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There are limited options to quantify and characterize amyloid species from
biological samples in a simple manner. Thioflavin T (ThT) has been used for
decades to stain amyloid fibrils, but to our knowledge, we were the first to
use it in-gel. Thioflavin T in-gel staining is convenient as it is fast, inexpensive,
accessible to most laboratories, and compatible with other fluorescent stains
and downstream analyses such as mass spectrometry (MS).
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Introduction

Organ and systemic proteinopathies represent one of the main areas of public
health concern in Westernized society in this century (Chiti and Dobson, 2009). The
toxic nature of pre-fibrillar and fibrillar amyloid is well-established in neurocognitive
disease (Mullapudi et al., 2023); however, their role and prevalence are also emerging
in cardiovascular diseases (Del Monte and Agnetti, 2014). Most amyloid species are
quantified using either fluorescent, radiolabeled, or immunological probes, as well as mass
spectrometry (MS) (Seino et al., 2021; Wall et al., 2013; Ruiz-Arias et al., 2022; Iino et al.,
2021). From the technological standpoint, MS is arguably one of the techniques with
the highest impact on biomedical sciences in this century (Agnetti et al., 2016). Cutting-
edge MS-based approaches such as isotope incorporation are currently being used in the
study of protein misfolding, but their application is still confined to a few laboratories
worldwide (Mackmull et al., 2022). It is our opinion that a simple way to detect and quickly
isolate amyloid species ex vivo, which is compatible with “classic” MS, would greatly benefit
the study of an increasing number of organ-based proteinopathies.

We optimized a straightforward, affordable method to stain amyloid species in-gel and
tested it on a well-established model of murine cardiac amyloidosis (Sanbe et al., 2004), a
kind gift from Dr. Jeffrey Robbins and others. The idea of an in-gel fluorescent staining for
amyloids was inspired by an ingenious study by Hervé et al. (2009) who used thioflavin
T (ThT) in combination with a general fluorescent protein stain (SYPRO Ruby) to assess
cross-contamination of surgical tools with prions. As SYPRO Ruby is typically used to
stain proteins separated by gel electrophoresis, we hypothesized that ThT would also work
in-gel. We combined the staining with both a modified version of blue native gels in the
presence of SDS—referred to as not-so-native (NSN) gels—and regular SDS-PAGE. These
approaches have the advantage of separating oligomers and fibrils while enabling easy
quantification of these species in a simple gel format across a wide range of molecular sizes.
ThT and other related compounds have an affinity for both fibrils and pre-fibrillar oligomers
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(Maezawa et al., 2008; Khurana et al., 2005) (named pre-amyloid
oligomers, or PAOs henceforth), and its fluorescence increases when
ThT is bound to these species (Biancalana and Koide, 2010).

Thioflavin T’s signal can be conveniently acquired using a laser
scanner equipped with a Cy2 filter (λex/em = 488/520). A Cy5 (λex/em
= 633/670) filter can be used as a reference filter and for total protein
quantification based on Coomassie staining. In short, these aspects,
combined with the low cost of the dye, make the described method
accessible to a variety of laboratories. The additional optimization
of a classical reducing method also allows us to compare the results
usingThTwith those obtained usingmore classical approaches [e.g.,
the A11 antibody (Kayed et al., 2003)]. For these reasons, we believe
that this new approach will enable the expeditious quantification,
purification, and characterization of amyloid species in different
proteinopathies (e.g., cardiac amyloidosis, Alzheimer’s disease (AD),
and Parkinson’s disease).

We first used the ThT in-gel stain to validate the amyloid
properties of desmin oligomers in a caninemodel of dyssynchronous
heart failure (HF) (Agnetti et al., 2014). In the study, we separated
the oligomers under non-reducing conditions and in the presence of
sodium dodecyl sulfate (SDS), using a blue native gel format, which
we nicknamed NSN.

More recently, we tested the performance of the staining
and optimized the protocol for classical (reducing) SDS-PAGE
using the most established model of cardiac proteotoxicity
(Sanbe et al., 2004; Rainer et al., 2018). The transgenic mice used in
this study express a mutated form (R120G) of the most abundant
small heat shock protein in the heart: α-B-crystallin (cryAB). The
cardiac-specific expression of this mutated chaperone in transgenic
mice induces the formation of desmin PAOs and fibrils.

In the optimized protocol outlined in Figure 1, cardiac extracts
are prepared according to our optimized protocol to separate
myofilament and cytosolic-enriched fractions (Rainer et al., 2018).
This separation consists of a homogenization step in the absence
of detergents (cytosolic-enriched, soluble fraction), followed by
centrifugation and re-suspension in the presence of detergents (SDS
for the myofilament-enriched, insoluble fraction), similar to the
protocols used in neuroscience to enrich for fibrils (Wirths, 2017)
(Figure 1A). After protein quantification (Figure 1B), samples are
diluted in the proper sample buffer for either NSN-PAGE or classical
SDS-PAGE, boiled in the latter case, and separated using a standard
1D-PAGE apparatus (Figure 1C). After separation, the gel, which
is already blue in the case of NSN and clear in the case of regular
denaturing gels, is fixed, rinsed thoroughly in water, and stained
with Coomassie for the reducing gels, and its images are digitized
before staining with ThT to ensure that potential protein auto-
fluorescence in theThT (Cy2) channel is accounted for (Figure 1D).
The gel is then incubated with 50 µM ThT in acidified water and
rinsed several times in acidified water to reduce the background
and removeThT speckles before final image acquisition (Figure 1D,
seeMethods for details). Following image acquisition, the gel can be
stored in bi-distilled water or dried. TheThT-positive gel bands can
be located using the Coomassie image as a reference and excised for
downstream in-gel digestion and MS analysis (Figures 1E, F).

When this procedure was used to analyze short cardiac amyloid
fibrils using NSN-PAGE, we could detect a ∼5-fold increase
in a sharp ThT-positive band in R120G cryAB (R120G) mice
vs. non-transgenic (NTG) controls (P = 0.0002). Signals for

both ThT and Coomassie were digitized and contrast-enhanced
(Figure 2A) to enable improved visualization and quantification
(Figure 2B). Interestingly, the ThT-positive band was detected
at an apparent molecular weight of ∼600 kDa. Although NSN
separation does not allow for proper molecular weight calibration,
we reported a similar electrophoretic mobility of ThT-positive
bands in canine failing hearts (Agnetti et al., 2014), suggesting
a mechanism of fibrillization that is conserved across species
and independent of genetic mutations. This is relevant as many
organ proteinopathies (e.g., Parkinson) are sporadic in nature
(Del Monte and Agnetti, 2014).

To broaden the applicability of the protocol, we adapted it for
use with reducing (classical) SDS-PAGE. We tested the method
using both R120G cryAB samples vs. NTG controls and clinical
brain specimens from AD patients vs. healthy individuals (CTRL)
(Figure 2C). In agreement with our previously published results
and the NSN protocol, we detected a ∼5-fold significant increase
in a ThT-positive band at ∼200 kDa under reducing conditions
in cryAB R120G cardiac extracts vs. NTG controls (P = 0.0003;
Figures 2D, E). We also detected a ∼1.5-fold increase in a ∼200-
kDa ThT-positive band compatible with fibrils in brain extracts
from Alzheimer’s patients compared to healthy controls (P = 0.176;
Figure 2E). We attribute the lack of significance with the latter
comparison to the limited number of samples used in this study
and the larger variability in patients’ cohorts compared to mice
with homogeneous genetic backgrounds. As mentioned, Coomassie
post-stain allowed us to cross-reference, excise the ThT-positive
bands with the naked eye (Figure 2C, mid panel), and confirm equal
loading. Under these settings, we were able to confirm the specificity
of the stain using a standardized andmore robust separationmethod
(classical SDS-PAGE).

Finally, we used the ThT in-gel protocol to measure the
accumulation of desmin-positive amyloid fibrils in an established
murine model of HF based on transverse aortic constriction
(TAC) vs. sham-operated controls (Rainer et al., 2018). We
detected a ∼2-fold increase in a ∼200-kDa ThT-positive band
in extracts from TAC mouse samples vs. controls (P = 0.0169;
Figure 2G).

To further validate the specificity of ThT staining for amyloid
aggregates, we exploited the ability of the small-molecule
epigallocatechin gallate (EGCG) to reduce or reverse fibrillization in
prion strains (Roberts et al., 2009). Notably, treating cardiac extracts
with 100 µM EGCG for 30 min at room temperature (RT) reversed
the increase in ThT observed in TAC samples to control levels (P
= 0.0039) (Figure 2G). This observation supports the specificity of
ThT staining for amyloid species. These combined data suggest
that ThT in-gel staining could be applied to a wide number of
proteinopathies, including those afflicting organs other than the
heart (e.g., the brain).

Methods

Tissue procurement

Eight- to twelve-week-old C57BL/6 mice were subjected to TAC
or sham surgery through the Cardiac Physiology Core at Johns
Hopkins, as previously described (Rainer et al., 2018; Oeing et al.,
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FIGURE 1
Thioflavin T staining/MS workflow. Diagram representing the workflow of the experimental method introduced in this study starting with protein
extraction (a) followed by protein quantification/detection (b), western blot to fix the gel (c), staining and acquisition (d), in-gel digestion (e), and mass
spectrometry for analysis (f).

2021). Four weeks after surgery, TAC mice developed overt HF, as
indicated by a decrease in fractional shortening (≤40%)measured by
echocardiography. At that time point, mice were anesthetized, and
the heart was harvested and snap-frozen according to the protocol
approved by the local IACUC. In brief, mice were anesthetized using
isoflurane. Upon reaching deep anesthesia with isoflurane (absence
of the toe pinch reflex), cervical vertebrae were dislocated, and the
heart was quickly extracted through thoracotomy. Freshly explanted
hearts were quickly rinsed in ice-cold PBS containing protease
(cOmplete Mini, Roche) and phosphatase inhibitors (PhosSTOP,
Sigma) to remove excess blood, gently blotted on the clean filter
paper to remove excess liquid, snap-frozen in liquid nitrogen, and
stored at −80C until further processing. Frozen ventricles from
R120G cryAB mice were kindly provided by Dr. Jeff Robbins at the
Cincinnati Children’sHospital. Frozen brain tissue fromAlzheimer’s
patients and healthy controls was kindly provided by DR. Juan
Troncoso as part of the Baltimore Longitudinal Study on Aging
at Johns Hopkins University School of Medicine. All frozen tissue
samples were stored at −80 °C until ready for protein extraction.

Protein extraction

Thirty to fifty milligrams of frozen tissue were homogenized
in cold PBS (Gibco), supplemented with protease (cOmplete Mini,
Roche) and phosphatase (PhosSTOP, Sigma) inhibitors and 25 mM

HEPES (AMRESCO). Pre-weighed 2-mL vials were used to obtain
the tissue weight. A dry ice-cooled metal bead (Retsch) was placed
in each vial, along with five volumes (V/W) of homogenization
buffer. Samples were then homogenized for 2 min at 28 Hz using a
beadmill (MM400, Retsch) and cooled racks. Aftermilling, samples
were pulse-centrifuged and placed in amagnetic rack (Invitrogen) to
ensure that the metal bead remained on the side of the vial, and the
homogenate was transferred to a new clean vial on ice. The beads
were rinsed with three volumes of ice-cold homogenization buffer
(V/W) under vortexing, and the resulting solution was combined
with the respective homogenate. The resulting tissue homogenates
were centrifuged for 15 min (18,000 rcf, 4°C) to obtain soluble and
insoluble fractions, which were separated, snap-frozen, and stored
at −80°C until further use.

Soluble and insoluble fractions were denatured in LDS
buffer (Thermo) within the homogenization buffer, supplemented
with 1% DTT (V/V), followed by heat denaturation at
95°C for 10 min. Protein concentration in the denatured
samples was measured using the EZQ Protein Quantification
Kit (Thermo).

Electrophoresis

For NSN gels, protein extracts from the insoluble fraction were
diluted in blue native sample buffer (25 mMBis-Tris, Bio-Rad; 0.015
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FIGURE 2
ThT stain in cardiac and brain tissue extracts. Representative image of an NSN gel used to separate fibrillar aggregates from NTG and R120G cryAB mice
(a), ThT in green and Coomassie in red; corresponding densitometric analysis of the ThT signal at ∼ 600 kDA is also provided (b). Representative image
of a classical SDS-PAGE gel showing a ThT signal at ∼200 kDa in NTG and R120G cryAB mouse cardiac extracts and extracts from healthy human brain
(CTRL) and AD human brain tissues from the Baltimore Longitudinal Study on Aging (BLSA) (c). Densitometric analysis of the ThT signal at ∼200 kDA is
also provided (d, e), respectively). A representative image of the effects of EGCG on extracts from TAC and sham-operated mouse hearts is also
provided (f), along with the respective densitometric analysis (g). NTG, non-transgenic; R120G, R120G cryAB mouse heart extracts; CTRL, healthy
human brain tissue; AD, Alzheimer’s disease; EGCG, epigallocatechin gallate; ThT, Thioflavin T. Mean ± SD is plotted in all graphs. P-values were
obtained using a student’s t-test (b, d–e) or one-way ANOVA, followed by Sidak’s multiple comparison tests (g). Please refer to the text for the
abbreviations.

ml of 1 N hydrochloric acid, Fisher Scientific; 10% glycerol, Sigma
Aldrich; 25 mM NaCl, Sigma Aldrich; 0.001% Ponceau S, Fisher
Scientific; 2% SDS, Fisher Scientific). After incubating samples at
RT for 30 min, they were clarified by centrifugation (18,000 rcf,
30 min, 4°C) to remove the insoluble material, and the resulting
supernatant was supplemented with 0.25% Coomassie Blue G-250
(Fisher Scientific). A measure of 40 μg of protein per sample was
then separated using NuPAGE pre-cast native gels (Thermo) for
NSN, while 20 µg of protein were used for classic SDS-PAGE using
3%–12% NuPAGE gels (Thermo). Both types of electrophoreses
were performed at 150 V for approximately 1 h. After separation,
gels were fixed in 10% acetic acid (Fisher Chemical), 40% methanol
(Fisher Chemical), and bi-distilled water overnight to remove excess
SDS for downstream excess analysis.

Gel staining and acquisition

The following day, gels were rinsed several times in bi-distilled
water to remove excess methanol, and the background fluorescent
signal for ThT and Coomassie (Cy2 and Cy5 filters, respectively)
was acquired using a Typhoon laser scanner (GE). Gels were
subsequently stained with 0.1% (W/V) ThT in acidified water
[13.8 µL of 1 N hydrochloric acid (Fisher Scientific) per 50 mL of
bi-distilled water] for 1 h in the dark. The ThT working solution
was prepared at least 1 hour in advance to maximize solubilization
and was kept in the dark. After ThT staining, gels were rinsed
extensively in acidified water to remove speckles, followed by a
new acquisition of the Cy2 and Cy5 signals using the Typhoon.
Following ThT signal acquisition, gels were stained with blue silver
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(Candiano et al., 2004) for ≥20 min at RT, rinsed extensively in
acidifiedwater, and imaged again to acquire the fluorescent signal for
Coomassie (Cy5 filter). The resulting merged images of Coomassie
and ThT signals (Figure 2) were used for quantitative analysis
and to locate the ThT-positive bands with the naked eye using
Coomassie as a reference.

Mass spectrometry

Please refer to the online Methods and Results for LC-
MS analysis (Supplementary Figures 1, 2).
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