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Pseudomonas aeruginosa (PA) is a ubiquitous, Gram-negative, bacteria that
can attribute its survivability to numerous sensing and signaling pathways;
conferring fitness due to speed of response. Post-transcriptional regulation is
an energy efficient approach to quickly shift gene expression in response to the
environment. The conserved post-transcriptional regulator RsmA is involved in
regulating translation of genes involved in pathways that contribute to virulence,
metabolism, and antibiotic resistance. Prior high-throughput approaches to
map the full regulatory landscape of RsmA have estimated a target pool of
approximately 500 genes; however, these approaches have been limited to a
narrow range of growth phase, strain, and media conditions. Computational
modeling presents a condition-independent approach to generating predictions
for binding between the RsmA protein and highest affinity mRNAs. In this study,
we improve upon a two-state thermodynamic model to predict the likelihood
of RsmA binding to the 5′ UTR sequence of genes present in the PA genome.
Our modeling approach predicts 1043 direct RsmA-mRNA binding interactions,
including 457 novel mRNA targets. We then perform GO term enrichment
tests on our predictions that reveal significant enrichment for DNA binding
transcriptional regulators. In addition, quorum sensing, biofilm formation, and
two-component signaling pathways were represented in KEGG enrichment
analysis. We confirm binding predictions using in vitro binding assays, and
regulatory effects using in vivo translational reporters. These reveal RsmA
binding and regulation of a broader number of genes not previously reported.
An important new observation of this work is the direct regulation of several
novel mRNA targets encoding for factors involved in Quorum Sensing and
the Type IV Secretion system, such as rsaL and mvaT. Our study demonstrates
the utility of thermodynamic modeling for predicting interactions independent
of complex and environmentally-sensitive systems, specifically for profiling
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the post-transcriptional regulator RsmA. Our experimental validation of RsmA
binding to novel targets both supports our model and expands upon the
pool of characterized target genes in PA. Overall, our findings demonstrate
that a modeling approach can differentiate direct from indirect binding
interactions and predict specific sites of binding for this global regulatory protein,
thus broadening our understanding of the role of RsmA regulation in this
relevant pathogen.

KEYWORDS

post-transcriptional regulation, computational modeling, RNA-binding proteins,
regulatory networks, systems biology, RNA-protein interactions, RNA secondary
structure, Pseudomonas aeruginosa

1 Introduction

Pseudomonas aeruginosa (PA) is a widespread, opportunistic
pathogen that contributes to nosocomial infection and mortality in
immunocompromised individuals. Critical to pathogenesis is the
ability of PA to rapidly alter gene expression to respond to the
environment. The post-transcriptional regulator RsmA, a member
of the CsrA family of RNA-binding proteins (RBPs), achieves
this rapid response via post-transcriptional regulation. RsmA is
a 6.9 kDa homodimeric protein whose regulatory influence is of
clinical relevance as it regulates the expression of genes involved in
motility, cell adhesion (Brencic and Lory, 2009), biofilm formation
(Irie et al., 2010), and secretion of effector proteins (Brencic and
Lory, 2009).

The mechanism by which Rsm/Csr family proteins repress
translation is by blocking ribosomal pairing to the Ribosome
Binding Site (RBS) present in the 5′ untranslated region (UTR)
of an mRNA (Liu et al., 1995; Mercante et al., 2009). This can
occur through direct binding to and occlusion of the RBS sequence,
or through binding in adjacent regions that result in structural
rearrangement that reduces (Irie et al., 2010) or increases (Ren et al.,
2014) accessibility of the RBS. In PA, the RsmA protein exerts tight
control of pathways associated with planktonic colonization and
sessile biofilm forming states (Goodman et al., 2004). In addition,
PA also encodes for the CsrA paralog RsmF/N (Marden et al.,
2013; Morris et al., 2013) which binds and regulates overlapping
(Romero et al., 2018) and exclusive (Chihara et al., 2021) genes
relative to RsmA. The regulatory activity of RsmA itself is sensitive
to control by the GacA/GacS two-component signaling (TCS)
pathway, which activates expression of antagonistic sRNA sponges
RsmY and RsmZ (Brencic et al., 2009) that sequester the RsmA
protein. Upon sequestration by these sRNA sponges, the regulatory
effect of RsmA is inhibited and produces an inverse effect on
translation of directly bound mRNAs. RsmA binds and regulates
genes globally throughout the transcriptome. RsmA knockout
results in large phenotypic changes to the cell including decreased
infection phenotypes (Irie et al., 2020), impedes active colonization,
and promotion of chronic infection states (Mulcahy et al., 2008).

Full characterization of the binding repertoire of a post-
transcriptional regulator, such as RsmA, is difficult to adequately
capture using a single high throughput approach (Sowa et al., 2017).
Wide variety in gene expression and regulatory effects have been
observed for Csr/Rsm family proteins due to various stresses or
infectious states (Chourashi and Oglesby, 2024; Potts et al., 2019).

This is partially due to the fact that the pathways that govern
the cellular transition from active colonization to chronic biofilm
forming states are complex, deeply interlinked, and sensitive to the
experimental contexts they are studied in (Valentini et al., 2018).

Efforts to experimentally map the regulatory influence of RsmA
range from broad, high throughput sequencing screens to individual
in vitro biochemical assays. Overall, these high throughout
approaches have estimated a target pool of approximately 500
genes that are either directly or indirectly regulated by RsmA
(Brencic and Lory, 2009; Romero et al., 2018; Chihara et al., 2021;
Burrowes et al., 2006; Gebhardt et al., 2020). Direct binding has been
biochemically confirmed in vitro for fewer than 2% of this estimated
pool of 500 genes. To date, confirmed direct bound mRNA targets
of RsmA include tssA1, fha1, magA (Brencic and Lory, 2009), psl
(Irie et al., 2010), rahU, algU, pqsR, hxuI (Kulkarni et al., 2014),
mucA (Romero et al., 2018), and retS (Corley et al., 2022).

While sequencing approaches have been valuable for
understanding the breadth of regulation influenced by the Gac/Rsm
pathway, they may not capture potential targets due to low
gene expression, strain to strain variation, condition dependent
expression, heterogenous expression, sample manipulation, or
high limits of detection. For example, microarray, RNA-seq,
and proteomic screens fall short when assessing whether post-
transcriptional regulation is occurring in a direct (i.e., direct binding
of RBP to transcript) or indirect (i.e., network) manner. RNA-
seq based approaches can also lose detection of transcripts that
are not always degraded when bound by a post-transcriptional
regulator, which convolute differential expression-based analyses;
thus, missing potential targets of the protein (Baker et al., 2007).
In contrast, cross-linking immunoprecipitation (CLIP) and RNA
immunoprecipitation (RIP) sequencing approaches can identify
more direct binding interactions; however, data resulting from these
techniques lose positional resolution for mRNA binding sites for
small proteins like RsmA. In addition, cross-linking can introduce
false positives due to nonspecific linkages between the protein of
interest and nearby RNA. Finally, many available high throughput
datasets are limited to a narrow range of growth phase, strain, and
media conditions that do not capture the full diversity of conditions
the organism experiences natively. This presents a bottleneck in
discovery, as gene expression varies widely across experimental
conditions (Rajput et al., 2022) and can be influenced by extensive
strain diversity (Lebreton et al., 2021; Trouillon et al., 2021).

Computational modeling offers a condition-independent
method for predicting binding partners of globally binding
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proteins.Thermodynamicmodels of protein-RNA interactions have
demonstrated high predictive capabilities, such as that for the PUF4
protein interactions in Saccharomyces cerevisiae (Sadée et al., 2022).
Similarly, thermodynamicmodels to predict binding and translation
rates for ribosomes (Salis, 2011; Espah Borujeni et al., 2014) have
been used for both prediction of native translation and forward
design of effective RBS sequences (Salis et al., 2009). Although the
small handful of confirmed, direct RsmA targets limits the ability
to generate accurate models of binding using learning algorithms,
much more data of direct targets has been collected for its closely
related protein CsrA as genome wide screens have been performed
to predict binding sites of the CsrA protein. In 2014, a sequence-
based model was crafted for the Csr/Rsm family proteins to
identify potential targets within transcriptomes of Escherichia coli, P.
aeruginosa, L. pneumatophilia, and S. enterocolitica (Kulkarni et al.,
2014). In this work, we improve upon this approach by applying a
biophysical model of interaction built upon additional molecular
features that influence binding which yields an energetic prediction
for the probability of an interaction between RsmA and an mRNA
in P. aeruginosa.

The Escherichia coli CsrA protein has been shown to be
well suited for construction of a biophysical model of protein-
RNA binding with characterized, empirically-derived, parameters
(Leistra et al., 2018), as core elements of binding mechanism
that governs its post-transcriptional regulatory effect have been
biochemically assessed. These principal rules of interaction include
(1) the clear definition of a coreANGGAbindingmotif (Dubey et al.,
2005), (2) the energetic contribution of individual nucleotides
within the core motif, (3) establishing a minimal distance between
binding sites to reduce steric hindrance within the homodimer
(Mercante et al., 2009), and (4) position of binding within
stem loop structures of the bound RNA (Dubey et al., 2005;
Figures 1A–E; Supplementary Figure S1). Previously, these core
rules were leveraged to craft a biophysical model to observe binding
patterns of the CsrA protein in E. coli (Leistra et al., 2018) which
yielded insights in the various molecular features that influence
CsrA binding to 236 mRNAs (Leistra et al., 2018).

Given this established prior framework, we hypothesized that
we could employ the core parameters of this model to capture
binding and regulation by the CsrA homolog RsmA in P. aeruginosa.
Homologs of CsrA are found widely across the γ-proteobacteria
(Sobrero and Valverde, 2020; Vakulskas et al., 2015). Within the
Pseudomonas genus, homologs such as RsmA and RsmE share high
sequence and structural similarity with CsrA (Schubert et al., 2007);
the protein sequence of P. aeruginosa RsmA is 85% identical to its
ortholog CsrA in E coli (Camacho et al., 2009). Furthermore, similar
bindingmechanisms. SELEX studies have also shown that the RsmA
protein shares high affinity for the same binding motif ANGGA
(Schulmeyer et al., 2016), and NMR structural studies of the
Pseudomonas protegens homolog RsmE also recapitulated affinity
for this core motif (Schubert et al., 2007). In addition, the crystal
structures of Csr/Rsm family proteins in complex with RNA are
available in the Protein Data Bank for CsrA in E. coli [1Y00], CsrA
in Yersinia enterocolitica [2BTI], RsmE in Pseudomonas protegens
pf-5 [2MFO and 2JPP], and RsmA in Pseudomonas aeruginosa
[7YR7]. In tandem with models that leverage data from protein
structures (Kappel and Das, 2019) these data can be used to
computationally predict changes in free energy for a given motif.

Here, we modify, tune, validate, and improve upon a prior
model constructed for the E. coli CsrA protein (Leistra et al.,
2018) to accurately predict breadth of binding and regulation by
the RsmA protein across the entire Pseudomonas aeruginosa PA14
transcriptome.This approach allows us to probe the entire sequence
space computationally, thus lifting the constraints presented by
prior experimental approaches. In an improvement upon our prior
model, we consider alternative motifs given the generation of a
crystal-structure derived, RsmA-specific, position weight matrix.
Unlike GGAmotif-based screens, our model also yields predictions
regarding the mechanism of binding to a given target including:
the approximation of binding strength, diversity of binding peak
frequencies, and predicting the effect binding has on translation.We
also leverage several publicly available high throughput sequencing
datasets to statistically verify the accuracy of our predictions. In
doing so, we establish effective filtering cutoffs that differentiate
between bound and unbound targets. This yields a pool of 1043
genes predicted to be bound by RsmA, which includes 457 genes
with no prior binding evidence. Our pool of filtered predictions
is enriched in transcriptional regulators and virulence associated
pathways. An important resulting observation of this work is
the experimental characterization of two novel transcriptional
regulators rsaL and mvaT, mRNA encoding for factors involved
in Quorum Sensing and the Type IV Secretion System, among
others. In this work, we use model predictions to confirm binding,
binding site pockets, and regulation of these mRNAs in vitro
and in vivo. This characterization both validates the predictive
capabilities of the model and expand upon our understanding of
RsmA regulation.Overall, our updatedmodel opens upnew avenues
for differentiating direct from indirect targets of RsmA and aids
in generating hypotheses for the varying regulatory mechanisms
governing complex signaling networks in PA.

2 Materials and methods

2.1 Construction of model and definition of
energy terms

A free energy model constructed for describing binding by the
CsrA protein from E. coli was described in (Leistra et al., 2018).This
prior model was applied to a limited number of genes in the E. coli
transcriptome, andwas crafted using empirically derived parameters
for the CsrA protein. In our current approach, we improve upon
model throughput to capture interactions transcriptome-wide in a
new organism, and craft an updated motif search that considers
the nucleotide contributions of bases other than the core ANGGA.
This was also tuned to capture RsmA-mRNA interactions using
the structure of the Pseudomonas fluorescens RsmE in complex
with hcnA [PDB: 2JPP (Schubert et al., 2007)]. The thermodynamic
model relies upon the sum of energetic contributions of 3 key
parameters: 1) the position weight matrix of individual nucleotide
contributions to binding (∆Gsite1 and ∆Gsite2), 2) the change in
free energy from the unbound to bound state of the mRNA
(∆∆Gunfold), 3) the distance between binding sites to reflect steric
effects of dimer binding (∆Gcooperativity) (Figures 1A–E). Total
affinity ∆GmRNA:RsmA is calculated using the following two-state
thermodynamic equation, previously defined in (Leistra et al., 2018)
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FIGURE 1
Overview of energy parameters and procedure of the RsmA biophysical model. (A) The modeling procedure begins as described in (Leistra et al., 2018)
by selecting the positions of all possible combinations of two Csr/Rsm binding sites along a provided sequence. This allows for the exploration of
dimeric binding to thousands of possible conformations per gene. (B) A 5-nucleotide window is selected from each site and scored given the
positional energies of binding. In this work, we update the prior model to include contributions from non-canonical nucleotides present in the core
motif, and use the scaffold of a Pseudomonas-specific Rsm protein, RsmE. The sum within this 5 nt window makes up the ∆GsiteN variable. (C) For each
prediction a parameter describing the optimal distance between binding sites of the homo-dimeric form of the protein, ∆Gcooperativity is calculated given
the distance, d, between the 3′ end of site 1 and the 5′ end of site 2. Sites that are too close receive a penalty of 20 RT units, making those
conformations highly unfavorable. Sites equal to 55 receive an energy contribution of 0, with more positive penalties incurred with increasing distance.
(D) The change in minimum free energy between the unbound and bound mRNA structures are calculated using the RNAfold tool within ViennaRNA,
with folding constraints to reflect Csr/Rsm bound regions in the sequence. This change in free energy makes up the ∆∆Gunfold. (E) Each of the terms
defined in B-D are summed to generate a measure of total affinity, ∆GmRNA:RsmA per prediction in the full ensemble of predictions per gene. (F) In an
update from the model described in (Leistra et al., 2018), the ∆GmRNA:RsmA is used to filter predicted candidates as bound or unbound. This takes into
account the distribution of affinities predicted per gene, and is tuned given the distribution of affinities present transcriptome wide. The pool of targets
is then filtered by the mean ∆GmRNA:RsmA and the peak height of predicted binding regions. These filtered genes are then forwarded to the OSTIR
translation initiation rate calculator to measure translational effect of binding.

and summarized in Supplementary Figure S1:

∆GmRNA:RsmA = ∆Gsite1 +∆Gsite2 +∆Gcooperativity +∆∆Gunfold (1)

Modeling interrogates all possible combinations of two binding
sites across the provided sequence space and generates a measure
of the ∆GmRNA:RsmA for each combination, per gene. These are then
sorted from highest (most negative) to lowest affinity, with the
highest affinity reflecting the most likely conformation of bound
regions along the sequence (Figure 1F).

After sorting the summed ∆GmRNA:RsmA values for each
pair of binding sites across the sequence space (Figure 1F) and
the position of binding sites for the top 15, highest affinity,

prediction positions were converted into dot-parens structural
constraints and evaluated using the open source translation
rate calculator, OSTIR (Figure 1F; Roots et al., 2021). This
yielded a measure of the translation initiation rate for the
bound (TIRRsmA bound i) and unbound (TIRunbound) states for each
prediction of binding positions. Effects of binding on translation
were calculated as follows:

Ri =
TIRunbound

TIRRsmAboundi
(2)

TIR ratios were used to predict the effect that RsmA
binding would have on translation, and binned into three
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categories: repressed (Ri > 1.2), activated (Ri < 0.8), or no
impact (0.8 < Ri < 1.2) based on boundaries defined in
(Leistra et al., 2018).

2.2 Calculation of the per-nucleotide
contributions to binding

The protein sequence of P. aeruginosa RsmA is 85% identical to
its ortholog CsrA in E coli. Key residues for RNA recognition, such
as the arginine present at position 44 are conserved. To update the
prior model to effectively capture energetics of RsmA binding we
utilize a computational energy-based modeling tool. The Rosetta-
Vienna RNP ∆∆G tool (Kappel and Das, 2019) was used to measure
the relative change in binding affinities between a wild-type hcnA
sequence GGGCUUCACGGAUGAAGCCC (motif in bold) and
all possible mutants within the 5-nt binding motif at positions
8–12. The solution NMR structure of the CsrA and RsmA homolog
present in Pseudomonas fluorescens, RsmE, in complex with the
hcnA mRNA (Duss et al., 2014) (PDB: 2JPP) was used as the
scaffold of the model due to the conservation of key residues that
are involved in RNA binding (Schubert et al., 2007).The RNP ∆∆G
approach incorporates the RNAfold command within the Vienna
RNA package 2.0 (Lorenz et al., 2011) to calculate theminimum free
energy of each unbound mutant (Supplementary Figure S1A). The
position weight matrix of per-nucleotide contributions to binding
was then calculated as follows:

∆Gnt,i =max(∆∆GRNPi) −∆∆GRNPnt,i (3)

Wherein i is the position of the nucleotide within the 5 nt binding
motif and nt is the specific nucleotide mutation (ATGU) at that
position. To generate an energetic measure of the individual
nucleotide contribution, each ∆G value was subtracted from the
maximum affinity found across all four nucleotides at a given
position. The ∆Gnt,i was then converted from kcal/mol to RT units
given the product of the gas constant and the temperature at 37°C
(RT = 0.616).

2.3 Generation and modeling of UTR
sequences from the PA14 genome

The 5′ Untranslated Region (UTR) of an mRNA transcript
is the primary region where the Csr/Rsm family proteins enact
their regulatory function by influencing ribosome binding. We
selected the 5′ UTR plus the first 100 bases of coding sequence
(CDS) to generate predictions via modeling. Prior RNA sequencing
in (Wurtzel et al., 2012) defined the transcription start sites
(TSS) across the P. aeruginosa PA14 transcriptome at 28°C
and 37°C. Where the primary TSS was defined, we selected
nucleotides from the TSS site to 100 bases into the CDS. If
no TSS was known, we selected −100 bases from the start
site to encompass the RBS region. Sequences were extracted
from the Pseudomonas aeruginosa UCBPP-PA14 reference genome
assembly GCF_000014625.1. This yielded 5285 UTR sequences
which are summarized in Supplementary Table S2. Predictions of
all combinations of 2 binding sites were performed for each of the

modeled 4861 sequences in parallel on the Stampede2 compute
cluster at the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin. Associated python scripts used to run
themodel on the Stampede2 compute cluster can be found at https://
github.com/ajlukasiewicz/rsm_biophysical_model.

2.4 Ensemble analysis of predicted binding
sites and peak calling

For each gene evaluated by the model, all possible combinations
of binding pairs are evaluated across the entire sequence space,
and sorted by affinity (∆GmRNA:RsmA). This yields an ensemble
of predictions per gene with varying free energies. We then
transform each affinity score, ∆GmRNA:RsmA, in the ensemble into a
measure of the likelihood of binding via the Boltzmann probability
distribution:

p(α) = e−β∆GmRNA:RsmA;α

∑i+300
i=1

e−β∆GmRNA:RsmA;i
(4)

Wherein the probability of a particular binding conformation (p(α))
is a function of the ∆GmRNA:RsmA for an individual prediction (α)
given the distribution of the top 300 conformations predicted for a
gene. The cutoff of 300 predictions was derived from the inflection
point of observed ∆GmRNA:RsmA values generated for each gene in
the prior model (Supplementary Figure S2A). β, originally defined
as 0.45, is a scaling factor based on thermodynamic predictions
of RNA-RNA interactions (Leistra et al., 2018). Here we update
this prior scaling factor β using select predicted energy and affinity
values from our prior CsrA model (Leistra et al., 2018) fit to
affinities derived from literature. To generate a measure of overall
affinity for a given gene, or μ∆GmRNA:RsmA, we apply the following
equation:

μ∆GmRNA:RsmA =
α=300

∑
α=1
∆GmRNA:RsmA;α × p(∆GmRNA:RsmA;α) (5)

Where the average affinity (μ∆GmRNA:RsmA) is calculated based
on the weighted sum of the ∆GmRNA:RsmA of the top 300
sorted confοrmations. The total affinity for each conformation
(∆GmRNA:RsmA;α) is multiplied by its respective Boltzmann
probability of binding (p(α)) calculated using Equation 4.

The model-predicted μ∆GmRNA:RsmA values for characterized
CsrA targets csrA, glgC, nhaR, cstA, pgaA, and rpoE were calculated
given a range of β scaling factors. These were then compared
to literature-derived binding affinities which were converted into
free energy using the following equation: ∆(G) = - RT ln(kD).
Dissociation constants were found via prior EMSA experiments for
CsrA binding to glgC, nhaR, cstA, pgaA, and rpoE (Baker et al.,
2002; Pannuri et al., 2012; Dubey et al., 2003; Wang et al., 2005;
Yakhnin et al., 2017). The Boltzmann probability was used to weigh
predicted ∆GmRNA:RsmA affinity scores in calculating an overall
average (μ∆GmRNA:RsmA) as described in Equation 5. We selected a
range of β values from 0.35 to 0.45, in which β = 0.4 was determined
to generate the highest linear correlation between the predicted
∆G value and the measured affinity (adjusted R2 = 0.98, p-value =
0.0009527, Supplementary Figure S2B). Linear regression tests were
performed in R.
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Out of all predictions per gene, the 300 top predictions were
used to calculate the Boltzmann probability given the inflection
point of energy predictions observed in positive control genes
extracted from modeling data in (Leistra et al., 2018; Equation 4;
Supplementary Figure S2B, C). The frequency of binding site
position predictions was calculated as a function of the Boltzmann
probability of binding to that position (Supplementary Figure S2D).
These frequencies were then used to generate densities of binding
interactions across the UTR itself, yielding peaks which we
interpret as footprints or binding sites of RsmA. Using the lolB
sequence (Figure 2B; Supplementary Table S3) as a negative control,
we established the peak height threshold for binding to be the
maximum height for lolB binding site frequencies, 0.0064.

Peaks in binding site density data were called using the
signal function within SciPy 1.0 (Chihara et al., 2021) with
the following parameters: the peak width was set from 5 to
15 to represent the range between the minimum base pairing
footprint and the maximum number of possible predictions
for a single site. The minimum height for a peak was set at
0.0064, which was determined to be the maximum height
for a negative control UTR, lolB (Figure 2B). The script for
parsing and calling peaks can be found in the rsm_biophysical_
model GitHub repository as peak_calling.py. Analysis and
generation of footprint density plots was performed in R
(Version 4.3.1).

2.5 RNA Co-immunoprecipitation

Strain PA14ΔrsmAF carrying an empty vector control (pJN105),
pRsmAHis6, pRsmFHis6, or the RNA binding mutant expressing
plasmids pRsmA(R44A)His6 and pRsmF(R62A)His6 were grown
at 37C with shaking at 300 RPM in 200 mL Tryptic Soy Broth
(TSB) supplemented with 20 mM MgCl2, 5 mM EGTA, 15 μg/mL
gentamicin, and 0.1% arabinose to mid-log phase, and pelleted
at 4C. Cells pellets were immediately resuspended and lysed in
Qiagen native purification lysis buffer (50 mM NaH2PO4, 300 mM
NaCl, 10 mM imidazole, pH 8.0) supplemented with 2.5 mM
vanadyl ribonucleoside complex (NEB) (to inhibit RNase activity),
1 mg/mL lysozyme, and 0.1% Triton X-100. Lysis was completed
by three freeze-thaw cycles. Lysates were treated with 10 μL RQ-
1 RNase-free DNase and cleared by centrifugation. An aliquot
was removed from the cleared lysate for total RNA isolation and
preserved in TRIzol (Thermo Fisher), and the remaining lysate
was incubated with nickel-nitrilotriacetic acid (Ni-NTA)–agarose
at 4°C for 1 h under nondenaturing binding conditions. Ni-
NTA–agarose was then loaded into a column and washed 3 times
with nondenaturing binding buffer containing 10 mM imidazole.
Protein and associated RNAs were eluted in four fractions with
250 mM imidazole and four fractions with 500 mM imidazole.
An aliquot of each fraction was analyzed by Western blot, and
fractions containing RsmAHis6, RsmFHis6 or the respective RNA
binding mutant version of the proteins were individually pooled as
were the equivalent fractions from the vector control strain. Each
pool was treated with TRIzol and RNA was extracted according
to the manufacturer’s protocol. RNA was treated with RQ1 RNase-
free DNase and concentrated using RNA Clean and Concentrator
kit (Zymo).

2.6 Library preparation and
next-generation sequencing analysis

Purified total RNA and co-IP enriched RNA was treated with
Ribo-Zero (Illumina) according to the manufacture and purified
and concentrated with Zymo Clean and Concentrator 5. First strand
cDNA was generated using Superscript II RT (Invitrogen) and
Random Primer 9 (NEB) and converted to double stranded cDNA
using Second Strand cDNA Synthesis Kit (NEB) according to the
manufacturer’s protocols. cDNA was purified using Zymo RNA
Clean and Concentrator Kit modified for cDNA recovery. Libraries
were prepared using the Nextera XT DNA Library Kit (Illumina,
San Diego, CA) according to the manufacture’s protocol including
tagment of cDNA, amplicons indexation/barcoding through PCR
amplification using Nextera master mix, clean-up, and pooling.
Finally, pooled and barcoded amplicons were single end sequenced
on an IlluminaNextSeq500 System. Sequencing reads were trimmed
using Trimmomatic to remove library adapters. Trimmed reads
were aligned to a Pseudomonas aeruginosa PA14 reference genome
using bowtie2 (Langmead and Salzberg, 2012). Aligned reads
were then transformed into binary alignment maps (BAM files)
using samtools (Li et al., 2009). Finally, files were analyzed in
Geneious software to obtain count tables containing transcripts per
million read counts for each gene. Raw sequencing outputs were
uploaded to the publicly available Sequence Read Archive (SRA)
under the Bioproject ID PRJNA1131461.

Analysis of gene expression was performed using the DEseq2
package (Love et al., 2014) in R. To determine enriched genes,
we first calculated the differential expression between the total
RNA and the overexpressed RsmA-his pulldown genes. Genes
with L2FC > 1 and p adj < 0.005 were considered enriched in
our dataset (Supplementary Table S6).

2.7 Proteomic sample preparation and
analysis

Overnight cultures of WT P. aeruginosa PA103 and ∆rsmA,
∆rsmF, and ∆rsmAF mutants were diluted to an optical density
of 0.1 at 600 nm (OD600) in tryptic soy broth supplemented
with 1% glycerol, 100 mM monosodium glutamate, and 2 mM
EGTA. Cultures were incubated at 37°C with shaking until the
OD600 reached 1.0. Cells (1 mL) were harvested by centrifugation
(10 min, 4°C, 12,500 x g). Cell pellets were washed with 1 mL
PBS and then stored at −80°C. Proteomic sample preparation
and analyses were performed by the VIB Proteomics Core, Gent,
Belgium. Differentially expressed proteins were identified using the
DEseq2 package (Love et al., 2014) in R. Proteins with L2FC >
1 and p adj < 0.005 were considered differentially expressed in
our dataset (Supplementary Table S7).

2.8 Filter binding assay for testing binding
interactions in vitro

Assessment of binding interactions between RsmA and several
candidate genes were evaluated using an in vitro nitrocellulose filter
binding assay. Sequences generated with efficient T7 promoter
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FIGURE 2
Model parameters are refined and validated using experimental datasets. (A) Overall affinity scores (μ∆GmRNA:RsmA) from genes identified to be bound by
RsmA in prior RNA immunoprecipitation studies (coIP) are a distinct population relative to a random sample from the rest of the transcriptome. Positive
and negative control RNA tssA1 and lolB fall at opposite sites in these populations wherein more negative μ∆GmRNA:RsmA values represent higher affinity
scores. (B) Frequency of binding site predictions along the lolB mRNA sequence. Predictions along the sequence space of this gene are very disperse
and have low affinity, and the most frequent peak hight informs our cutoff point for filtering targets (grey dashed line) (C) Frequency of binding site
predictions across the tssA1 UTR sequence, with detected peak regions defined by blue boxes. The start codon is indicated by the vertical green dashed
line. Binding site frequencies across the space of this sequence pass our threshold at three main sites.∗Two of which were confirmed binding sites of
RsmA given past mutational studies (Schulmeyer et al., 2016). (D) Distribution of genes that pass each energetic cutoff evaluated using hypergeometric
enrichment testing. Blue dots reflect the -log10 (p-value) of enrichment for known targets that pass the significance threshold, and grey dots and bars
are shown that do not pass the threshold. Bars are colored by the fraction of predictions that are novel in each pool of filtered targets, and bar height
reflects the total number of predictions that pass the filtering cutoff. Enrichment testing reveals that the peak energy cutoff that enriches for known
targets of RsmA falls at −26.25, and the threshold that excludes non-targets is −25.50 (grey dashed lines). To move forward with filtering we selected a
value with the highest -log10(p-value) between these cutoffs, −25.75 kcal/mol (black line), as the cutoff for our model. The number of predictions that
pass this filter are shown in text, and the % of novel predictions are shown in color. At the energy cutoff of −25.75, 457 out of the 1071 filtered targets
are novel. Non-colored bars and points represent energy thresholds where predicted targets were not significantly enriched (p-value >0.05) relative to
random chance.

design and synthesized (IDT). Sequences for these targets
can be found in Supplementary Table S3. RNA was produced
via in vitro transcription (Thermo T7 megascript kit) with
supplemented 3.75 mM guanosine for efficient radiolabeling. P32

labeled ATP was integrated to the 5′ end of purified RNA with

PNK and cleaned up using silica filter spin column extraction
(NEB Monarch).

His-tagged RsmA was purified using nickel chromatography.
Briefly, BL21 E. coli cells were transformed with an
arabinose-inducible, his-tagged RsmA encoding plasmid.
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These were grown in overnight cultures and seeded
into large shaker flasks until reaching exponential phase
(OD600 = 0.6).

Binding strengths between purified RsmA and various
radiolabeled RNA sequences were assessed using nitrocellulose
filter binding. Serially diluted RsmA was incubated with 0.5 nM
p32 radiolabeled RNA in an optimized binding buffer (10 mM
Tris-HCl pH 7.5, 100 mM KCl, 10 mM MgCl2, 10 mM DTT,
10 ug/mL heparin, Murine RNase inhibitor) at 37 C for 30 min.
Following incubation, reactions were loaded into the Bio-Dot
microfiltration apparatus (Bio-Rad) and light suction was applied
to pass the reactions through sandwiched 0.45 mM nitrocellulose
and N+ (Cytiva Amersham™ Hybond™-N+) membranes. Signal
intensities were captured via phosphorimaging on the Amersham
Typhoon 5, and measured using Bio-Rad Image Lab software.
Dissociation constants were calculated using the modified hill
equation described in (Ryder et al., 2008) with aHill Constant of two
to reflect cooperative binding of the homodimeric form of the RsmA
protein.

2.9 Construction of translational reporters
for assessing effects on regulation in PA103

The effects of RsmA binding on translation were assayed
using a translational GFP reporter system. The E. coli and P.
aeruginosa compatible plasmid, pJN105, encodes for a arabinose
inducible RsmA expression and was modified as follows: The
constitutive lacUV5 promoter upstream of the 5′ UTR of our
gene of interest was inserted into pJN105 along with the first 99
bases of coding sequence. This leader was fused to the GFPmut3
sequence with a trailing SRA degradation tag (M0051, sequence
from IGEM database). Sequences for our genes of interest, along
with positive and negative controls were amplified with compatible
primers and inserted through Gibson assembly (NEB HiFi Gibson
assembly kit). pJN105 was encoded with an inducible RsmA
region via the pBAD promoter and constitutive araC expression.
All plasmids and primers used in this study can be found in
Supplementary Table S3.

Following assembly, plasmids were transformed using heat
shock into chemically competent DH5α E. coli and plated on
15 ug/mL Gentamycin supplemented (Sigma-Aldrich) LB plates.
Plasmids were extracted from overnight cultures using the
Zymo zippy miniprep kit and submitted to Plasmidsaurus for
sequence confirmation. Following extraction, plasmids were then
transformed into chemically competent PA103 ∆RsmA/RsmF
strains and plated on LB- agar media supplemented with 80
ug/mL Gentamycin antibiotic. Transformed strains were grown
overnight in LB broth supplemented with 80 ug/mL Gentamycin
(Sigma) and then seeded into 30 mL of supplemented LB
culture at a 1:100 dilution. Upon reaching OD 0.02, cultures
were split into two flasks and half were induced with 0.5% L-
arabinose. Induced and uninduced cultures were monitored for
fluorescence intensity on the Cytation3 plate reader at 484 and
513 excitation and emission wavelengths. Fluorescence and OD600
measurements were taken at 0, 1, 2, 4, and 6 h post induction.
Fluorescence values were normalized by OD600 measurement and
analyzed in R.

2.10 Generating mutations for rsaL and
mvaT

Mutations were made for all combinations of predicted
binding sites on rsaL and mvaT while minimizing the change
to overall structure for the folded mRNA. Minimum Free
Energy calculations were performed using ViennaRNA RNAfold
secondary structure prediction tool (version 2.4.18). All scripts
were written and executed in Python 3.7. For binding sites
within the coding region, mutations were made to exclude stop
codons while still maintaining overall structure. Motif mutations
were generated using all combinations of low scoring residues
present in our prior PWM. The full list of mutant sequences can
be found in Supplementary Table S3.

3 Results

3.1 Using the RsmE-mRNA binding
structure to generate a biophysical
framework that captures different
energetic contributions of various RNA
sequences to binding

The P. aeruginosa RsmA and E. coli CsrA protein sequences
share 85% amino acid identity (BLAST alignment: Camacho et al.,
2009) however, slight differences in the primary and secondary
binding motifs have been reported for the Csr/Rsm family across
organisms (Kulkarni et al., 2014; Lapouge et al., 2007). To construct
an energetic matrix that captures interactions between RsmA and
specific motifs in P. aeruginosa, we selected the scaffold structure
of RsmE-hcnA available in the Protein Data Bank (PDB: 2JPP)
as representative of the overall protein structure in complex with
mRNA. RsmE is a homolog of both CsrA and RsmA that is found
in P. protegens, as well as in other members of the Pseudomonas
genus. This protein was selected as the modeling scaffold because
this entry contained structural data for both the protein and
mRNA structures in complex with one another (Schubert et al.,
2007).Changes in free energy due to single positional mutations
were captured using the Rosetta-Vienna RNP ∆∆G tool (Kappel
and Das, 2019) as described in (Methods, Equations 1–3, and
Supplementary Figure S1). This generated a Position Weight Matrix
(PWM) of per-nucleotide contributions of binding based on their
position within a 5-nucleotide window (Table 1).

The highest affinity motif produced by a 5-nt window
using this crafted PWM (Table 1) would therefore be AUGGA,
which is consistent with the binding motif observed for RsmA
(Schubert et al., 2007). Prior models crafted for the E. coli CsrA
protein confer the highest energetic contribution when a strict
AAGGA motif is found (Leistra et al., 2018). A comparison of
the two matrices can be found in Supplementary Table S1. The
Rosetta-crafted PWM presented here confers an additional benefit
to the model, wherein non-canonical motifs may contribute to the
overall energy calculation and thus considers alternative sequences
that RsmA can bind. Using this PWM we can then calculate the
free energy contributions of a motif within sliding 5 nt windows
(∆Gsite1 and ∆Gsite2), which we sum with additional biophysical
parameters (Equation 1) to generate a prediction of overall affinity,
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TABLE 1 Rosetta modeling derived Position Weight Matrix of the free
energy contributions for each nucleotide present in a 5 nt window. An
example of this calculation would be as follows: high affinity motifs such
as AUGGA would contribute the maximum possible score to the overall
free energy calculation, whereas low affinity sequences such as UCCUU
would not contribute to the overall score.

pos/nt A G C U

1 −1.97 −0.49 −0.27 0

2 −0.02 −0.04 0 −0.16

3 −2.18 −3.42 0 −0.09

4 −1.76 −5.10 −0.54 0

5 −2.11 −1.90 −0.08 0

or the change in free energy (∆GmRNA:RsmA) due to RsmA binding
in a specific conformation to an mRNA of interest (Figures 1A–E).

To briefly summarize the contributions of this PWM to our
two-step thermodynamic equation, we calculate the ∆GmRNA:RsmA
as the change in free energy from the unbound to a bound state for
one conformation of binding sites.These biophysical parameters are
defined as follows: The energies of the bound state are calculated
given the matrix-derived free energy of each motif bound by the
homodimeric form of RsmA (∆Gsite1 and ∆Gsite2) and added to
a penalty for steric hindrance for binding sites in close proximity
(∆Gcooperativity) and the minimum free energy of RNA folding given
bound folding constraints (∆∆Gunfold) (Figures 1A–E; Equation 1).
These calculations are performed for all possible combinations of
binding sites along each transcript modeled (Figure 1F) and the
positions are sorted by the predicted highest affinity. Predictions
of translational effect are calculated as summarized in Leistra et al.
(2018) and in Equation 2. Given the empirically-derived nature of
these energy terms, we hypothesize that the in silico predictions of
high energetic affinity (∆GmRNA:RsmA) can be used to predict binding
interactions in-vivo.

3.2 Genes enriched in RNA
co-immunoprecipitation and proteomics
establish positive control population for
model tuning

To tune model filtering terms, we established a positive control
population using RNA co-immunoprecipitation sequencing (RIP-
seq) and proteomics. For the RIP-seq experiments Total RNA
and pulled down fractions were sequenced in PA14 ∆rsmAF
carrying plasmids encoding His-tagged RsmA, RsmF, the respective
inactive mutants (RsmA R44A, RsmF R62A) or an empty vector
control (pJN105). PCA analysis (Supplementary Figure S5A) of
RNA sequencing performed for the pulldown study suggests that the
difference in RNA in total and enriched fractions contributed to 33%
of the observed variance in the dataset. 18% of the variance could be
attributed to an inactivating mutation present in the overexpressed
RsmF protein. Conditions lacking vector expressing RsmA/RsmF
and the presence of empty vector encoding no protein both clustered

closely and therefore the presence of the plasmid did not alter gene
expression.

358 genes were identified to be significantly enriched
(L2FC > 1 and p-adj < 0.005; Supplementary Figure S5B;
Supplementary Table S6) in RsmA pulldown relative to the total
RNA. These targets were considered to have a high likelihood
of being bound partners of RsmA and were used to define
the positive control population to tune the cutoff term for our
model. This enriched population included positive controls such
as algU, rahU, and magA, however, other well characterized
direct targets of RsmA (“positive control genes”) such as tssA1
were not enriched in the RsmA pulldown pool. Interestingly,
more genes were significantly enriched in the RsmF pulldown
relative to RsmA (Supplementary Figure S5B). This pool of 565
mRNAs included positive control genes such as tssA1, fha1, rahU,
andmucA. 228/565 genes overlap with the pool of enriched mRNAs
pulled down by RsmA.

The proteomics experiments identified additional
261 proteins (Supplementary Table S7) that were found to be
significantly differentially expressed (L2FC > 1, p-adj < 0.005) in
PA103 ∆rsmA strain relative to WT (interpreted as repressed in
native conditions).

3.3 Predicted mean total affinity can be
used to differentiate bound from unbound
targets

The predicted mean affinity score, μ∆GmRNA:RsmA, can be
interpreted as a probability for binding occurring when RsmA and
the target mRNA are present. To evaluate the predictive capabilities
of themodel, we sought to determine whether themean total affinity
score, μ∆GmRNA:RsmA, could be used as ametric to differentiate direct
binding interactions from indirect or unbound gene targets.

Predictions were generated for 5861 UTR sequences extracted
from the PA14-UCBB transcriptome (NCBI:txid 208,963,
Supplementary Table S4). As of this publication, PA14 has a total of
5,893 identified genes but we were unable to generate predictions for
all due to their lack of inclusion in prior TSS profiling (Wurtzel et al.,
2012). To evaluate our predictions, we sought to compare the model
predictions to experimental results. A combination of prior RNA
co-immunoprecipitation sequencing (Romero et al., 2018) and the
RNA co-immunoprecipitation and proteomics performed in this
work were used to experimentally identify 780 genes potentially
regulated by RsmA. This pool of genes was used to define a positive
control population for binding.A randomselection of 780 additional
UTR sequences were collected from the rest of the modeled PA14
transcriptome to generate a control population. For each gene
within the positive and background populations, the μ∆GmRNA:RsmA
affinity score was calculated given the 300 most favorable predicted
energies in the ensemble (μ∆GmRNA:RsmA, Equation 5). These
first 300 predictions represent the most probable conformations
of binding between RsmA and the RNA target. When assessed
using a nonparametric Wilcoxon rank-sum test, we observed a
significant difference (p < 0.05) between the mean total affinity
scores (μ∆GmRNA:RsmA) of 780 randomly selected sequences and
those from Co-IP enriched genes (Figure 2A). We identified several
control genes to validate our results. The tssA1 (positive) and lolB,
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(negative) genes are outlined (Figure 2A) due to their extensive
binding characterization. These fall at expected values within each
population. The mean total affinity score for tssA1 was determined
to be highly favorable (μ∆GmRNA:RsmA: −27.75 RT), and fell within
the energy range for our positive control population (Figure 2A).
The mean total affinity for the negative control, lolB, was calculated
to be −23.80 RT which fell within the population range for our
randomly selected “non-targets” population. This indicated to us
that we could use the μ∆GmRNA:RsmA metric as a cutoff for filtering
true from false targets in our pool of predictions.

To further refine the exact μ∆GmRNA:RsmA cutoff that
differentiates direct bound targets from indirect non-targets, we
performed hypergeometric enrichment testing for the pool of
predictions thatwould enrich for genes pulled down in prior RIP-seq
studies, while also minimizing those included by random chance.
We evaluated cutoff values within a μ∆GmRNA:RsmA range of −27.50
RT to −24.0 RT (Figure 2D). The cutoff value that conferred the
highest significant enrichment for immunoprecipitated genes was
found at a μ∆GmRNA:RsmA threshold of −26.25 (p = 7.08e-08), and the
second highest at μ∆GmRNA:RsmA −25.75 (p = 2.61e-07). In addition,
genes with no prior evidence of binding by RsmA were selected
to performed exclusion testing of non-targets for each energy
cutoff. This determined that the depletion of non-targets reached
its maximum at the cutoff value of −25.50 (p = 6.36e-07). Given
these results, the optimal cutoff used was −25.75 which yielded 1071
predictions of putative targets for RsmA.This observation validated
that the μ∆GmRNA:RsmA can be used as a predictor of overall affinity.

3.4 Peak analysis of predicted binding sites
for enriched targets validate the predictive
capabilities of the model

In addition to predicting a measure of overall affinity, our
updated application of themodel also has the capability to determine
the position of RsmA binding sites along the modeledmRNA leader
sequence. The Boltzmann probability of binding was calculated
given the ∆GmRNA:RsmA per prediction presented in Equation 4,
and described in Methods and in Supplementary Figure S2D. This
is a novel transformation of the binding peak data. Our previous
version of the model weighed each of the top 15 predictions equally.
In an improvement on this approach, we weigh the occurrence
of predicted sites as a function of their likelihood in a pool of
conformations, and expand from only considering the top 15.
Calculation of the frequency of binding interactions at a specific
site was extrapolated from the Boltzmann probability and used
to weigh highest affinity predictions relative to the expanded set
of those per gene. This allowed each predicted binding site to
be visualized on a density plot (Supplementary Figure S2D). Then,
peak calling was performed on all genes with a baseline cutoff
established from the negative control sequence of the lolB mRNA
leader sequence (Methods). The application of this cutoff filtered
our list of predictions to 1043 possible targets of RsmA, 457 of
which are genes for which no prior experimental evidence was
found.

The specific binding sites of P. aeruginosa RsmA on its
established targetome has been experimentally validated on tssA1
(Schulmeyer et al., 2016). To evaluate the capabilities of the model

for predicting bound regions, we compared peak predictions on
the 5′ UTR of tssA1 which has been experimentally verified
binding sites that fall at −15 and −67 nt from the start codon
(Schulmeyer et al., 2016). Predicted binding site peaks not only
fall within those two regions (Figure 2C), but also identify a third
region where RsmA may potentially bind to repress translation of
tssA1. Confirmation of more than two binding sites that confer
flexible binding of the protein to a given mRNA target has been
identified for CsrA (Rojano-Nisimura et al., 2024). Due to the lack
of footprinting data available for other mRNAs within PA, binding
site predictions were also performed on experimentally footprinted
targets of Rsm/Csr family proteins in closely related organisms,
such as E. coli (CsrA-glgC) and P. fluorescens (RsmE-hcnA). Binding
site predictions coincided with experimentally characterized sites of
Rsm/Csr binding (Supplementary Figure S4). Peak predictions for
all modeled genes can be found in the accompanying Data Sheet
2 file. Overall, the capturing multiple experimentally characterized
binding site across a range of well-studied RsmA/CsrA targets that
we selected provided confidence in the ability of the model to
identify RsmAbinding sites across different potentialmRNA targets.

3.5 Enrichment of quorum sensing and
biofilm pathway transcription factors in
predicted RsmA targets

Given our pool of 1043 predicted targets, we next sought to
determine whether new pathways that were regulated by RsmA (but
not yet identified) were enriched in our filtered pool. Encouragingly,
pathways with prior experimental evidence of regulation by the
GacA/S TCS pathway were identified in our analyses. GO term and
KEGG pathway enrichment analyses of our pool of 1,043 putative
mRNA targets show significant (EASE score <0.1) representation of
genes involved in key virulence pathways (Figures 3A, B).Molecular
features enriched in our predicted targets include those with
DNA-binding transcriptional activator (GO:0001216), metal ion
binding (GO: 0046872) and cytochrome-c oxidase (GO:0004129)
activities (Figure 3A). Roughly 60 transcriptional regulators were
predicted to be bound by RsmA in our model, including key QS
regulators LasR, MvfR, and the orphan regulator, QscR.

Key pathways enriched by our predictions include quorum
sensing (pae02024), biofilm formation (pae02025), valine, leucine,
and isoleucine degradation (pae00280), and peptidoglycan
biosynthesis (pae00550) (Figure 3B). Although many of these
processes have already been shown to be regulated by the Gac/Rsm
pathway (Pessi et al., 2001; Parkins et al., 2001), several novel
predictions were generated within each feature (Figures 3A, B).
This suggests modeling allows us to expand upon the total
number of genes that RsmA may regulate across complex and
condition-sensitive pathways.

The full profiling of transcriptional regulatory network in
PA is yet incomplete, but recent efforts to characterize binding
specificities in vitro (Wang et al., 2021) has expanded upon our
understanding of transcription factor interactions with known, key
virulence pathways. Transcriptional regulators were significantly
enriched in our predicted pool of genes boundbyRsmA (Figure 3A);
therefore, we sought to identify which of these transcriptional
regulators were associated with KEGG enriched pathways. Of
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FIGURE 3
Distribution of enriched molecular functions and pathways in pool of predicted targets of RsmA. (A, B) DAVID enrichment analysis for molecular
function GO terms and KEGG pathways, sorted by increasing p-value (<0.1). Along with the reported fold change of enrichment, the lines display the
proportion of genes within each category that are novel predictions yielded by the model (red line) and the proportion of genes with some prior
evidence of association with RsmA (purple line). (C) Predictions that fall within key virulence pathways such as quorum sensing and biofilm formation
also have shared transcription factor regulation. Left: one transcriptional regulator, LasR (PA14_45960) is associated with both quorum sensing and
biofilms. Right: Model predictions identify several newly profiled transcription factors (Wang et al., 2021) that are also associated with virulence
pathways. Three transcriptional regulators associated with all four processes include PA1437, a two-component response regulator, PA4184, SouR
regulator of Phezanine biosynthesis, and PA1431, RsaL, a novel target and regulator involved in quorum sensing.

note is the identification of lasR (PA14_45960) is shared by
both QS and biofilm forming processes (Figure 3C). Out of 86
total transcription factors mapped to biofilm, quorum sensing,
the Type 6 Secretion System (T6SS) and motility pathways in
(Wang et al., 2021), 17 were identified by our model to be
bound by RsmA. Of these 17, 3 were found to be associated with
all four pathways (Figure 3C), which were identified as PA1431
(rsaL), PA4184 (souR), and PA1437, a two-component response
regulator. Only PA1437 was previously predicted to be a potential
target via a prior motif search approach (Kulkarni et al., 2014),
whereas PA1431 (rsaL) and PA4184 (souR) are entirely novel mRNA
predictions.

3.6 Meta-analysis of aggregated RNA-seq
datasets reveal that novel targets identified
in our model are lowly expressed in
standard media types used for
binding/pulldown studies

The influence of RsmA on regulating the aforementioned
pathways has been well demonstrated by prior studies (Pessi et al.,
2001; Parkins et al., 2001). Therefore, we sought to determine
how many of our predicted genes were also found in other high-
throughput characterizations of RsmA regulation in P. aeruginosa.
We compared predictions to all those found in previous modeling
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(Kulkarni et al., 2014), microarray analysis (Burrowes et al.,
2006), RNA-seq studies (Brencic and Lory, 2009; Gebhardt et al.,
2020), RIP-seq studies (Romero et al., 2018), CLIP-seq studies
(Chihara et al., 2021), and recent nascent chain profling methods
such as ChiPPar-seq (Gebhardt et al., 2020). Comparisons across
these studies revealed that 586 of our predictions had some level of
prior evidence of binding or direct/indirect regulation byRsmA, and
457 were entirely novel predictions.

Prior experimental approaches have estimated RsmA has some
regulatory effect (including direct and indirect) on approximately
500 genes, yet our number of predictions (1043) is double that
estimate. In an effort to understand why our pool of predictions
is larger than prior approximations, we hypothesized that many
predictions were dependent on conditions not tested in prior
experimental screens. To investigate this hypothesis we leveraged
the aggregated, publicly available, RNA sequencing data from
a meta-analysis of gene expression across various conditions in
P. aeruginosa (Rajput et al., 2022). This dataset included values
of normalized gene expression in transcripts per million (log
TPM) from 411 sequencing datasets, including data from a RsmA
pulldown study (Romero et al., 2018). These datasets measure
gene expression in a wide variety of experimental conditions
including various strain types, growth phases, media, antibiotic
supplementation, clinical isolates, and lifestyles and demonstrates
that gene expression is highly variable and condition-specific
(Rajput et al., 2022). In our analysis, we interpreted a gene to be
expressed if the log TPM value was greater than 0. The expression
data was filtered and subsequently binned into 10 ranges and
then labeled given their prior evidence for regulation by RsmA.
Overall, genes with some prior experimental evidence of binding
to RsmA were more represented in higher expression bins, whereas
those that had no evidence, or were novel predictions by our
model, aggregated towards lower expression bins (Figure 4A).
This observation suggests that the novel predictions generated
by the model were not identified as RsmA targets in prior
experimental screens due to low expression levels in the conditions
tested.

To assess where novel predictions were clustering across these
varied conditions, we used k-modal clustering of experimental
condition categories as described in Methods. Overall, a higher
proportion of genes with some prior evidence of RsmA interaction
were found in experiments performed in LB media (cluster 3),
whereas nutrient-limitedmedia types likeM9 andABTGT exhibited
a higher proportion of novel predictions and genes with no
RsmA regulatory evidence (Figure 4B, cluster 1). This recapitulates
observations that media type has a large impact on gene expression,
and therefore the availability of certain genes for high throughput
profiling. As example of note is rsaL, a novel target encoding for
a quorum sensing transcriptional regulator, that we identify to be
bound by RsmA computationally but, when assessed across datasets,
appears rarely expressed. We define high expression in this case
as a log TPM value greater than that of the rimM housekeeping
gene (average log TPM = 1.95). RsaL reaches a log TPM expression
level above 1.95 in only 3 of the 411 RNA-seq experiments
(SRA accession numbers SRS605141, SRR6018047, and ERS530377)
aggregated in (Rajput et al., 2022); indicating that sufficient
levels of rsaL expression may only occur in certain experimental
conditions.

3.7 RsmA binds and regulates several
predicted mRNA targets encoding for key
transcriptional regulators as assessed by in
vitro binding and in vivo translational
reporter assays

Given the concordance of our computational predictions with
previously published experimental results, we sought to test RsmA
binding to our novel predictions in vitro (Chua et al., 2014).
Therefore, we selected 8 genes that were representative of
the core quorum sensing regulatory cascade (Figure 5A;
Supplementary Table S3) to assess binding in vitro. These were
quorum sensing regulatory genes lasR/lasI, rhlR/rhlI, mvfR, and
a novel prediction rsaL. Secretion system regulators included
the mvaT and aprD leader sequences. These targets have varied
support in the literature for RsmA interactions, the majority lacking
evidence of either in vitro binding or regulatory impact. Finally,
the tssA1 and loB sequences were included as positive and negative
controls. Filter binding assays were performed with the [α-32P]
ATP radiolabeled mRNA and purified RsmA protein. aprD binding
was evaluated via Electrophoretic Mobility Shift Assay (EMSA)
(Supplementary Figure S6). Each of these genes had varying
degrees of prior RsmA regulatory characterization as summarized
in Figure 5A. Importantly, we observed strong in vitro binding
interactions between RsmA and mvaT, lasR, rhlI and tssA1 leader
sequences. These observations are consistent with the predicted
overall affinity (μ∆GmRNA:RsmA) scores for each gene, which were
predicted to be −26.29, −26.54, −26.37, and −26.34 respectively
(Figure 5A). Weaker interactions were seen for rsaL, mvfR, and
lasI. These each had average predicted affinities (μ∆GmRNA:RsmA) of
−25.82, −26.55, and −24.79 (Figure 5A). Disassociation constants
(kDs) from this biochemical characterization correlate well with
the predicted mean total affinities (R2 = 0.92, Figure 5B). It is
worth noting that although we initially excluded genes such
as rhlR from our true target predictions (in accordance with
the −25.75 energy threshold), we tested them experimentally
for binding given the observation that we predicted two other
mRNA targets (lasR and lasI) in our final candidate pool that
encode for two closely functionally related proteins to RhlR in
the quorum sensing pathway. We did not observe binding between
RsmA and rhlR in our in vitro filter binding assays (Figure 5A)
or via EMSA (Supplementary Figure S6) experiments, which
recapitulates the negative result from the model. Finally, we did
not observe binding between RsmA and the lolB negative control.
Overall, these results indicate that RsmA does bind to targets
predicted by the model, and that relative binding affinity predicted
via the μ∆GmRNA:RsmA affinity score is correlated with affinities
measured in vitro.

As a post-transcriptional regulator, RsmA is able to repress
or activate gene expression by blocking or enhancing ribosomal
binding to the 5′ UTR region of an mRNA. To evaluate the effects
of binding on translation, we performed plasmid-based in vivo
translational reporter assays (summarized in Figure 6A). Sequences
from the same pool of 8 genes selected for in vitro characterization
were fused to the GFPmut3 coding sequence, and fluorescence
values were measured following RsmA induction in a PA103
∆RsmA/RsmF strain (Supplementary Table S3). lolB was not used
in these assays due to the observation that the established sequence
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FIGURE 4
Comparison of results with transcriptomic data suggests novel transcripts are found at lower concentrations. 483 genes were predicted by the model
that are not represented in any prior modeling, microarray, RNA-seq or pulldown studies of RsmA. A recent publication aggregated 411 expression
datasets for Pseudomonas aeruginosa grown in various experimental conditions. (A) Bar chart of the proportion of predictions with no evidence of
RNA binding, prior evidence of binding, and entirely novel predictions, binned by log TPM expression level in that experiment. The proportion of genes
with prior evidence increases as the log TPM levels of expression increases, suggesting that expression influences detection. (B) K-modal clustering of
all categories in the aggregated experimental conditions from 411 expression datasets (KO, media, growth phase, stress) to observe whether the
presence of novel or predicted targets cluster within specific conditions, knockouts, or media types, overlaid with the proportion of genes that fall
within each cluster. Predictably, most of the genes that have some prior association with RsmA are expressed in conditions cultured in LB media,
whereas more novel targets were expressed in minimal media such as M9 or ABTHC.

FIGURE 5
in vitro filter binding assay demonstrates binding interactions between RsmA and predicted targets (A) Phosphoscreen of bound and unbound
radiolabeled intensities with an accompanying summary table of the model predicted energy and degree of novelty. (B) A linear correlation exists
between predicted and measured affinities generated via fitting filter binding assay.

Frontiers in Molecular Biosciences 13 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1493891
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Lukasiewicz et al. 10.3389/fmolb.2025.1493891

FIGURE 6
in vivo repression assay. (A) Experimental overview of in vivo translational repression assay. UTRs were fused to GFPmut3 and expressed off of the
lacUV5 constitutive promoter. Plasmids were transformed into PA103 ∆RsmA/RsmF strains and seeded into ± 0.5% arabinose LB media. Fluorescence
was monitored up to 6 h following induction, during which fluorescent changes were assessed between uninduced (green) and induced (orange
dashed line) conditions. (B) rhlR and tssA1 UTR sequences were used as negative and positive controls for our assay. No significant change in
fluorescence was measured for rhlR, which is consistent with our prediction and in vitro experimental results. A significant reduction in fluorescence
values was observed for the positive control tssA1. A significant reduction in fluorescence was also detected for our pool of additional tested genes,
including lasI and rhlI. Fluorescence values are plotted median centered to account for changes in translation rates due to the native RBS encoded in
each individual UTR.

used in prior mobility shift experiments (Brencic and Lory, 2009)
is not the leader sequence, but falls within a portion of the coding
region and therefore does not contain a ribosome binding site (see
Supplementary Table S3). Specifically, BLAST search revealed the
lolB sequence used in prior experiments falls between nucleotides
5236896 and 5237178 in the PA01 genome. Given the lack of
binding observed between RsmA and rhlR in our in vitro binding
assays (Figure 5A; Supplementary Figure S6) we selected this target
to use as a suitable negative control for this assay. No significant
difference in fluorescence is observed for rhlR (Figure 6B). The
tssA1 5′ UTR was used as a positive control for repression and
showed a significant (p < 0.05) reduction in normalized fluorescence
values following induction of RsmA. We also observed significant
reduction of fluorescent signal for the HSL synthetase genes lasI
and rhlI (p < 0.001, and p < 0.05, respectively) (Figure 6B). Given
results for our positive and negative regulatory controls, we then
performed the assay on mvaT, lasR and rsaL. Each of these genes
have some lacking prior evidence of direct RsmA binding and/or
regulation from the literature (Figure 5A). These targets yielded
reduced fluorescent values following RsmA induction (Figure 6B)

and we interpret these results to suggest these genes are repressed by
RsmA in vivo.

3.8 RsmA binds to model-predicted
binding sites in novel targets rsaL and mvaT
in vitro

The model identifies several binding sites along the sequence
space of each gene. Given our observation that two novel targets rsaL
andmvaT were bound by RsmA in vitro,we sought to assess binding
to the specific predicted locations produced by the model. The
top three binding sites for each gene (Figures 7A–F) were mutated
individually, and for all combinations of two binding sites along the
sequence. Binding to each mutant was evaluated via in vitro filter
binding assay.

The three predicted binding sites (termed BS1, BS2, and BS3)
on the rsaL transcript fall within the coding region at +12, +67, and
+76 nt from the start codon (Figure 7A, BS1, BS2, and BS3), with
the highest frequency of binding predictions falling peaks 67 and
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FIGURE 7
Mutational evaluation of predicted RsmA binding sites on rsaL and mvaT (A) Density plot of predicted binding pockets along the modeled region of the
rsaL leader sequence +100 bases of CDS. Blue boxes represent the highest frequency regions for the ensemble of predictions along the sequence
space. Light grey dashed line represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon. (B)
Structural diagram of the rsaL leader sequence with labeled binding pockets (brown, green, and purple) as well as key functional regions such as the
start codon (green) and predicted RBS (pink). (C) Filter binding generated binding curves for RsmA in complex with WT rsaL (pink) and individual
mutations (orange through brown) or mutations in combination (grey through red). (D) Density plot of predicted binding pockets along the modeled
region of the mvaT leader sequence +100 bases of CDS. Blue boxes represent the highest frequency regions for the ensemble of predictions along the
sequence space. Light grey dashed line represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon.
(E) Structural diagram of the mvaT leader sequence with labeled binding pockets (green, and purple) as well as key functional regions such as the start
codon (green) and predicted RBS (pink). (F) Filter binding generated binding curves for RsmA in complex with WT mvaT (grey) and individual site
mutations (brown through red) or mutations in combination (green through pink).
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76 nt (Figure 7A). Guided by the strict peaks (i.e., specific binding
sites) predicted by the model in this case, we selected these three
specific binding sites to test. Evaluating these mutations via in vitro
binding reveals that mutation of BS3 significantly reduces binding
affinity of RsmA to the rsaL transcript (Figure 7C). Mutating BS1
and BS2 individually did not alter affinity to the transcript however,
tandem mutations at sites BS1 and BS2 as well as sites BS2 and BS3
hinder binding interactions from occurring. Overall these results
suggest that BS3 is the main anchor of binding interactions with
the transcript, with BS2 as the site with second highest affinity.
Mutation of BS1, which falls below our peak threshold, did not
impact binding as strongly and is therefore a less likely site for
RsmA-rsaL interactions.

Relative to the distinct peaks observed on rsaL, binding site
predictions on the mvaT leader sequence fall in a wider range, as
evidenced by a single peak in the within the coding sequence of
the gene (Figure 7D). Predicted binding sites on the mvaT leader
sequence were mutated at positions +26, +41, and +68 nt from
the start codon (Figures 7D, E, BS1, BS2, and BS3). Given the lack
of distinct peaks, and therefore a broader selection of potential
binding sites, RsmA-mvaT binding interactions were not disrupted
as expected. Specifically, in our in vitro binding assays, no change
in affinity was observed by mutating BS1, BS2, or BS3 individually.
A slight decrease in affinity was observed when mutating BS1 and
BS2, or BS1 and BS3 in tandem (Figure 7F). It is interesting to note
that predicted RsmA binding sites along themvaT sequence cluster
in a wide region within the CDS (Figure 7D), suggesting that there
may be a multitude of conformations by which RsmA binds to this
transcript.

4 Discussion

In this work, we expand beyond motif-based screens to
computationally profile binding and regulation by the RsmA
protein across the entire P. aeruginosa transcriptome. Modeling and
subsequent filtering yielded 1043 potential targets, of which 457
were not identified in prior experimental screens. We deem these
as novel putative targets of RsmA. These putative novel targets
were found to have variablemedia and condition-specific expression
when investigated in context of publicly available sequencing data,
which we posit explains earlier inability to detect them. Within
each prediction we identify key molecular features that influence
binding, and used these to effectively differentiate direct from
indirect binding. Overall, this effort demonstrates the utility in
using empirically derived binding parameters to computationally
interrogate expansive sequence spaces.

4.1 Metrics such as the energy terms and
binding sites correlate with experimental
evidence, which demonstrate utility of
model in predicting true vs. false targets of
RsmA

Given empirically derived binding parameters, our free energy
model of RsmA binding was able to differentiate direct from
indirect or unbound targets. Our predictions of overall affinity

(μ∆GmRNA:RsmA) and the position of binding sites were identified
as the key parameters that allowed us to interrogate binding
to mRNA leader sequences across the transcriptome. Molecular
features on the RNA sequence are key for enabling regulatory
function, and also provide information on the mechanism by which
RsmA is able to bind. In comparing our model predictions to
publicly available pulldown sequencing data, we demonstrate that
the calculation of the overall affinity termμ∆GmRNA:RsmA can be used
as ametric to differentiate true from false targets of RsmA (Figure 2)
which allowed us to effectively filter predictions made across the
entire transcriptome. This was facilitated by improvements made
to tailor our model for the P. aeruginosa RsmA protein. One such
improvementwas the generation of aRsmA-specific PWM(Table 1).
This PWM allows for the contribution of non-canonical bases to the
overall energy score, and prioritizes anAUGGAmotif. Although not
drastically different from the canonical A(N)GGA CsrA consensus,
the AUGGA motif was independently observed in prior crystal
structure (Schubert et al., 2007), SELEX (Schulmeyer et al., 2016),
and CLIP-seq (Chihara et al., 2021) studies to be favored by RsmA.
This also demonstrates the utility in using solved crystal structures to
generate models of protein-RNA interactions. Overall, considering
slight changes in the protein sequence allowed for our approach
to be better tailored for assessing interactions occurring within P
aeruginosa.

Our model appears to be able to accurately capture binding
interactions between RsmA and candidate targets, as evidenced by
the correlation between the measured in vitro binding affinities and
the predicted μ∆GmRNA:RsmA values that we performed in a small
selection of predictedmRNA targets (Figure 5B).More qualitatively,
genes that did not pass our energetic threshold (such as rhlR) were
not observed to bind in vitro (Figure 5A), and showed no significant
change in translation in vivo (Figure 6B). This suggests that the
model has the ability to predict relative binding affinity and can aid
in further exploration of network regulation, particularly as it relates
to lowly expressed or condition-dependent genes. Interestingly, of
the 1043 genes predicted to be bound by RsmA, several previously
characterized genes did not pass our energy cutoff. These included
magA, andmucA, for which binding was previously experimentally
confirmed in vitro (Brencic and Lory, 2009; Romero et al., 2018).
Each of these predictions yielded less favorable μ∆GmRNA:RsmA
scores, with only a handful of the suite of binding conformations
scoring with high favorability. It is possible then, that other
sequences that exhibit strict site ranges may have been lost to
filtering. Other genes that did not pass our energetic cutoff
included those regulated in tandem with other post-transcriptional
regulators, or require multiple copies of RsmA. This is possible as it
has been demonstrated that RsmA is not always the sole repressor
and can bind genes in tandem with other regulatory factors; this
has been shown to occur with two transcriptional regulators, AmrZ
and Vfr, wherein RsmA is only able to bind these transcripts in
the presence of an additional global post-transcriptional regulator
Hfq (Irie et al., 2020; Gebhardt et al., 2020). Neither amrZ nor
vfr were predicted to be bound by RsmA in our model, therefore
our pool of predicted targets is limited to those regulated by
RsmA alone.

Future iterations of our model can improve upon capturing
the influence of multimerization on binding. RsmA binding can
cause structural changes along an RNA transcript and promote
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multimerization via subsequent folding of higher affinity sites. This
phenomenon has been best demonstrated via loading of multiple
copies of RsmE on the RsmZ sRNA sponge (Duss et al., 2014). Our
model only considers binding interactions between a single RsmA
protein and transcript; therefore, the structural influence of multiple
proteins is missed by the model. To address these limitations, future
improvements could include structural constraints due to partner
binding, however, the footprint and position of the cooperative
partner must be known. In addition, changes can be made to have
RNA sequences “inherit” structural constraints from a primary
iteration of predictions, and measure changes in total affinity due to
the addition of secondary or tertiary elements. This can also prove
useful inmodelingRsmA-mRNA interactions in otherPseudomonas
species that encode multiple paralogs of RsmA, such as RsmA and
RsmE in Pseudomonas putida and Pseudomonas syringae (Sobrero
and Valverde, 2020).

Global trends in our binding site predictions agree with
patterns observed in prior high throughput screens. Distances
between the top binding sites and the start codon were plotted
for all genes that passed our mean total affinity and peak filtering
(Supplementary Figure S4D). Overall, binding sites for RsmA were
localized to three main regions: RBS region (between −30 and 0
relative to the start codon), the start codon, and a broad distribution
of sites within the first 100 bases of the coding sequence. This
is consistent with binding site frequencies observed in CLIP-seq
studies of RsmA in P. aeruginosa (Chihara et al., 2021) and CsrA in
E. coli (Potts et al., 2017).These observations suggest that, in addition
to predicting an overall affinity score, our model can also predict
specific binding sites on the mRNA which provides additional
information on the exact mechanism by which the protein interacts
with its target.

More globally, binding site distributions vary across transcripts.
To investigate this, we used custom peak calling scripts with
parameters defined in Methods. A peak is therefore a region with
a sufficiently high frequency of predicted sites that passes some
minimum threshold set by negative controls. Approximately 30%
of genes modeled have wide, overlapping, pockets of binding sites
that span 30 + nucleobases across of the mRNA. An example of this
is shown in predictions on the mvaT transcript (Figure 7D). 70%
contain narrower, distinct, peaks that are less than 30 nucleotides
wide, which is also seen for predictions across rsaL (Figure 7A).
Analysis of peak count distributions for our predictions (shown in
Supplementary Figure S4D) reveals that the majority of genes have
an average number of 1.25 peaks in their distribution of binding
site peaks, and a smaller population of genes contain an average
of 2.5 peaks where RsmA is predicted to bind. This indicates that
the majority of genes contain one to two distinct binding peaks,
whereas a smaller population contain 2 or more distinct peaks. This
recapitulates prior observations that Rsm/Csr proteins facultatively
interact with targets at a single binding site, or at double binding sites
(Mercante et al., 2009; Morris et al., 2013).The divergent patterns of
binding also suggest “anchoring” at single high affinity site along the
gene, prior to binding to lower affinity positions. This phenomenon
was recently characterized for CsrA-acnA and evgA sequences in
E. coli (Rojano-Nisimura et al., 2024).

Further, the location of predicted binding peaks appeared to
correlate well with in vitro experimental evidence. Our initial
observation was the concordance of predicted peak location on

the well-studied RsmA binding partner tssA1. These predictions
fell within characterized binding sites on the mRNA sequence
(Figure 2C; Schulmeyer et al., 2016). The model also accurately
predicted high affinity binding sites on the rsaL mRNA sequence
which had no prior binding or foot-printing evidence. Using in
vitro filter binding, we experimentally confirmed these predictions
by disrupting interactions via mutation of the highest affinity
motif (BS3) (Figure 7C), and a further disruption of binding
strength was observed upon mutating the second strongest motif
(BS2) in tandem with BS3 (Figure 7C). This is consistent with
the theory that Csr/Rsm family proteins may anchor to lower
affinity sites on the nascent transcript (Gebhardt et al., 2020),
before binding more strongly to downstream high affinity sites
(Leistra et al., 2018). In contrast, mutating predicted sites along
the mvaT leader sequence did not result in a change in affinity
(Figure 7F). Predicted RsmA binding sites along themvaT sequence
cluster in awide regionwithin theCDS (Figure 7D), and suggest that
there may be a multitude of conformations by which RsmA binds
to this transcript. This mechanism of binding has been theorized
previously (Leistra et al., 2018) as a strategy CsrA to ensure binding
to a dynamic structured RNA.

4.2 Loss of target discovery can be
attributed to widely varying expression
profiles across study conditions

Perhaps the most exciting element of the model results is
demonstrating the ability of computational predictions to capture
interactions for mRNAs that are expressed transiently or in a
condition-dependent manner. Our evaluation of target predictions
across 411 gene expression datasets revealed that the majority
of novel genes predicted by our model are lowly expressed
(Figure 4A) or condition specific (Figure 4B). Indeed, K-modal
clustering showed a higher ratio of these novel genes to cluster
with nonstandard media types like ABTGT or M9 minimal media
(Figure 4B). This highlights the importance of considering multiple
approaches to profile the effects of a post-transcriptional regulator,
as condition dependent gene expression can cause a bottleneck
in discovery. This is the case for sRNA discovery, especially, as
many are expressed in specific nutrient (Mihailovic et al., 2021) or
infection contexts (Cao et al., 2023).

4.3 Model identifies that RsmA exerts
regulatory control of quorum sensing and
biofilm forming pathways through binding
and regulation of redundant transcription
factor nodes

RsmA is a major global regulator of a variety of pathways
that contribute to survival and pathogenicity of P. aeruginosa.
These include indirect activation of pathways critical for epithelial
colonization such as the Type 3 Secretion System (T3SS) (Stevens,
2018), Type IV Pili, and flagellar biosynthesis processes (Brencic and
Lory, 2009). RsmA also has been shown to directly repress pathways
that contribute to chronic infection states, such as the formation of
biofilms, Quorum Sensing (QS) (Pessi et al., 2001), and the Type
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6 Secretion System (T6SS) (Goodman et al., 2004). Tight control
of these processes is advantageous for fitness and survival of PA
as it responds to rapid changes in the environment. Direct forms
of post-transcriptional regulation typically have a stronger and
more immediate effect on gene expression. It is therefore important
to effectively differentiate between indirect and direct forms of
regulation by RsmA to better understand the influence on dynamic
signaling networks. In this study, we used our tunedmodel to predict
the likelihood of a direct interaction occurring between RsmA and
anmRNA leader sequence, and found predictions to be enriched for
transcriptional regulators and core virulence pathways (Figure 3A).
Here, we discuss noteworthy predictions generated for genes in
quorum sensing and biofilm forming pathways.

Quorum Sensing (QS) in PA are complex, interconnected,
context-dependent signaling cascades that facilitate group control
and survival. Gene expression in these pathways is stochastic and
sensitive to environmental conditions including fluctuations in
nutrients, pH, and cellular density (Schuster and Greenberg, 2007;
Papenfort and Bassler, 2016). QS expression can also vary from cell
to cell in a population, and it is thought that this heterogeneity is a
survival strategy that ensures proper division of labor and resource
conservations within biofilms (Bettenworth et al., 2019). It has also
been observed that post-transcriptional regulation by sRNAs and
RBPs allows for fine tuning of signal production (Valverde and
Haas, 2008). These factors present challenges in fully characterizing
how these pathways are regulated experimentally, and efforts have
been made to understand dynamics using computational modeling
(Goryachev, 2009).

The activation of the hierarchical and interconnected quorum
sensing pathways in PA has been shown to directly influence the
lifestyle switch towards sessile biofilm forming states. The Gac/Rsm
regulatory pathway has been identified as a key influencer of
the QS cascade (Pessi et al., 2001). Our model identified several
transcriptional regulators in the QS pathway as potential regulatory
targets of RsmA (Figures 3A, C). This included lasR and mvfR
transcriptional activators as well as the lasI and rhlI homo-serine
lactone synthetases. The hierarchical cascade of QS signaling is
initiated when transcriptional activator, LasR, is becomes active
upon sensing 3-oxo-C12-HSL.This event sets off a signaling cascade
and activates expression of subsequent transcriptional regulators
RhlR, and MvfR [Figure 8; (Lee and Zhang, 2015)]. There exists
an interplay between the RhlR and MvfR, wherein RhlR represses
MvfR expression (Cao et al., 2001). Interestingly, RsmA binding
to rhlR was neither predicted nor observed (Figures 5A, 6B;
Supplementary Figure S6) which, given the repressive effect RhlR
has on mvfR transcription, suggests a redundant mechanism by
which RsmA regulates expression of this pathway along multiple
nodes. Additional QS associated regulators were also evaluated in
vitro given results of our model, including transcriptional repressors
rsaL and mvaT. Both rsaL and mvaT repress elements of the
LasR/I QS cascade (Figure 8). mvaT has been observed to repress
additional transcription factors includingmvfR (Diggle et al., 2002)
and represses rsaL in P. fluorescens (Yu et al., 2022).

Several genes predicted by our model are part of the extensive
biofilm formation pathway. Our observation that our model and
experimental results confirm binding and repression of LasR led
us to further investigate whether RsmA also regulated additional

targets of LasR activated genes involved in the T6SS. Inter-
operonic binding was observed for genes in the H1, H2, and H3-
T6SS (Figure 8). The GacA/S TCS has been observed to regulate
key genes in the H1-T6SS and H3-TCSS, including the well-
characterized target tssA1. In PA14, the H2-T6SS is more essential
than H1 (Allsopp et al., 2017), and is activated by the QS
transcriptional regulator MvfR (Maura et al., 2016). The prediction
that RsmA regulates several genes within this locus (Figure 8),
as well as repressing mvfR, reflects a shift towards redundant
regulatory control of that crucial region. Overall, this outlines
the utility of the model in capturing inter-operonic binding
events that regulate the assembly of large, multi-component
structures in PA.

In our study we further evaluated the strength and regulatory
nature of binding between RsmA and the rsaL and mvaT
transcriptional regulators. RsaL was identified as a regulator of
four major virulence-associated pathways, including QS [Figure 3,
(Wang et al., 2021)], exhibits low levels of expression across an
aggregate of publicly available sequencing data (Rajput et al., 2022),
and is an entirely novel prediction generated by our model. In this
study, we demonstrate that RsmA binds to this mRNA in vitro
(Figure 5A) at positions +67 and +76 nucleotides from the start
codon (Figure 7). Binding results in repression of translation of this
protein (Figure 6). We also theorize that this gene evaded prior
high throughput screens because of low (Figure 4A), or context-
dependent (Supplementary Figure S7) expression during planktonic
growth phase. The observation that RsmA represses translation of
rsaL suggests a surprising mechanism of indirect activation, as RsaL
negatively regulates lasI expression by blocking LasR transcriptional
activation (Rampioni et al., 2007). Perhaps this is a mechanism
by which RsmA can initiate the autoregulatory feedback loop for
the LasR/I signaling cascade at intermediate points during the
motile–sessile lifestyle switch.

The second transcript we characterized further was that
encoding the MvaT transcriptional repressor. There exists prior
evidence of RsmA causing changes in expression (Gebhardt et al.,
2020) or binding directly to this transcript (Chihara et al., 2021),
however no prior evidence exists of direct binding in vitro or
repression in vivo. Interestingly, MvaT has also been shown to
regulate the Gac/Rsm regulatory pathway through repression of the
RsmY and RsmZ sRNA sponges (Mcmackin et al., 2019). MvaT
is also a regulator of QS, and its influence the system is thought
to be through repression of mvfR and rsaL. In this study, we find
that RsmA bindsmvaT within the coding sequence (Figure 7F) and
represses expression ofmvaT as well as its paralogmvaU (Figure 6).
Although mutations at model-predicted binding sites did not result
in full loss of binding, the width of predicted binding sites on this
transcript (Figure 7D) suggests that RsmA may bind in multiple
conformations.

In this study, we confirm RsmA binds and represses translation
of lasR, lasI, rhlI, mvfR, rsaL and mvaT (Figures 5–7). We
hypothesize that this mechanism of redundant regulatory control
across quorum sensing and biofilm formation allows for tight
regulation of energetically costly pathways that can become rapidly
de-repressed upon sequestration by the RsmY and RsmZ small
RNAs, and could also fine tune production of signaling molecules
at intermediate steps along the planktonic to biofilm forming
lifestyle switch.
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FIGURE 8
Virulence associated pathways enriched in target predictions included key regulatory transcription factors. Pathway diagrams shown here represent
RsmA targets identified by our model in context of their cellular contribution to virulence. Circles represent predictions that passed our filter and are
shown in solid or hollow based on whether there is prior experimental evidence of direct or indirect regulation of that gene. In addition, these circles
are colored by their predicted regulatory effect: repression (red), activation (green), or an unknown effect (yellow). Genes are shown as boxes, and key
transcriptional regulators are present as ovals. Finally post transcriptional regulators such as RsmA and Hfq are shown as circles. As shown in the box
describing Quorum Sensing, several key transcription factor regulators are targeted by RsmA, as well as their cognate synthetases that contribute to the
autoregulatory feedback loop. Key transcription factors such as LasR are also directly involved in influencing biofilms, and here we illustrate the
activation effect on several pathogenicity islands that make up the T6SS in PA.∗Our model did not identify AmrZ as a potential direct target, and this is
likely due to the cooperative effect that Hfq binding has on loading RsmA to this gene. We also show predictions for several transcriptional regulators
present in the Alginate biosynthesis pathway, providing further clarity on the level of control over this pathway.

5 Conclusion

In this work, we demonstrate the utility in using thermodynamic
modeling for differentiating direct from indirect regulatory
interactions between the RsmA protein and the entirety of the
P. aeruginosa transcriptome. We adapt a previously published
model for a selection of CsrA-mRNA interactions in E. coli to
capture novel mRNA- RsmA interactions in. P. aeruginosa.Applying
this newly adapted model in a manner that differentiates bound
from unbound mRNAs reveals widespread, redundant regulation
of key virulence pathways, such as quorum sensing and biofilm
formation. Specifically, our further biochemical characterization
of RsmA binding to two transcriptional regulatory targets mvaT
and rsaL reveal that RsmA has a far more extensive influence on
quorum sensing pathways, at least in P. aeruginosa. We anticipate
that the predictions presented in this dataset will aid in further
characterization of RsmA regulatory influence upon the complex
and interconnected networks within this widespread pathogen.
It is worth noting that this approach yielded novel genes not yet

reported to be bound or regulated by the RsmA, likely due to lack
of expression in standard laboratory growth conditions. The ability
to explore the entire sequence space in silico allows identification
of regulatory interactions with genes that would only be observed
experimentally under specific conditions that favors expression of
those specific genes. Lastly, this work opens up further questions
regarding the conserved nature of binding in other members
of the gammaproteobacteria, as the model can be applied more
broadly to Csr/Rsm harboring bacteria. We expect that application
of computational modeling approaches to other organisms can
reveal new paradigms regarding the diversity of post-transcriptional
regulation.
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