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Editorial on the Research Topic

Revolutionizing life sciences: the nobel leap in artificial intelligence-
driven biomodeling
s

1 Artificial intelligence’s impact on biomolecular
modeling

Within the research world, 2024 will be remembered as the year of Nobel Prizes for
Artificial Intelligence (AI). The one for Physics, awarded to John Hopfield and Geoffrey
Hinton for foundational discoveries and inventions that enablemachine learningwith artificial
neural networks, has sealed the connection between physics and information science, now
officially mating on a strongly interdisciplinary frontier field after over 50 years of fruitful
interaction (Artificial, 2024). More specifically, connecting AI to biomolecular modeling
relates to the Nobel Prize in Chemistry awarded to David Baker for computational protein
design and to Demis Hassabis and John Jumper for protein structure prediction.

Numerous statistics illustrate the influence of artificial intelligence in the field of
biomodeling. An inquiry conducted in scientific literature databases employing AI-related
keywords pertinent to the computermodeling of biomolecules yields approximately 120,000
results (approximately 6,000 results if the search is confined to the abstract, as illustrated
in Figure 1). The exponential rise observed starting from 2018–19 was the prelude to
the Nobel, and approximately coincides with the appearance of the two software suites,
AlphaFold (Senior et al., 2019) and RosettaFold (Humphreys et al., 2021), which implement
themethods for proteins folding and proteins de novo design developed byHassabis/Jumper
and Baker, respectively.

Receiving a Nobel Prize just a few years after the awarded research is quite rare,
but certainly not accidental. The methods for protein structure prediction based on
homology modeling were developed starting in the 1990s and implemented in popular
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FIGURE 1
Number of publications on machine learning in biological modeling and simulation from 2000-present. The search was performed using the keywords
(computer modeling OR simulation) AND (machine OR deep OR automatic learning OR neural networks) AND (proteins OR nucleic acids OR
biomolecules) either in the full text (∼120K items since 2000) or only in the abstract (∼6,000, analyzed and shown data) both in Scopus and WoS
database (shown data are from WoS, 2024 incomplete). Colors of the histograms are described in the legend (purple is for generic bio-modeling not
already included in the drug or protein design, in green and orange respectively). The colors in the conceptual map correspond to that of the
histogram, with additional shades of purple for different generic biomodelling tasks other than protein or drug design. Horizontal arrows illustrate
when the main keywords related to AI (gray) and to AI-based protein modeling (red) become statistically relevant in the literature.

software suites, including the early version of Rosetta
(Bowers et al., 2000) and others [e.g., SWISS-MODEL (Guex
and Peitsch, 1997)]. These methods heavily depend on statistical
data. They involve aligning and ranking sequences and structures
and parameterizing scoring functions through extensive analysis
of sequence and structure databases. This process culminates
in distilling the information into a few optimal structures or
interaction models (Wang et al., 2019). Over the years, the
growing volume of statistical data has necessitated the automation
of tasks, particularly in searching and comparing information.
Advancements in hardware architecture and storage capacity have
supported this shift.

Meanwhile, automatically trained neural networks (NN)
have emerged as a natural solution for the “distillation” of
this data (Kanada et al., 2024). During the second decade of
2000s, the co-evolution of computer performance and algorithms
led to the transition from machine learning (ML) to deep
learning (DL). This shift involved adding layers to the neural
networks, resulting in qualitative and quantitative predictive power
improvements. The combination of an established supportive
environment, the availability of big data, and the rise of DL
has significantly contributed to the success of AI methods in
bio-modeling.

Specifically regarding protein structure,AlphaFold nowachieves
an impressive 99% accuracy in predicting single-chain proteins,
rendering the CASP challenge—historically focused on structure
prediction—less relevant.

Besides the modeling of protein structures, a significant domain
of artificial intelligence application elucidated by statistical analysis
pertains to drug development. In particular, ML is used to address
structure-activity relationships (Gupta et al., 2021) and uptake-
toxicity of the drug (De Carlo et al., 2024), virtual screening, and
structure-based design. While not claiming to cover all potential
applications, we note that optimizing force fields for low-resolution
models of biomolecules significantly benefits frommachine learning
(Kanada et al., 2024; Majewski et al., 2023; Mirarchi et al., 2024),
whereas the application of graph neural networks for calculating
molecular dynamical trajectories is a cutting-edge approach (Husic
et al., 2020).

2 AI’s impact on biological modeling
and simulation in Frontiers in
Molecular Biosciences

Frontiers in Molecular Biosciences (FMB) has witnessed
an exponential rise of publications with the exact timing and
similar topical distribution, currently counting several hundreds of
publications onAI related topics.The section of BiologicalModeling
and Simulation (BMS) is one the most involved, having issued
several Research Topic Collections (Research Topics, RT) on the
diverse applications of neural networks in biomolecular simulations,
on the prediction of protein structure and conformation, or focusing
on data-driven applications, on drug design, even combined with
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molecular studies of metabolic pathways also in relation to the
cancer treatment.

A deeper look into the BMS section also reveals more
specific topics out of the mainstream, such as the prediction of
protein-protein interactions and the study of the conformation
of intrinsically disordered proteins. Indeed, these are two aspects
where ML algorithms show their weakness (Abramson et al., 2024),
displaying decreased accuracy. This is attributed to the under-
representation within the training dataset of crucial features, such
as the conformational variability of disordered proteins and protein-
protein interfaces (Saldano et al., 2022), especially when combined
with sequence variability, e.g., in the study of antibodies (Yin et al.,
2022). The decreased accuracy and predictive power in cases “too
far” from those included in the learning dataset is considered one of
the main drawbacks of automatic learning-based methods.

2.1 Beyond the stream and into the niches
of AI applications

To explore unconventional AI methods for bio-modeling and
showcase niche applications and challenging or problematic areas,
we have compiled 15 “orphan” papers in this Research Topic.
These papers, which are not part of any existing topical collection,
have been published in the sections of Biological Modeling and
Simulation or Structural Biology of FMB.

In the review by Zhang et al. it is noted that AlphaFold,
along with other similar AI methods for structure prediction, such
as RoseTTaFold and EMSFold, is widely used in various fields
of biomedical research. In addition to drug design, the authors
highlight its applications in immunology, particularly in predicting
and designing immunoglobulin structures or developing structure-
based vaccines. The work also emphasizes the development of
biomarkers, the study of protein-protein and protein-nucleic acid
interactions, and the investigation of missense mutations. However,
the review points out some limitations of these methods, specifically
the decreased accuracy in predicting the relative positioning of
large protein domains and their intrinsically disordered regions
and challenges in differentiating between various environmental
conditions. In this regard, alternative approaches like AminoBERT,
described in Zhang et al., demonstrate better performance in de
novo design or when few homologous sequences are available.
This improvement is achieved by omitting the multiple sequence
alignment step and instead incorporating residue-based chemical
and geometric information.

The absence of specific protein information in the training data
and the resulting bias towards the included proteins are two sides
of the same coin, which makes the neural network predictions
contingent on the dataset’s composition. Sala et al. transformed
the challenge into an opportunity by introducing a controlled bias
in AlphaFold2 toward specific user-defined subsets of structures.
This can be achieved by incorporating genetic information to
enhance accuracy for particular protein families. The algorithm has
demonstrated improved performance on CPCRs and kinase protein
families, which are notably difficult due to their multiple active
conformations. Additionally, the capability of AlphaFold to address
different or multiple structures was discussed in the mini-review by
Hunter et al.This study focused on examining the structure of ALAS

synthase, specifically highlighting a predicted divergence in the C-
terminal domain of the protein and its connection to the proposed
allosteric regulation of protein activity.

2.2 Integrating AI and simulation
techniques: advancing biomolecular
structure prediction and drug discovery

Utilizing a diverse array of methods has demonstrated
remarkable effectiveness in accurately predicting the structures
of biomolecules. The structure predicted by AlphaFold, along with
Molecular Dynamics (MD) simulations, served as the reference
for evolutionary studies. Just to cite a few ones highlighting this
link, the study by Bug et al. on the ribonuclease Dicer1 involved in
miRNA biogenesis and hematological cancers progression, and that
by Meller et al. to generate the structure of the unknown protein
PPM1D phosphatase, an important marker in oncology involved
in the regulation of DNA damage response. In these cases, the
structure was combined with a graph convolutional network model
trained over activity data, and with MD simulations to enhance
the drug docking task, revealing an allosteric “cryptic” pocked,
not immediately accessible and therefore escaping the structural-
only analysis. Belviso et al. used Alphafold and MD in combination
with small-angle X-ray scattering to characterize the C-terminal
region of NSD3 histone lysine methyltransferases, a marker in
oncogenesis, showing that combined modeling techniques can
be used to augment the low resolution experimental structural
characterization techniques.

2.3 Advancing drug discovery: integrating
AI, simulations, and experimental methods
for targeted therapeutics

Drug design increasingly benefits from interdisciplinary
approaches combining advanced computational techniquesand ML
with experimental validation to accelerate therapeutic discovery
and innovation. Zeng et al. used a cascade of structure-based drug
design methods combining MD and metadynamics of the drug-
target complex with ML-based virtual screening and QSAR and
ADMET evaluation. Combined with experimental procedures, this
approach identified inhibitors of fibroblast growth factor receptors
that were also tumor suppressors.

Drug design represents a promising frontier for advancing NN
development, particularly at the algorithmic level. The complexity
of molecular interactions, coupled with the need to predict
binding affinities, toxicity, and pharmacokinetics, provides a fertile
ground for refining and innovating NN architectures. Emerging
techniques, such as graph-based neural networks and attention
mechanisms, are poised to address these challenges by enabling
more accurate modeling of molecular properties and interactions,
paving the way for breakthroughs in computational drug discovery.
Ni et al. developed a model of a Graph Convolutional Network
with a layer attention mechanism and trained it to predict the
association of small molecules to target miRNA. Despite the
large number of hidden layers and advanced mechanisms to cope
with data redundancies and reduce the noise, the authors claim
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dissatisfaction with the specific task, possibly due to insufficient
variability in the dataset. Wu et al. combined an NN with docking
and virtual screening to repurpose drugs for Alzheimer’s disease,
which allows the optimization of a multi-target approach capable
of identifying the network of proteins interacting with the receptor
S1R, considered as the starting target, and subsequently identifying
several leads, tested by docking andADMETprediction. To a similar
scope of finding effective combinations of drugs for multifactorial
diseases, Hong et al. develop a different NN approach independent
of structures and based on the Pathway Interaction Network
(PINet), which was tested on acute myeloid leukemia, where it
correctly predicted midostaurin and gemtuzumab as effective drug
combinations and proved particularly effective when the training
dataset is limited.

We should pay attention to the early research on antivirals
targeting the main protease of SARS-CoV-2 in the context of
structure-based drug design. Lau et al. combinedmolecular docking
and MD with a convolutional neural network and spatial graph
model trained on ligand-protein data, used to predict the ligand-
protein score and identify from a library of 26 million molecules
possible candidate compounds to target RBD domain of the Spike
protein or Mpro. Using biolayer interferometry for the spike
protein and a FRET-based reporter, their effective binding was
tested. Samad et al. considered as the target the chymotrypsin-
like protease (3CLPRO) and used machine learning-based virtual
screening of 4,000 phytochemicals. The Random Forest model,
displaying 98% accuracy on the train and test set, identified
several molecules that were subsequently docked into the target
and analyzed by MD. The procedure identified 26 potential
inhibitors.

Finally, wemention a couple of applicationswithin the biological
modeling area that are out of the mainstream, not on molecular
modeling but on using images for diagnostics. Bigler et al. use
a deep learning approach with transfer learning of a pre-trained
convolutional neural network to identify pathological patterns in
skeletal muscle biopsies, using transmission electron microscopy
images showing that the learned network is proven superior in the
classification concerning commonly used morphometric analyses.
More specifically, Qi et al. trained an NN to automatically diagnose
suppurative otitis media and middle ear cholesteatoma, proving a
handy tool to help physicians discern these two chronic diseases
displaying similar CT medical images.

3 Perspectives

In the last decade, AI has produced a massive acceleration in
biomolecular modeling, making several tasks previously requiring
a long time and specific expertise fast and easy. These are, in
particular, those involving analyzing and synthesizing information
from large amounts of data. The case of AlphaFold is an exemplar:
the current version allows even nonexperts in the field to have a
prediction of the fold of a protein from the sequence in minutes, a
task which required weeks with the traditional homology modeling
procedure, and reaching comparable or superior accuracy in most
of the cases.

Despite its remarkable progress, AI-driven biomolecular
modeling faces significant challenges highlighting the need for

caution and critical evaluation. One major issue lies in the bias
and incompleteness of training databases. This risks to produce
results that reflect the limitations or skewed composition of the
input data, potentially leading to inaccurate predictions and
amplifies the risk of “hallucinations” – outputs that are highly
ranked, but scientifically invalid–possibly due to overfitting and
extrapolation beyond known data. Beyond hallucinations, we
already commented on the cases of disordered structures and
inter-domain interface prediction, whose low confidence the ML
models can autonomously evaluate. In addition,AI-driven platforms
like DeepMind’s AlphaFold have predicted novel drug candidates
for various diseases, but still, several of these compounds need
to be sufficiently followed up regarding their pharmacokinetics,
such as IC50 values (the concentration needed to inhibit 50%
of a target) or their ability to be administered effectively. In
some cases, promising compounds identified by AI have yet to
pass crucial stages in drug development, such as formulation
stability, bioavailability, or FDA approval. A notable case is the
identification of AI-generated inhibitors for the SARS-CoV-2 virus,
which, while initially promising, failed to meet the necessary
clinical standards and were ultimately not pursued for broader
therapeutic use.

Furthermore, the need for explainability in many AI models
compounds these challenges. Without transparent mechanisms to
trace how predictions are made, it becomes difficult for researchers
to assess their reliability or identify potential errors. This opacity
raises concerns about the reproducibility and trustworthiness of
AI-generated insights, particularly in high-stakes fields like drug
discovery or biomolecular engineering. Adding explainability to
the method, and not only in the biomodelling field, is currently
one of the main challenges for developing automatic learning
algorithms. On the technical level, one way to address this problem
as far as that of (explicit or not) low reliability and bias, is
to reduce the complete automatism by re-introducing into the
procedure elements of symbolic artificial intelligence based on
deductive rules into a hybrid approach known as neuro-symbolic AI
(Bhuyan et al., 2024).

On a philosophical level, the growing reliance on AI may
inadvertently foster excessive trust in its outputs, sometimes
at the expense of scientific scrutiny. This overconfidence could
lead to a diminished critical sense, where the technology's
predictions are only accepted without adequate validation.
For instance, some AI-predicted compounds have led to
follow-up studies that overlook crucial aspects like side
effects, toxicity, or long-term efficacy, which must be fully
captured in the initial models. To mitigate these risks, fostering
interdisciplinary collaboration, emphasizing data quality, and
developing interpretable AI systems are essential to ensure
that AI remains a robust and reliable tool for advancing
biomolecular research.

In conclusion, while it is true that AI presents challenges
and risks, it also offers transformative opportunities when wielded
responsibly. We are at a juncture where AI is no longer just
an optional tool but a cornerstone of modern modeling and
problem-solving. Like any tool, its effectiveness depends on the
skill and wisdom of its user. By combining the power of AI
with the irreplaceable intuition and common sense of human
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judgment, we can harness its potential for innovation and progress,
ensuring a future where technology enhances, rather than replaces,
our humanity.
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