et al. (2015)

In vitro-TC-tet model 2.8-fold increase in cell proliferation Martineau et al. (2006)

6-week R, DB, PC, crossover
intervention (CI)

Reduced endogenous and oxidatively
induced DNA damage

Riso et al. (2013)

6-week R, DB, PC, PI Higher insulin sensitivity Stull et al. (2010)

6-week R, DB, PC, PI Increased blood pressure and insulin
sensitivity

Stull et al. (2015)

Bilberry

4-week, R, C, PI Decreased serum levels of CRP, IL-6,
IL-15, TNF-α, MIG

Karlsen et al. (2010)

8-week R, Controlled (C), PI Reduced serum levels of hs-CRP, IL-6,
IL-12 and inflammation score and
decreased expression of MMD and
CCR2 transcripts

Kolehmainen et al. (2012)

5-week, R, CI Decreased body weight, waist
circumference, increased insulin
sensitivity

Lehtonen et al. (2011)

R, C, 2 arm, chronic feeding (24 weeks)
in type II diabetic patients

Significantly lowered fasting plasma
glucose and homeostasis
model assessment for insulin
resistance index

Li et al. (2015)

Diabetic Mice model with chronic
feeding of bilberry extract for 5 weeks

Improved hyperglycemia and insulin
sensitivity

Takikawa et al. (2010)

Cranberry

8-week, R, DB, PC, PI Reduced ox-LDL, MDA and HNE
plasma/serum levels

Basu et al. (2011)

12-week R, C, PI Increased insulin levels after placebo
treatment

Chambers and Camire (2003)

Post-prandial (PP) 4-week
R, DB, CI

Increased flow mediated dilation and
reduced carotid-femoral pulse wave
velocity (a measure of central aortic
stiffness) and HDL-cholesterol

Dohadwala et al. (2011)

12-week, R, PC, DB, PI Lower total cholesterol Lee et al. (2008)

60 days, PI Decreased serum homocysteine levels,
lipoperoxidation, and protein oxidation,
increased serum folic acid levels

Lozovoy et al. (2013)

2-week intervention Reduced BMI, plasma ox-LDL levels,
and higher Total plasma antioxidant
capacity

Ruel et al. (2005)

(Continued on the following page)
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TABLE 2 (Continued) Effect of Vaccinium berry consumption on metabolic syndrome and risk factors modulation.

Type of berry Intervention Results References

12-week intervention (3x 4-week
intervention with 125, 250, and 500 mL/day
cranberry juice)

Decreased body weight, BMI, waist
circumference, waist-to-hip ratio, total
HDL cholesterol apo
B, after intervention with 250 and 500 mL
cranberry juice
Increased plasma nitrite/nitrate following
intervention with 500 mL, and higher
plasma antioxidant capacity following 250-
and 500-mL cranberry juice. Higher HDL
cholesterol following 250 mL
cranberry juice

Ruel et al. (2006)

12-week intervention (3x 4-week
intervention with 125, 250 and 500 mL/day
cranberry juice)

Reduced ox-LDL following 250 and 500 mL
cranberry juice and decreased systolic
blood pressure, s-VCAM, ICAM plasma
levels following 500 mL cranberry juice.
Decreased ox-LDL, ICAM plasma levels in
subjects
With previous history of metabolic
syndrome following 12-week intervention
Higher HDL cholesterol following 250 and
500 mL cranberry juice

Ruel et al. (2008)

4-week, PC, DB, CI Reduced arterial stiffness and global blood
pressure

Ruel et al. (2013)

12-week, R, DB, PI Reduced glucose level Shidfar et al. (2012)

PP intervention Decreased plasma insulin and glycemic
response

Wilson et al. (2008)

PP cross-over
Intervention

Decreased glycemic and insulinemic
response following SDC-LS

Wilson et al. (2010)

Lingonberry

Administration of Quercetin-rich extract
from lingonberry to C2C12 myoblasts

Increased insulin-independent glucose
uptake and stimulated AMPK

Eid et al. (2010)

RCT, 4 arm, PP crossover Reduced sucrose-induced PP glucose and
insulin concentrations during the first half
an hour post-intake
Prevented sucrose-induced late PP
hypoglycemic response

Torronen et al. (2012)

3.2 Anti-inflammatory effect

Inflammation is known as the first line of defense in animals
in response to the attack of pathogens, allergens, or any kind of
tissue injury. As a result of the inflammatory response,macrophages,
which are part of our immunity system, release inflammatory
mediators such as interleukins, nitric oxide (NO), tumour necrosis
factor-α (TNF-α), and prostaglandin (PGE2) (Joseph et al., 2014).
Usually, overexpression of such mediators is associated with a
response to type II diabetes, cancer, and cardiovascular diseases
(CVDs) (Joseph et al., 2016). Over the years, much-accumulated
data on pre-clinical studies of mice shows that Vaccinium berries,
such as blueberries, reduce adiposity while increasing insulin
sensitivity and decreasing inflammatory responses (Land Lail et al.,
2021). A study on blueberries and blackberries disclosed that a
daily dietary intake of 9–18.9 mg/kg BWof phenolic extract reduced
cholesterol in blood plasma and metabolic dysfunctions induced by

high-fat diet (HFD) in C57BL/6J mice (Joseph et al., 2016). Another
study showed that the continuous intake of Nordic wild blueberries
with HFD (45% fat) for 12 weeks slows down weight gain because
of obesity-induced inflammation in C57BL/6 (Mykkänen et al.,
2014). Similarly, HFD mixed with blueberry powder for 12 weeks
helped to restore innate immune response and T-cell proliferation
in HFD-induced obese mice (Lewis et al., 2018). This also shows
that consuming an adequate quantity of blueberry with anHFDmay
target the crucial factors in immune response and inflammation.
A study in macrophages (RAW 264.7) revealed that blueberry
anthocyanin reduced the expressions of two cytokines, such as
Tumor necrosis factor α (TNFα) and Interleukin 1β (IL-1β), after
3 h of treatment by suppressing the NF-kB pathway expression
(Lee et al., 2014). A study on V. floribundum revealed that phenolic
extract of the berries reduced lipid accumulation and inhibited the
production of anti-inflammatory response-inducing enzymes such
as PGE2, NO, COX-2, and iNOS in macrophages (LPS-RAW 264.7)
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(Schreckinger et al., 2010). The antioxidant and anti-inflammatory
effects correlate with phenolic content in berries being dependent on
the species, varieties, and geographical location (Grace et al., 2014).

3.3 Maintenance of gut microbiota and
antimicrobial and antiviral activities

Dietary consumption of berries is also known to help grow
bacteria in the gut. Berries contain polyphenols, which promote
symbiotic bacteria, reducing dysbiosis disorders (Pap et al., 2021).
Phenolics and flavonoids present in the berries are also found to
be effective against pathogenic bacteria and fungi (Kranz et al.,
2020).The human gutmicrobiota consists of viruses, bacteria, fungi,
protozoa, and archaebacteria (Burgos-Edwards et al., 2020). A berry
diet can promote the growth of beneficial microbiota and inhibit
negative bacterial populations in the gut. Studies have shown that
black raspberries and Vaccinium berries, such as blueberries and
lingonberries, help increase the growth of Lactobacillus and some
of their subspecies, the population of Bifidobacterium, and help
in slowing down obesity-related problems (Pap et al., 2021). A
study revealed that cranberry juice has a strong activity against co-
adhesion and co-aggregation of oral plaque bacteria (Gupta et al.,
2015). In another study, several types of berry extracts, including
lingonberry (V. vitis-idaea), bilberry (V. myrtillus), were found
to have antibacterial effects against commonly found pathogenic
bacteria such as Escherichia coli, Staphylococcus aureus, Listeria
monocytogenes, and Bacillus cereus (Tian et al., 2018). Berry and
leaf extracts of lingonberry have shown maximum anti-microbial
effects against S. aureus (strain ATCC-25923) and MRSA (clinical)
oral cavity isolates (Kryvtsova et al., 2020). Research done on
Romanian blueberry (var. Elliot) showed that minimum inhibitory
concentration of leaf extract was discovered to be highly effective
against bacterial strains such as S. aureus, Escherichia faecalis,
Rhodococcus equi, E. coli, and Klebsiella pneumoniae and a few
Candida fungal strains, such as C. albicans, C. zeylanoides, and C.
parapsilosis (Ștefanescu et al., 2020).

3.4 Antidiabetic effect

Diabetes mellitus (DM) is a chronic disease which is associated
with other lethal diseases, including hypertension, obesity,
cardiovascular diseases, and hyperlipidemia. DM is classified into
type I and type II; among these, type II contributes to more than
90% of all diabetes globally (Batool et al., 2021; Skyler et al., 2017).
According to the World Health Organization (WHO), 108 million
in 1980 and 422 million in 2014 were living with diabetes. A report
done by Cho and co-workers in 2018 revealed that 451 million
adults were diagnosed globally with diabetes, and it was predicted
to reach up to 693 million by 2045 (Cho et al., 2018). Either form
of DM is known to increase the risk of serious chronic illnesses
such as blocking heart and blood vessels and affecting kidneys,
eyes and nerve functions. This is due to the high blood sugar
level, which affects and damages the nerves and the blood vessels
controlling these organs. Blockage of the heart and blood vessels
may also cause complications like CAD and stroke (Edirisinghe and
Burton-Freeman, 2016). Not only CAD but CVD is also known to

be the prime cause of death in patients with DM (Grundy et al.,
1999). Several researchers have investigated and supported the
idea that berry polyphenols have an antidiabetic effect, which is
usually associated with glucose homeostasis. Glucose homeostasis
can be regulated in an insulin-dependent and independent manner.
Polyphenols derived from berries have been studied for years for
their effects on insulin-dependent glucose metabolism. This can be
achieved by regulating insulin secretion via modulating pancreatic-
cell function and peripheral tissue sensitivity (Edirisinghe and
Burton-Freeman, 2016). It was found that Canadian blueberry
extracts increased 3H-thymidine incorporation in TC-tet cells and
increased cell proliferation by 2.8-fold (Martineau et al., 2006).
In another study, it was seen that dietary supplementation of
freeze-dried whole blueberry powder in a double-blinded and
placebo-controlled sensitivity had antidiabetic effects in obese,
nondiabetic, and insulin-resistant human participants (p < 0.05)
when administered for over 6 weeks and reported to improve insulin
sensitivity (Stull et al., 2010). In diabetic C57b1/6J mice, feeding
them a blueberry diet also displayed antidiabetic activity. Blueberry
fraction enriched with phenolics and anthocyanin, in addition to
Labrasol (a pharmaceutically acceptable self-micro emulsifying drug
delivery system), was reported to lower raised blood glucose levels
when fed to diabetic C57b1/6J mice. The hypoglycemic effect of
the concoction was equivalent to that of metformin, a well-known
antidiabetic drug (Grace et al., 2009). A study on postprandial
healthy women showed that the administration of either whole
lingonberries or extracts reduced sucrose-induced postprandial
glucose and insulin concentrations throughout the first 30 min of
consumption. Furthermore, it was seen that during the second-
hour post-intake, the concentration declined slowly but improved
the overall glycemic profile (p < 0.05). Additionally, the investigation
showed that whole berries and extracts stopped the sucrose-induced
late postprandial hypoglycemic response and the compensatory
free fatty acid recovery (Torronen et al., 2012). Schell et al. (2017)
experimented with the anti-diabetic activities of cranberry extract
in T2D and revealed that administration of dried cranberry
significantly improved the postprandial glucose excursion. These
situations revealed that the increasing incidence of DM and
its associated diseases can be controlled with a Vaccinium
berry-rich diet.

3.5 Cardioprotective effect

Several studies have shown a strong connection between berry-
derived anthocyanins and cardiovascular health. Clinical studies
such as the Kuopio Ischemic Heart Disease Risk Factor Study for
a follow-up of around 13 years revealed a considerably lowered
risk of CVD-associated death among men who had a significantly
higher quartile of berry intake (>408 g/day) than men with the
lowest intake (<133 g/day) (Basu et al., 2010). Although these results
positively impacted CVD risk factors, the models also showed
an inverse correlation between the intake of fruits, berries, and
vegetables and serumhaptoglobin in blood, an inflammationmarker
(Rissanen et al., 2003). A large group of postmenopausal women (n
= 34,489) contributing to a CVD mortality study associated with
blueberry intake for a 16-year follow-up period at Iowa Women’s
Health Study found that consumption of blueberries once a week
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significantly decreased coronary heart disease mortality using an
age-and energy-adjusted model (Mink et al., 2007). The most
significant conclusion drawn from all these clinical studies was
that dietary inclusion of berries in everyday diet might decrease
LDL oxidation and lipid peroxidation, reduce plasma glucose or
total cholesterol, and increase HDL cholesterol and plasma or
urinary antioxidant capacity (Basu et al., 2010). As a high content
of plasma glucose, lipids, and lipid oxidation have been associated
with coronary artery disease (CAD), these researchers suggested
that edible berries, including berries from the Vaccinium family,
can be consumed to reduce the risk factors of CAD significantly
(Krentz, 2003; Gupta et al., 2009). It was further shown that the
regular inclusion of berries in the diet also reduces the postprandial
metabolic and oxidative stresses, which are also associated with
CAD (O’Keefe et al., 2008). Cranberry has been proven to be very
effective against several health issues, including the management
of systolic blood pressure in healthy men (Ruel et al., 2008).
Another study showed that cranberry extract positively affects
lipid profiles in subjects with type I or II DM (Lee et al., 2008).
Various other studies showed that consuming blueberries and
cranberries significantly decreases postprandial oxidative stress,
specifically lipid peroxidation (Pedersen et al., 2000; Kay and
Holub, 2002; Mazza et al., 2002; Ruel et al., 2005; Ruel et al.,
2006). Many studies suggest the inverse correlation of flavonoid
(specifically anthocyanin) intake with the occurrence of CVD and
the elevated risk factors involved with CVD (Cassidy et al., 2011;
Jennings et al., 2012; McCullough et al., 2012). Berry polyphenols
positively affect the lipid profile and endothelial function of the
blood vessels by reducing blood pressure and platelet accumulation
(Pojer et al., 2013; Rodriguez-Mateos et al., 2014a; Rodriguez-
Mateos et al., 2014c). Not only that, but their antioxidant and
anti-inflammatory activities also support cardiovascular health
(Rodriguez-Mateos et al., 2014a; Pojer et al., 2013). Not only the
berry extracts from fresh or frozen fruits but baked goods with
lowbush blueberries (V. angustifolium) exhibited similar effects on
endothelial function (FMV) as with the drink made with freeze-
dried blueberry powder (Rodriguez-Mateos et al., 2014b). All
this available research suggests that dietary inclusion of berries
can potentially be used as a therapy for pre-hypertension and
hypertension management (Basu et al., 2010). However, none
of these clinical trials were found to interfere with biomarkers
responsible for inflammation, except in one case, it was found that
cranberry juice supplementation substantially decreases adhesion
molecules in healthy volunteers (Ruel et al., 2008).

3.6 Anticancerous effect

Among all the other healthy eating habits, including berries
in the everyday diet is one of the most promising ways to
prevent cancer (Baby et al., 2018). Phytochemicals present in the
berry extracts influence genome stability at several stages, such as
malignant transformation, initiation modulation, promotion and
progression of cancer (Duthie, 2007). In general, berry extracts
combat carcinogenesis in animal models. However, when exposed
to chemical carcinogens, blueberry extracts did not protect animal
models. DNA damage was noticed in the tumours, and there
was no evidence of a reduction in the proliferation rate of the

cancerous cells or size of the tumours when pre- or co-treated with
blueberry extract.These results further suggested that despite having
higher antioxidant capacity than other berry species, blueberries are
deficient in one or more cryoprotective phytochemicals, preventing
chemically induced cancer in the animal model (Aziz et al., 2002).

It was reported that the growth of the HT-29 cell lines in
colon cancer was significantly inhibited using phenolics, such
as anthocyanins and flavonols extracted from cranberry juice
(Desrouillères et al., 2020). In another study, lingonberry-derived
quercetin and procyanidin-A2 displayed anticancerous activity
against colon (HT-29), melanoma (IGR39), and renal (CaKi-
1) cancer. It was also observed that quercetin demonstrated
the best anticancerous activity against renal cell carcinoma
(CaKi-1) (Vilkickyte et al., 2020). Fermented catechol extracted
from fermented Rabbiteye blueberry (V. virgatum) extract along
with Lactiplantibacillus plantarum (CK10) resulted in inducing
apoptosis and inhibiting HeLa cell multiplication after 24–72 h of
administration (Ryu et al., 2019). Various flavonol compounds such
as kaempferol, quercetin, and genistein acid extracted from bilberry
or European blueberry (V. myrtillus) demonstrated cytotoxic effects
against HCT-116 colon cancer cells. This study further showed
that kaempferol had better anticancerous activity than other
flavonols, inducing apoptosis by preventing apoptosis proteins
(IAPs) inhibitors (Sezer et al., 2019). Extracts from Vaccinium-
berries such as blueberry, bilberry, cranberry, and lingonberry
contain anthocyanins and ellagic acid, which are known to exhibit
anticarcinogenic activities (Seeram, 2008). Other reports suggest
that cranberry extracts and press cake can significantly inhibit
cell growth in breast, prostate, skin, brain and liver cancer cases
by stopping the G1 stage of the cell cycle and initiating apoptosis
(Sun et al., 2002; Sun and Liu, 2006). Additionally, bilberry extracts
were found to induce programmed cell death in patients with
leukemia (Katsube et al., 2003). Extracts of several fruits, including
blueberries, blackcurrant, black chokeberries, and raspberries,
showed a strong antagonistic effect on the proliferation of breast
cancer cell line MCF-7 and the colon cancer cell line HT29 and
reduced their growth by up to 74% (Olsson et al., 2004).

3.7 Neuroprotective activity

There is much evidence supporting that oxidative stress of
reactive oxygen species (ROS) in cells is responsible for the
progression of neurodegenerative diseases such as Parkinson’s
disease, Huntington’s disease, amyotrophic lateral sclerosis,
and Alzheimer’s disease (Lim et al., 2024), and berry-derived
antioxidants were effective against neurodegenerative diseases
(Nile and Park, 2014). Berry antioxidants also demonstrate
neuroprotective activities, and several studies have shown that
phenolic components from the Vaccinium species have anti-
inflammatory and neuroprotective effects. In a study done with
blueberry and lingonberry, brain-derived cell cultures from ratswere
found to be significantly tolerant against glutamate excitotoxicity
when treated with blueberry extracts for 24 h. However, lingonberry
(V. vitis-idaea L.) extracts failed to provide any protection against
it. Additionally, leaf extracts of blueberry and lingonberry displayed
significant neuroprotective effects, while among the fruits, only
blueberry fruits showed neuroprotection on the same brain cells
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(Vyas et al., 2013). That is why further work has been done to
investigate the neuroprotective activity of blueberry leaf extract
in microglial cells derived from mice. Microglial cells are the
brain’s first line of defence cells; glutamate or α-synuclein was
administered tomicroglial cells to induce an inflammatory response.
The cells were treated with blueberry fruit and leaf extracts, which
decreased cell death and reduced inflammation after 24 h. This
result further points to the fact that a blueberry-rich diet, with
leaves or fruits, can protect against neurodegenerative disorders
(Debnath-Canning et al., 2020). Over the years, studies have
suggested that the inclusion of blueberries in a regular diet may
help with age-related and oxidative stress, which are responsible for
declined brain function (Wang et al., 2005; Krikorian et al., 2010).
Another report suggested that a blueberry-supplemented diet can
improve behavioural deficits associated with age or a high-fat diet
(Carey et al., 2014). Overproducing ROS and reactive nitrogen
species (RNS) free radicals cause aging and neurodegenerative
diseases. Cortical cell cultures derived from neonatal rat pups
were intoxicated with glutamate for 24 h, and it was seen that
glutamate was responsible for morphological disruptions such
as increased formation of dark punctae and disruption of cell
bodies. Glutamate-treated cells were administered with lingonberry
and blueberry leaf and fruit extract. They were found that, while
lingonberry fruits failed to provide any protection from glutamate
toxicity, the leaf extracts from both the berries and blueberry
fruit extract displayed no cell death in the presence of glutamate
(Kalidindi, 2014).

It was found that aged rats fed with blueberries have shown
a reduction of ischemia-induced apoptosis in brain cells which
is due to their capability of interacting with ROS and RNS,
which accumulated during the ischemic phase in the central
nervous system (Wang et al., 2005; Andres-Lacueva et al., 2005).
Krikorian et al. (2010) reported in older humans that improved
memory capabilities were detected by increased synaptic plasticity
as a result of microglial modulation of the microglia-neuron
crosstalk through the increase of the expression of CX3CR1 receptor
was associated with a blueberry rich diet (Meireles et al., 2016).
Memory loss is often associated with oxidative damage to lipids,
proteins, and nucleic acids. Oxidative damage to all three can
disrupt neural function. It was seen that bilberry extract was
significantly effective against oxidative damage by decreasing lipid
peroxides and increasing superoxide dismutase activity in the
brain. Additionally, it was found that long-term supplementation of
bilberry extract in the diet of the OXYS rats prevented learning and
memory deficits (Rahman, 2007; Uttara et al., 2009). These findings
specifically signify the effect of Vaccinium berry antioxidants on the
neuroprotection of brain function.

4 Conclusion

Several in vitro and in vivo studies now indicate that berries
positively impact human health by acting as strong anticancer and
antioxidant agents. They are an ideal dietary source of bioactive
components and could play a role in reducing cancer risk. The
unique phytochemical constituents in berries act individually or
synergistically to provide protection against several health disorders,
including cancer and CADs. It is evident from this review that a

lot has been done in this direction, but much more needs to be
done to pinpoint the molecular mechanisms associated with the
most beneficial phytochemicals that make up these nutritious fruits.
The review summarizes the effects of bioactive compounds present
in Vaccinium berries and their function against cardiovascular
and neurodegenerative diseases. It was seen that measurable
criteria like total anthocyanin or total phenolic content and total
antioxidant content may also be associated with the effectiveness
of health benefits. Overall, more in vivo data are required to
understand the mechanisms of action, while more human clinical
trials using different parameters such as gender, age, and any pre-
existing condition should be performed such new information
on the bioactive components of berries can be revealed, and the
existing information could be validated. Also, using berry phenolic
compounds as antimicrobial agents provides many possibilities for
use in the food andmedical industry. It will also be a very interesting
topic for future research priority by developing new ways for berry
compounds to avoid and manage antibiotic-resistant infections. In
addition to the phenolic compounds, phytosterols are well-known
for their antioxidant activities. Epidemiological and experimental
reports suggest that they help reduce cholesterol and potentially
protect against several types of cancer. Furthermore, berry lipids are
also used in many commercial products. These ignited a general
interest in studying these compounds in depth to understand
their potential application in cosmetics, pharmacy and the
food industry.
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