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Introduction: Heart failure is a leading global cause of mortality, with ischemic
heart failure (IHF) being a major contributor. IHF is primarily driven by coronary
artery disease, and its underlying mechanisms are not fully understood,
particularly the role of immune responses and inflammation in cardiac muscle
remodeling. This study aims to elucidate the immune landscape of heart failure
using multi-omics data to identify biomarkers for preventing cardiac fibrosis and
disease progression.

Methods: We utilized multi-omics data to elucidate the intricate immune
landscape of heart failure at various regulatory levels. Given the substantial size
of our transcriptomic dataset, we used diverse machine learning techniques
to identify key mRNAs. For smaller datasets such as our proteomic dataset,
we applied multilevel data cleansing and enhancement using principles from
network biology. This comprehensive analysis led to the development of a
scalable, integrated -omics analysis pipeline.

Results: Pleiotrophin (PTN) had shown significant upregulation in multiple
datasets and the activation of various molecules associated with dysplastic
cardiac remodeling. By synthesizing these data with experimental validations,
PTN was identified as a potential biomarker.

Discussion: The present study not only provides a comprehensive
perspective on immune dynamics in IHF but also offers valuable insights
for the identification of biomarkers, discovery of therapeutic targets, and
development of drugs.
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1 Introduction

Heart failure (HF) is a clinical syndrome typically characterized by impaired cardiac
pumping and/or filling capacity (Bozkurt et al., 2021). It affects an estimated global
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population of 60 million annually, resulting in high mortality
rates, severe symptoms, and substantial healthcare costs
(Savarese et al., 2023). Ischemic heart failure (IHF) has
consistently emerged as the primary cause of heart failure
owing to the persistent ischemic state of the myocardium,
which is often associated with coronary artery disease
(Gharbin et al., 2023).

Regulation of the immune response has emerged as a prominent
factor in the pathology of IHF, as prolonged ischemia induces
hypoxia and persistent inflammatory reactions, subsequently
leading to necrosis of the cardiac tissue, triggering ventricular
remodeling, which may ultimately result in irreversible damage
(Feng et al., 2023; Nian et al., 2023). In the early phase of
cardiac remodeling, fibroblasts undergo transformation into
myofibroblasts (MFBs) while simultaneously depositing the
extracellular matrix (ECM). Dysplastic remodeling of the non-
infarcted area consequently induces detrimental alterations in
the cardiac tissue and fibrosis may occur independently prior to
inflammatory blockade, making it a crucial target for heart failure
prevention (Polyakova et al., 2011; Rao et al., 2021). Despite the
substantial immune characteristics observed in IHF (Nian et al.,
2023; Polyakova et al., 2011; Rao et al., 2021) and the ongoing
development of multiple drugs focused on immune inhibition, a
sufficient target for preventing myocardial fibrosis has yet to be
discovered.

Numerous studies have used sequencing technologies, including
transcription, translation, and epigenetics, to investigate IHF. The
mechanisms underlying IHF exhibit considerable heterogeneity
at various regulatory levels. Research has systematically explored
IHF from multiple perspectives ranging from the epigenome to
the metabolome (Basak et al., 2015; Kanapeckaitė and Burokienė,
2021; Rong et al., 2022). Some studies have conducted multi-
omics analyses to elucidate the intricate landscape of IHF.
For example, integrated proteome and metabolome data from
ischemic and dilated cardiomyopathy samples have been used
to construct a protein–metabolite network (Li et al., 2020).
Additionally, a combination of single-nucleus sequencing (snRNA-
seq) and bulk RNA-seq has provided a comprehensive cell
atlas of IHF on a global scale (Chaffin et al., 2022). These
findings offer insights into the diverse biological contexts
underlying IHF.

In this study, we conducted a systematic investigation using
multi-omics data to discover novel immune markers in IHF that
could potentially be targeted for therapy. At the transcriptome level,
we identified key immune markers and developed a prediction
model through differential expression analysis, enrichment
analysis, and machine learning. For proteomic analysis, we
conducted protein-protein interaction (PPI) analysis and identified
a panel of protein markers by integrating various algorithms
and disease-specific profiles. Through the integration of co-
expression analysis and experimental validation, we have identified
the potential of candidate molecules as a novel biomarker. Our
objective was to gain a comprehensive understanding of the
immune landscape in IHF, thereby facilitating the development
of targeted therapeutic strategies aimed at enhancing diagnostic
precision and offering innovative treatment alternatives for
patients with IHF.

2 Materials and methods

2.1 Data acquisition and sample sources

The IHF-associated transcriptome profiles, encompassing the
microarray data (GSE5406, GSE57338, GSE1145 and GSE79962),
bulk RNA sequencing data (GSE48166, GSE116250, GSE46224
and GSE120825), and single-cell RNA sequencing (scRNA-
seq) (GSE121893), with their corresponding probe annotation
platforms, were acquired from the Gene Expression Omnibus
database (GEO) (Barrett et al., 2013) maintained by the National
Center for Biotechnology Information (NCBI, https://www.
ncbi.nlm.nih.gov/geo/). Details of the datasets are presented in
Supplementary Table S1. The proteome profile associated with
IHF, comprising 15 non-failing and six IHF samples from the
left ventricular region, was extracted from a study conducted by
Barallobere et al. (Barallobre-Barreiro et al., 2021). Additionally, a
list of genes related to the immune response was obtained from the
ImmPort database (https://www.immport.org/) (Zhou et al., 2019).

The studywas approved by the Ethical Committee ofGuangdong
General Hospital in Beijing, China. Written informed consent was
obtained from all patients, and the experiments were conducted
in accordance with the approved study protocol. We analyzed a
total of 10 heart samples, including five samples from patients
with IHF and five from individuals with healthy hearts. The heart
samples used in this study were exclusively sourced from the
heart bank of Guangdong General Hospital. Specifically, ischemic
cardiomyopathy heart samples were procured from failing hearts
acquired during heart transplantation, while samples from healthy
hearts were sourced from donor organs that were not used for
transplantation due to non-cardiac factors. A flowchart of the study
is presented in Figure 1.

2.2 The process of data preprocessing

Reference human genome and annotation files (GRCh38) were
obtained from the Ensembl database (https://www.ensembl.org)
(Cunningham et al., 2022). The probe ID of the microarray dataset
was converted to gene symbols based on GPL annotation. Raw
RNA-seq datawere extracted from the EuropeanNucleotideArchive
(ENA, http://www.ebi.ac.uk/ena) and subsequently converted into
counts. FastQC was used to assess the quality of the raw
reads, whereas Trimmomatic software was used to filter out
adaptors and low-quality bases. Clean reads were aligned to the
reference genome using HISAT2 (Kim et al., 2015). SAMtools
was used to convert the sequence-mapping format into a binary
mapping format. Additionally, HTseq 2.0 software was used to
obtain counts. The expression profile and phenotype file for
the dataset GSE121893 were loaded using the Seurat package
(Hao et al., 2021), with SCTransform used for standardization. The
“vars.to.regress” = “nCount_RNA” parameter was set to correct
expression values. To increase the sample size for subsequent
analysis, the GSE5406 and GSE57338 datasets were merged and
batch effects were removed using the removeBatchEffect function
in the limma package (Ritchie et al., 2015). Principal component
analysis (PCA) was performed using the PCA function in the
factoextra package.
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FIGURE 1
The overall flowchart. DEMs, Differentially expressed mRNAs; DEPros,
Differentially expressed proteins; DEIMs, Differentially expressed
immune mRNAs; DEIPros, Differentially expressed immune proteins;
LASSO, Least absolute shrinkage and selective operator; RFE, Recursive
feature elimination; GLM, Generalized linear model; SVM, Supporting
vector machine; GBM, Gradient boost machine; RF, Random forest;
NPPA, Natriuretic peptide type A; PTN, Pleiotrophin; LTBP2, Latent
transforming growth factor beta binding protein 2; OGN, Osteoglycin.

2.3 Identification and functional
enrichment analysis of differentially
expressed mRNA or proteins

The DESeq2 package was used to analyze the differential
expression levels of mRNAs in IHF (Love et al., 2014), using the
threshold criteria of |log2 fold change, FC| >0.5 and adjusted P-
value (Padj) <0.01. For proteins, the threshold criteria were set at

an adjusted P-value of <0.05. Visualization was performed using
the EnhancedVolcano package (Blighe et al., 2018). Enrichment
analysis of differentially expressed mRNAs (DEMs) and proteins
(DEPros) was conducted using ClueGO (Bindea et al., 2009)
in Cytoscape 3.10.1 (Shannon et al., 2003), with the reference
database including the gene ontology (GO), kyoto encyclopedia
of genes and genomes (KEGG) pathway, Reactome, and a
statistical significance threshold set at p < 0.01. The enriched
network was clustered based on groups and displayed with
the shared genes between different pathways. Subsequently,
the differentially expressed immune mRNAs (DEIMs) and
proteins (DEIPros) were then identified by intersecting with the
immune genes.

2.4 Selection of candidate DEIMs

The least absolute shrinkage and selective operator (LASSO)
logistic regression model with 10-fold cross-validation was
implemented using the glmnet R package (Friedman et al., 2010);
the recursive feature elimination (RFE) algorithm with 10-fold
cross-validation was performed using the Caret package (Kuhn,
2008). The receiver operating characteristic (ROC) curve, which
reflects the prediction accuracy of each selected factor in sample
classification, was calculated using the pROC (Robin et al., 2011)
package in R. Factors with an area under the curve (AUC) greater
than 0.78 were considered candidate DEIMs. The fitted model was
subsequently constructed by combining a pair of non-integrated
machine learning methods, the generalized linear model (GLM)
and support vector machine (SVM), with a pair of integrated
algorithms, the gradient boosting machine (GBM) and random
forest (RF). The ROC curve and AUC were calculated using the
Caret package.

2.5 External validation of key DEIMs in bulk
and single-cell datasets

The expression profiles of the candidate DEIMs were validated
using external gene expression datasets (GSE46224, GSE1145,
GSE79962, GSE48166, GSE116250, and GSE120825). Candidate
DEIMs expression was investigated in these datasets, followed by
calculation and visualization of the differences between IHF and
control samples using GraphPad Prism 8.0.2. Statistical significance
was set at p < 0.05.

2.6 Construction of PPI network

The PPI network was predicted using the STRING database
(Szklarczyk et al., 2015) and subsequently visualized using
Cytoscape 3.10.1. Each node in the network was color-coded
based on its differential expression level and the size of each
node represented its degree within the network; the width of the
edges indicated the betweenness centrality among the proteins. A
subnetwork was identified using the MCODE algorithm (Bader
and Hogue, 2003), from which a hub gene set was ranked and
selected using the cytoHubba plugin (Chin et al., 2014).The ranking
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scores were then illustrated as a heatmap using complex heatmap
package in R (Gu et al., 2016).

2.7 Western blotting and
immunohistochemistry analysis

PTN expression was determined using Western blot analysis of
samples collected from patients with ischemic cardiomyopathy and
healthy hearts. The protein sample volume was calculated for each
sample, and the protein to 4X loading buffer ratio was maintained at
1:3. Subsequently, the protein samples were denatured by boiling in
a metal bath at 95 C for 5 min. After centrifugation of the denatured
proteins and sample loading, the protein extracts were subjected to
electrophoresis, followed by transfer onto polyvinylidene difluoride
(PVDF) membranes for immunoblotting. For immunoblotting,
primary antibodies targeting PTN and GAPDH at 1:2000 dilution,
were used. Goat anti-rabbit IgG and Donkey anti-goat IgG were
used as secondary antibodies. Collagen fibers were quantified using
Masson’s trichrome staining. Immunohistochemistry (IHC) analysis
was conducted for PTN in IHF samples. For IHC, the tissue sections
were incubated with a primary rabbit polyclonal anti-PTN antibody
at a dilution of 1:200, followed by detection using a goat anti-rabbit
IgG secondary antibody.

2.8 Statistical analysis

Statistical analyses were performed using the R 4.2.3 and
GraphPad Prism 8.0.2 software packages. Data are presented as
mean ± standard deviation (SD) when a normal distribution was
followed. Pearson’s correlation analysis was used to examine the
relationships between variables, whereas Student’s t-test was used
to compare the differences between the two groups. Spearman
correlation analysis and the Mann-Whitney U test were used for
non-normally distributed data to assess correlations and group
differences, respectively. Statistical significance was denoted by ∗p
< 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001.

3 Results

3.1 Differential expression and enrichment
analysis highlight immune-related
characteristics in IHF

The GSE5406 and GSE57338 datasets were merged, and
batch effects were removed to generate a highly normalized
expression profile for subsequent analysis (Figure 2A). Based on the
clustering results, marked molecular differences emerged between
the IHF and non-IHF samples. Subsequently, 131 differentially
expressed mRNAs (DEMs) were identified using a threshold of
|log2FC| >0.5 and Padj <0.01 (Figure 2B). The top 10 DEMs
are listed in Supplementary Table S2.

Enrichment analysis of the DEMs indicated that multiple
pathways, including the acute inflammatory response and
regulation of leukocyte migration, achieved high enrichment
scores, emphasizing the pivotal role of immune responses during

IHF progression (Figure 2C). The upregulation of fibrosis-related
pathways was observed, which is suggesting that cardiac remodeling
plays a critical role in IHF. To investigate these important immune
characteristics, we intersected the identified DEMs with an immune
gene list sourced from ImmPort (https://www.immport.org/). This
analysis identified 28 differentially expressed immune mRNAs
(DEIMs), which were evaluated for their potential as biomarkers
in subsequent steps (Figure 2D).

3.2 Feature selection and validation of
candidate DEIMs using machine learning
techniques

The merged dataset, characterized by its substantial size and
normality, demonstrated consistent characteristics, thereby offering
promising prospects for machine learning applications. RFE and
LASSO regression were used as representative methods of feature
selection to screen candidate DEIMs.

By performing weight calculations for each factor and
constructing a fit model with the minimum lambda value
(Figures 3A, B), 10 DEIMs (HLA-DQA1, SERPINA3, CXCL14,
PLA2G2A, LTBP2, SPP1, PTN, OSMR, OGN, NPPA) were
identified using LASSO regression.When using RFE as the selection
method, 17 important variables, SERPINA3, PTN, IL1RL1, OGN,
CXCL10, PLA2G2A, OSMR, LTBP2, RNASE2, HLA-DQA1, NPPA,
FCER1G, CD14, CCR1, CXCL14, SPP1, and SLC11A1, were
identifiedwhen both the accuracy and kappa score reached their first
peak (Figure 3C). The importance of each variable was calculated
and ranked accordingly (Figure 3D). Proteins such as SERPINA3,
PTN, and OGN have been reported to be highly correlated with
cardiac fibrosis (Pál et al., 2023).

Seven candidate hub DEIMs (NPPA, LTBP2, OSMR, OGN,
HLA-DQA1, PTN, and SERPINA3) were identified as important
because they were commonly screened using the LASSO regression
and RFE algorithms (Supplementary Table S3). Subsequently,
prediction models for disease diagnosis were constructed using
the four algorithms (GLM, SVM, GBM, and RF) for each mRNA
(Figure 3E). When considering single-molecule predictions, the
GLM demonstrated the highest accuracy among all the algorithms,
with SERPINA3, OGN, and PTN showing the most precise
results. The overall performance of these candidate DEIMs was
visualized using ROC curves generated by the GLM, SVM, GBM,
and RF algorithms (Figure 3F). The total accuracy remained
consistent across the different algorithms; all AUCs exceeded 0.9,
suggesting high precision in predicting disease outcomes using these
candidate DEIMs.

3.3 External validation of candidate DEIMs
using multiple bulk RNA-seq datasets

The expression of the seven genes identified using the four
algorithms was investigated using multiple external datasets
(GSE48166, GSE1145, GSE46224, GSE116250, and GSE79962) for
validation (Figures 4B–F). Among the candidate DEIMs, OGN was
consistently upregulated in all external datasets, whereas LTBP2
was upregulated in five datasets, and NPPA was upregulated
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FIGURE 2
Differential expression and enrichment analysis in IHF. (A) Principal component analysis (PCA): Data from merged datasets GSE5406_GSE57338, with
batch effects removed, projected onto two dimensions (Dim1 and Dim2). Blue markers represent sample groups from GSE5406, and yellow markers
represent sample groups from GSE57338. (B) Differential expression analysis: Display of log2 fold change (|log2FC|) and -Log10 P-values (Padj) for
each mRNA comparing IHF to non-failure samples. The threshold of |log2FC| >0.5 and Padj <0.01 were used to obtain DEMs. Gray markers indicate
normally expressed mRNAs, blue markers indicate downregulated mRNAs, and yellow markers indicate upregulated mRNAs. Several key gene names
were marked, including SERPINA3, PLA2G2A, PTN, OGN, LTBP2 and NPPA. (C) Pathway enrichment analysis: Bar plot representing enriched pathways
among DEMs. Red, green, and purple markers highlight annotations from biological process (BP), cellular component (CC), and molecular function
(MF) in GO, respectively. Blue markers indicate annotations from KEGG analysis. (D) Intersection analysis: Visualization of the overlap between DEMs
and immune-related genes. IHF, ischemic heart failure; DEMs, Differentially expressed mRNAs; GO, Gene ontology; KEGG, Kyoto encyclopedia of
genes and genomes.

in four datasets. PTN was dysregulated in three additional
datasets, whereas OSMR, HLA-DQA1, and SERPINA3 were
less regulated in IHF. Ultimately, four DEIMs (OGN, NPPA,
LTBP2, and PTN) were identified as hub genes with dysregulated
expression in IHF (Figure 4).

3.4 ScRNA-seq data indicate cell-specific
expression patterns of key DEIMs

Single-cell analysis was conducted to elucidate the function of
each hub DEIM and its underlying mechanisms. Feature dimension
reduction facilitated the classification of 4,993 cells into nine distinct

clusters (Figure 5A). Marked differences were observed between the
cell populations of the non-failed and IHF samples (Figure 5B), with
each sample type corresponding to a specific cell cluster.

In contrast to the control group, IHF samples exhibited
substantial differentiation into endothelial cells, smooth muscle cells,
lymphocytes, and cardiomyocyte types I and II. Fibroblasts and
cardiomyocyteswere further classified into IHF-related and IHF-non-
related subtypes, which are believed to play crucial roles inmyocardial
fibrosisandmyocardialfibroblast transformation.ComparedtoNPPA,
the three hub DEIMs demonstrated cell-specific expression. PTN
was highly expressed in fibroblasts, indicating its potential role in
regulating fibrosis (Figures 5C–F). Consequently, OGN, LTBP2, and
PTN were identified as hub DEIMs.
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FIGURE 3
Feature selection of the candidate DEIMs. (A) Variation coefficient for each variable during the LASSO regression. (B) Cross-validation for penalty
parameter selection. (C) Accuracy variation with the count of total variables during RFE. (D) Importance of each optimal variable screened using RFE.
(E) Prediction performance and AUC value of each intersected candidate DEIM using four algorithms, including GLM, SVM, GBM, and RF. (F) ROC of the
candidate DEIM set, with each color representing GLM, SVM, GBM, and RF, respectively. DEIMs, Differentially expressed immune mRNAs; LASSO, Least
absolute shrinkage and selective operator; RFE, Recursive feature elimination; GLM, Generalized linear model; SVM, Supporting vector machine; GBM,
Gradient boost machine; RF, Random forest; ROC, Receiver operating characteristic; AUC, Area under the curve.
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FIGURE 4
External validation of candidate DEIMs. (A–F) The expression levels of the seven candidate mRNAs (NPPA, LTBP2, OSMR, OGN, HLA-DQA1, PTN and
SERPINA3) were assessed in six datasets (GSE5406_GSE57338, GSE48166, GSE1145, GSE46224, GSE116250, and GSE79962). The term
“GSE5406_GSE57338”refers to the combined data from GSE5406 and GSE57338. IHF refers to patients with ischemic heart failure, whereas control
refers to samples from healthy individuals.

3.5 Integrated analysis of hub DEIMs at the
transcriptomic and proteomic levels

After extracting the proteomic data, we identified
29 upregulated and 2 downregulated proteins as DEPros
(Figure 6A, Supplementary Table S4). Enrichment analysis
indicated the upregulation of the humoral immune response,
extracellular organization, and fibrosis collagen pathway
(Supplementary Figure S1A), prompting us to focus our research
on the immune landscape at the proteomic level. The differentially
expressedmolecules (Figure 6B) and enriched pathways (Figure 6C)
at the transcriptomic and proteomic levels were integrated
in the overall analysis. By conducting transcriptomic and
proteomic analyses, three hub proteins, PTN, LTBP2, and
OGN, were identified based on their significant differential
expression characteristics at both the transcriptomic and proteomic
levels (Figure 6D).

We examined the disease-specific expression patterns of these
three proteins (Figure 6E). Compared with LTBP2 and OGN, PTN
exhibited enrichment inmyocardial infarction, which is the primary
cause of cardiac ischemia and subsequent heart failure. These
findings suggest the specific expression of PTN in ischemia-related
heart diseases and highlight its clinical significance over other
biomarkers.

3.6 Screening the hub immune protein on
the basis of network analysis

After determining the differential expression of transcription
levels, we proceeded to analyze protein expression levels. The study
focused on investigating the immune landscape at the proteomic
level (Supplementary Figure S1A). Despite the effectiveness
of machine learning in handling large datasets, it falls short
of fully capturing the information encompassed within the
proteome profile. Consequently, we developed a novel analysis
pipeline for -omics data in limited quantities by implementing
multilevel cleansing and amplification techniques. A primary
PPI network was constructed with all proteins in the dataset
using STRING. However, due to the inclusion of references from
diverse species and tissues, there was a possibility of redundant
and nonspecific information within the database. Therefore, we
conducted multiple data-cleansing procedures based on network
analysis. The core module of immune-related proteins was
extracted by considering the differentially-expressed, immune,
and highly influential proteins involved and cluster scores.
Based on the results obtained using CytoHubba and MCODE
(Supplementary Figure S1B), a differentially expressed immune
module was identified as the primary contributor to the entire
network, wherein most proteins were significantly associated
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FIGURE 5
The single-cell dataset analysis of four key DEIMs was conducted in IHF and non-failure controls. (A) The UMAP plot indicates the separation of 4,933
cells into nine distinct subtypes. (B) Each cell population was accompanied by a corresponding sample statement. (C–F) Violin plots effectively
demonstrated the cell-specific expression patterns of the four key DEIMs (OGN, LTBP2, PTN and NPPA). DEIMs, Differentially expressed
immune mRNAs.

with fibrosis (Supplementary Figure S1C). Using Humanbase
prediction, interactions within the subnetwork were extensively
and specifically expanded, whereas the expression patterns of each
protein were validated based on comprehensive integrated data
(Supplementary Figure S2A). Ultimately, differentially expressed
immune proteins (DEIPros) displaying highly co-expressed
characteristics were identified, of which LTBP2 and PTN were
detected in the proteomic profile and were considered to be
pivotal DEIPros. Furthermore, the hub DEIPros were utilized
to predict the pathway-specific network using HumanBase. A
strong correlation was observed between fibroblast proliferation

and ECM organization (Supplementary Figures S2B, C). As an
DEIPro, PTN is involved in multiple interactions with fibrosis or
collagen factors, suggesting its potential role as a target for cardiac
remodeling.

3.7 Upregulated expression of PTN in the
left ventricle of IHF samples

To further validate these findings, we conducted a wet
experiment to investigate PTN protein expression in the
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FIGURE 6
Molecular expression and functional enrichment of hub DEIMs at the transcriptomic and proteomic levels. (A) The volcano plot of protein distribution
by comparing IHF samples with non-failure samples, based on the log2 fold change and the negative log10 P-values of each protein. The grey icon
represents the normal protein, the blue icon represents the downregulated protein, and the yellow icon indicates the upregulated protein. (B) The
common differentially expressed molecules at the transcriptomic and proteomic levels. (C) Common enriched pathway at the transcriptomic and
proteomic levels. (D) The log2 fold change of the hub molecules at the mRNA and protein levels. (E) The disease-specific score of the hub immune
molecule is indicated by color, which represents the DisGeNET ranking for each molecule.
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FIGURE 7
The expression of PTN was upregulated in IHF. (A) The Masson’s staining of myocardial collagen fibers was performed in IHF and control samples. The
corresponding graphs present the analysis of the percentage of myocardial collagen fiber area. (B) IHC staining and (C) Western blotting indicate an
increased expression of PTN in IHF samples compared to controls. Densitometric analysis and quantification of integrated optical density (IOD) were
presented in the corresponding graphs. Scale bar: 100 μm. The Western blotting presented in this figure has undergone brightness adjustments to the
background for improved clarity, without altering the relative intensities of the bands. P- values were calculated using Mann–Whitney U test and
Student’s t-test. ∗p < 0.05, 0.05 < ∗∗p < 0.001, ∗∗∗p < 0.001. IHF, Ischemic heart failure; IHC, Immunohistochemistry.

samples. Patients with IHF exhibited substantially more
severe left ventricular tissue fibrosis than the healthy controls
(Figure 7A). Semi-quantitative IHC analysis revealed a substantial
increase in PTN levels in IHF samples, particularly in the
intercellular stroma (Figure 7B). Western blotting demonstrated
a substantial elevation of PTN expression in IHF samples
compared to healthy controls (Figure 7C). These results indicate
a concordant upregulation of PTN protein expression in
IHF samples.

4 Discussion

IHF is a complex and heterogeneous disease that presents
significant challenges in diagnosis and treatment. In this study,
we conducted a multi-omics analysis to identify novel potential
biomarkers for IHF. By employing differential expression analysis,
enrichment analysis, machine learning, and network analysis
across transcriptomic and proteomic levels, several hub molecules
were identified. Among them, PTN has shown significant
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upregulation in multiple datasets and the activation of various
molecules associated with dysplastic cardiac remodeling. By
synthesizing these data with clinical findings, we have identified
PTN as a potential therapeutic and diagnostic target, which was
verified by IHC and Western blotting. These findings provide
valuable insights into the molecular mechanisms underlying
IHF. The current study proposes a pipeline for omics analysis
that is free from data quantity constraints, representing a
refreshing departure from traditional methodologies, particularly in
proteomic studies.

Clinical studies have highlighted the importance of preventing
dysplastic remodeling in idiopathic pulmonary fibrosis. Although
several immune targets, such as MMP/TIMP, TGFB, and IFN-γ,
have been developed for IHF treatment, they lack broad-spectrum
efficacy as reliable indicators (Romeo et al., 2023; Zhang et al.,
2022). In the present study, we identified three mRNAs and
proteins (OGN, LTBP2, and PTN) as potential biomarkers and
key players in fibrosis. The roles of OGN and LTBP2 in IHF
have been previously investigated (Romeo et al., 2023). However,
the involvement of PTN in fibrosis progression has rarely been
reported in previous research or comprehensively illustrated within
related pathways (Zhang et al., 2022). Therefore, we conducted a
systematic investigation to examine the participation and clinical
value of PTN.

Based on the findings of this case, PTN may function as
a fibrosis-related factor by mediating the autocrine regulation
of fibroblasts and inducing collagen secretion. Initially identified
as a neuron growth factor, subsequent studies revealed multiple
functions of PTN, including the promotion of vascular endothelial
growth and fibroblast proliferation (Gu et al., 2007; Perez-
Pinera et al., 2007).Molecular evidence also suggests its involvement
in diverse signaling pathways, activating downstream factors, such
as ALK and PI3K/AKT receptors, for various biological processes
(Perez-Pinera et al., 2008). In fibrosis caused bymitral regurgitation,
PTN is upregulated in the myocardial transcriptome, suggesting its
role in cardiac remodeling (Duggal et al., 2023). Based on these
findings, we propose that PTN could be synthesized during heart
failure to regulate collagen secretion, leading to overall extracellular
matrix deposition. Facilitation of fibroblast growth by PTN may
contribute to their transformation into cardiac fibroblasts, which
is another crucial factor driving the pathological remodeling of
cardiac muscle.

This systematic strategy has been widely applied in recent
studies, including the integration of multiple -omics datasets
and concordance with various aspects of biological activities.
Owing to the complex interactions between metabolic remodeling
and immune regulation in heart failure, relying solely on
immune indicators may not fully capture the comprehensive
profile of disease development. Although machine-learning
methods have shown promising results in data screening and
prediction, their performance needs to be validated using
a larger sample size. Accurately classifying different disease
types is challenging because of the heterogeneity observed in
the mechanisms of idiopathic heart failure. To address these
issues, future research should adopt a more systematic approach
by considering distinct modules, including metabolism and
immune responses, while integrating -omics data to construct a
multidimensional model.
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