
TYPE Original Research
PUBLISHED 19 March 2025
DOI 10.3389/fmolb.2025.1510896

OPEN ACCESS

EDITED BY

Tiratha Raj Singh,
Jaypee University of Information
Technology, India

REVIEWED BY

Minhajul Arfeen,
Qassim University, Saudi Arabia
Bradley M. Kearney,
National Defense Medical College, Japan

*CORRESPONDENCE

C. George Priya Doss,
georgepriyadoss@vit.ac.in

RECEIVED 15 October 2024
ACCEPTED 24 February 2025
PUBLISHED 19 March 2025

CITATION

Loganathan T and George Priya Doss C
(2025) Computational molecular insights into
ibrutinib as a potent inhibitor of HER2-L755S
mutant in breast cancer: gene expression
studies, virtual screening, docking, and
molecular dynamics analysis.
Front. Mol. Biosci. 12:1510896.
doi: 10.3389/fmolb.2025.1510896

COPYRIGHT

© 2025 Loganathan and George Priya Doss.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Computational molecular
insights into ibrutinib as a potent
inhibitor of HER2-L755S mutant
in breast cancer: gene expression
studies, virtual screening,
docking, and molecular
dynamics analysis

Tamizhini Loganathan and C. George Priya Doss*

Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and
Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

Background: The proposed study integrates several advanced computational
techniques to unravel the molecular mechanisms underlying breast cancer
progression and drug resistance.

Methods: We investigated HER2-L755S mutation through a multi-step
approach, including gene expression analysis, molecular docking, andmolecular
dynamics simulations.

Results and Discussion: By conducting a network-based analysis of gene
expression data from breast cancer samples, key hub genes such as MYC,
EGFR, CDKN2A, ERBB2, CDK1, E2F1, TOP2A, MDM2, TGFB1, and FOXM1 were
identified, all of which are critical in tumor growth and metastasis. The study
mainly focuses on the ERBB2 gene, which encodes the HER2 protein, and its
commonmutation HER2-L755S, associatedwith breast cancer and resistance to
the drug lapatinib. The HER2-L755S mutation contributes to both tumorigenesis
and therapeutic failure. To address this, alternative therapeutic strategies were
investigated using combinatorial computational approaches. The stability and
flexibility of the HER2-L755S mutation were evaluated through comparative
molecular dynamics simulations over 1000 ns using Gromacs in the unbound
(Apo) state. Virtual screening with Schrodinger Glide identified ibrutinib as
a promising alternative to lapatinib for targeting the HER2-L755S mutant.
Detailed docking and molecular dynamics simulations in the bound (Holo) state
demonstrated that the HER2-L755S-ibrutinib complex exhibited higher binding
affinityandlowerbindingenergy, indicatingmorestable interactionscompared to
other complexes. MM-PBSA analysis revealed that the HER2-L755S-ibrutinib
complexhadmorenegativebindingenergy than theHER2-L755S-afatinib,HER2-
L755S-lapatinib, andHER2-L755S-neratinib complexes, suggesting that ibrutinib
forms the most stable complex with favorable binding interactions.
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Conclusion: These results provide in-depth atomic-level insights into the
binding mechanisms of these inhibitors, highlighting ibrutinib as a potentially
effective inhibitor for the clinical treatment of breast cancer.
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breast cancer, HER2-L755S mutant, lapatinib resistance

Introduction

Breast cancer (BC) is the most prevalent cancer among women
globally, though it can also affect men (Łukasiewicz et al., 2021).
In 2020, over 2.3 million women were diagnosed with BC,
making it the most common cancer, with an annual mortality
rate of 30% (World Health Organisation, 2023; Arnold et al., 2022).
According to GLOBOCAN statistics, BC accounted for 11.6% of
all new cancer cases globally in 2022 (Bray et al., 2024). The
American Cancer Society projects approximately 297,790 new
cases of invasive breast cancer and 55,720 new cases of ductal
carcinoma in situ in the US for 2024, with an estimated 43,170
deaths (American Cancer Society, 2023). In India, BC accounts for
25%–32% of female cancer cases, with 178,000 new cases reported
annually as of 2020 (Mehrotra and Yadav, 2022). Approximately
50%–60% of BC cases in India are detected at a late stage,
resulting in poorer outcomes and highermortality rates. BC survival
rates vary globally, influenced by the stage at diagnosis, access to
healthcare, and socioeconomic factors. The 5-year global survival
rate ranges from 85% to 90%, and the 10-year global survival
rate exceeds 80% for early-stage BC but significantly decreases
with advanced stages (Giaquinto et al., 2024). BC is classified into
various types based on origin, hormone receptor status, and genetic
characteristics. These include ductal carcinoma in situ, invasive
ductal carcinoma, invasive lobular carcinoma, triple-negative breast
cancer (TNBC), hormone-receptor-positive BC, and inflammatory
BC. Each subtype has distinct treatment approaches and prognoses
(Mayo Clinic, 2018; Zubair et al., 2021). BC risk factors include
genetic, environmental, and lifestyle factors such as gender, age,
family history, genetic mutations, hormonal factors, and diet
(Feng et al., 2018).

BC is often driven by genetic mutations that affect cell growth
and division, with some mutations being inherited and others
occurring spontaneously (Breast cancer: MedlinePlus Genetics,
2021). Recently, gene expression analysis has become crucial in
identifying molecular drivers in diseases like BC (Alam et al.,
2022; Alberts et al., 2015). Researchers can identify critical
targets and pathways linked to disease progression and treatment
response by examining gene expression differences between
patient samples. Investigating mutations within these targets
provides deeper insights into specific alterations that may drive
resistance mechanisms (Waarts et al., 2022). This approach
enhances our understanding of the disease’s molecular landscape
and the development of targeted therapies to overcome
resistance, ultimately leading to more effective and personalized
treatment strategies.

The ERBB2 (HER2) gene, part of the ERBB family of
receptor tyrosine kinases, plays a crucial role in cell growth,
differentiation, and survival (Tan and Yu, 2013). Mutations and

amplifications in HER2 are commonly associated with several
cancers, including BC, leading to HER2 protein overexpression
and uncontrolled cell proliferation (Lee et al., 2019; Michael et al.,
2023).TheHER2 protein has four functional domains: extracellular,
transmembrane, juxtamembrane, and kinase domains (Pahuja et al.,
2018).The kinase domain is particularly critical, as it phosphorylates
tyrosine residues on the receptor and downstream signaling
proteins, activating key pathways like PI3K/AKT/mTOR and
RAS/RAF/MEK/ERK (Jiao et al., 2018; Sudhesh Dev et al., 2021).
The mutation frequency of the HER2 protein was analyzed
using the COSMIC database, revealing it ranks 14th in the
context of BC (Tate et al., 2018). Further analysis identified
various mutations across different domains of the HER2 protein.
Mutations in the kinase domain of HER2 are the most frequent
and often oncogenic. Notable kinase domain mutations, such
as L755S, V777L, D769Y, D769H, I767M, V842I, and T798M,
lead to constitutive activation of the receptor, driving cancer
progression (Subramanian et al., 2019). Among these, the HER2-
L755S mutation is particularly deleterious and supported by other
resources (ERBB2 - My Cancer Genome, 2024; Uchida et al., 2021)
(Supplementary Figure S1).This mutation continues to drive cancer
progression and is a target for HER2 inhibitors like neratinib
and afatinib (Swain et al., 2022). Additionally, L755S and T798M
mutations confer resistance to some HER2-targeted therapies, such
as trastuzumab and lapatinib (Li et al., 2019). Drug resistance
in BC, particularly with HER2 mutation (L755S), occurs through
various biological mechanisms that allow cancer cells to evade
targeted therapies. Resistance can be primary (innate) or secondary
(acquired), where resistance develops after an initial response to
treatment (Sharma et al., 2017). Understanding these mechanisms
and exploring alternative strategies are crucial for improving
patient outcomes.

The integration of combinatorial bioinformatics approaches,
including gene expression analysis, virtual screening, docking,
and dynamics analysis, has revolutionized the drug discovery
process (Ismail et al., 2024; Suvarna et al., 2024; Helal et al.,
2022). This study aims to thoroughly investigate the impact of
the HER2-L755S mutation and its drug-binding efficiency on
four drugs: lapatinib (drug-resistant) and afatinib, neratinib,
and ibrutinib (drug-sensitive) for BC. The initial bioinformatics
analysis combined with gene expression identifies key hub
genes and maps predominant mutations with external databases.
Identifying these genes and mutations is crucial for further
cancer research. Subsequently, virtual screening and molecular
dynamics were employed to explore possible binding interactions
and ligand stability, identifying promising drug candidates for
HER2-L755S. This study is the first comprehensive investigation
demonstrating the compound’s ability to interact with HER2,
laying the groundwork for the potential development of an
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FIGURE 1
The comprehensive workflow of this study. Datasets were screened based on inclusion and exclusion criteria using the PRISMA workflow. The overall
analysis includes identifying DEGs, performing functional enrichment analysis, constructing the PPI network, screening modules, identifying hub genes,
and conducting structural studies.

effective bioinformatics pipeline in the drug discovery process
towards BC.

Methods

Collection of gene expression datasets

We employed the keywords “Breast Cancer” to explore the
GEO, a public platform, and retrieve gene expression datasets
(Clough and Barrett, 2016). GEO databases allow for the selection
of datasets according to predefined criteria by applying strict
filtering standards and developing a method to identify relevant
information.The research focused on the organism category (Homo
sapiens) and the gene expression analysis using microarrays. The
chosen traits involved tissue samples from cancerous tissues as
well as normal neighboring tissues. We selected datasets containing
normal adjacent samples as well as diseased samples, ensuring
there were a minimum of five samples from patients in cancer
stages I, II, and III, utilizing the affymetrix platform (Irizarry et al.,
2003). Criteria for exclusion encompassed research on cell lines,
datasets involving treatment interventions, and studies lacking
normal healthy or tumor samples. The analysis of data involved
pinpointing differentially expressed genes (DEGs) from various
datasets, building a protein interaction network, evaluating DEG
functions, utilizing CytoHubba to find hub genes, recognizing

mutations, and performing structural investigations. The complete
process is illustrated in Figure 1.

Identification of DEGs

ImaGEO was employed to detect DEGs in BC using pre-
normalized microarray data (Toro-Domínguez et al., 2018). By
combining effect sizes from all datasets, DEGs were integrated
using a random effect model. Genes were considered significant
if they had a p-value < 0.01, corrected using the false discovery
rate (FDR). DEGs with a z-score > 3 were classified as upregulated,
while those with a z-score < −3 were classified as downregulated.
Venny was an online tool used to identify and visualize
overlapping genes from TCGA-BRCA, DisGeNET (Piñero et al.,
2016), and Meta-DEG from BC. A subsequent functional
enrichment analysis was conducted using these shared
overlapped genes.

Enrichment analysis

In order to identify the underlying Cellular Components (CC),
Biological Processes (BP), Molecular Functions (MF), Transcription
Factors (TF), and crucial signaling pathways, the DEGs were
examined using ShinyGO (Ge et al., 2019) for Gene Ontology
(GO) and pathway enrichment. Biological terms with a p-value
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less than 0.01, a minimum count of 3, and an enrichment factor
over 1.5 were sorted.A p-value of less than 0.05 was used as a
threshold criterion to select significant enriched GO keywords
and pathways.

Building PPI networks and identifying hub
genes

The STRING web tool was used to retrieve gene interaction
data and build a PPI network (Szklarczyk et al., 2022). The
selection of genes with an interaction score greater than 0.9
indicated high confidence. The MCODE plugin was used to
identify modules or clusters displaying strong co-expression
patterns with other genes and relevant biological functions (Bader
and Hogue, 2003). The gene information acquired in network
form was then screened using Cytoscape software and the
CytoHubba plugin (Chin et al., 2014). PPI connections were
managed using the MCC technique in Cytoscape software. The top
ten nodes with the most interactions were identified and classified
as hub genes.

Validation on hub genes

Hub genes were validated across multiple cancer types using
the GEPIA webserver (Tang et al., 2017), which was utilized to
analyze gene expression and retrieve data for specific genes. GEPIA
is widely recognized for its capability to compare gene expression
levels between normal and tumor samples. Kaplan-Meier plots were
generated for survival analysis, assessing differential gene expression
between tumor and normal tissues.

Gene expression data and overall survival information from
TCGA were analyzed using the KM-plotter, an online survival
analysis tool that stratifies patient samples into two groups. The hub
gene signature score was calculated based on the average log2 (TPM
+ 1) value.The expression threshold for both cancer tissue types was
set at 0.01 (p-value), while |Log2FC| was fixed at 1.

This tool enables users to select their cancer type for overall
survival analysis. Statistical significance was evaluated using the
log-rank test, also known as the Mantel-Cox test. Additionally, the
Cox proportional hazard ratio and the 95% confidence interval
can be displayed in survival plots. Kaplan-Meier graphs (Lánczky
and Győrffy, 2021) illustrate the survival status of key genes
along with the computed log-rank p-value across various
cancer types.

Gene prioritization and mutation selection
using COSMIC database

Gene prioritization and mutation-selection were performed
using the COSMIC database (Tate et al., 2018). Filters applied
included tissue type (e.g., breast cancer), mutation type (e.g., SNP),
and sample source (e.g., primary tumor). Mutations were reviewed
and ranked by prevalence and biological impact. The HER2 L755S
mutation, frequently identified in BC and associated with drug
resistance, was selected for further analysis.

Structure modeling of HER2 protein

The three-dimensional (3D) structure of the HER2 protein
was acquired from the Protein Data Bank (PDB) (Burley et al.,
2018), using the wild-type (WT) structure with PDB ID: 3PP0
for subsequent analysis (Aertgeerts et al., 2011). The missing
residues in the crystal structure were modeled using SWISS-
MODEL (Waterhouse et al., 2018). Aftermodeling, SWISS-MODEL
was used for energy minimization to ensure the stability and
compatibility of the newly added residueswith the existing structure.
The overall structure, including the newly modeled residues, was
assessed using metrics like QMEAN to estimate accuracy and
reliability (Waterhouse et al., 2018). The modelled structure was
validated using Ramachandran plot (Supplementary Figure S2).The
finalized modeled structure was downloaded in.pdb format. This
structure has two chains; chain A was selected for further analysis.
Furthermore, the mutation (L to S) at position 755 in HER2 was
introduced using the Swiss PDB Viewer (Kaplan and Littlejohn,
2001). The prepared models, Apo WT and MT L755S, were
considered for further analysis. The PyMOL tool were used to
visualize the protein structure (Schrödinger and DeLano, 2020).

Virtual screening and ADMET analysis

The tyrosine kinase library was sourced from Selleck Chemicals
(https://www.selleckchem.com). The protein structure (HER2-
L755S) was prepared by adding hydrogen atoms, refining loop
regions, optimizing hydrogen bond assignments, and minimizing
energy using the OPLS-2005 force field with the Protein Preparation
Wizard (Schrodinger) (Roos et al., 2019). The Glide-grid was
generated using the Receptor Grid Generation module. LigPrep
processed the drug library to generate multiple conformers and
ionization states at pH 2.0, utilizing the OPLS-2005 force field.
Epik v5.3 generated ligand molecules at pH 7.0 ± 2, excluding
high-energy ionization/tautomer states for reliability (Shelley et al.,
2007). Structure-based virtual screening was performed after
compounds were evaluated using Qikprop v6.5 and Lipinski’s
criteria (Lipinski, 2004). Docking was conducted using Glide,
employing three protocols: extra precision (XP), standard precision
(SP), and high-throughput virtual screening (HTVS). XP was
utilized to bind ligands to the receptor, generate three poses,
and provide optimal scoring results (Friesner et al., 2006).
MM-GBSA predicted the binding free energy of protein-ligand
complexes, enhancing initial docking accuracy (Genheden and
Ryde, 2015). This approach improves screening reliability, reducing
false positives. Understanding pharmacokinetics is vital for effective
drug development. ADMET properties (absorption, distribution,
metabolism, excretion, and toxicity) were computationally assessed
using the SwissADME web server to evaluate pharmacological and
carcinogenic properties (Daina et al., 2017).

Molecular docking analysis

The mutated modeled structure (HER2-L755S) was selected
as the target protein for further analysis. Drug compounds with
IDs (afatinib: 10184653, lapatinib: 208908, neratinib: 9915743, and

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1510896
https://www.selleckchem.com
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Loganathan and George Priya Doss 10.3389/fmolb.2025.1510896

ibrutinib: 24821094) were sourced from the PubChem database
(Kim et al., 2015). Molecular docking analysis was performed using
Autodock4.2.6 software to validate the protein-drug interactions
(Forli et al., 2016). The dimensions of the grid box were set to
60 Å × 60 Å × 60 Å, and the center of X (8.559 Å), Y (17.570 Å),
and Z (22.958 Å). The process involved protein preparation,
ligand preparation, grid generation, and docking analysis. Active
site residues, identified from the protein’s 3D structure, were
chosen for the study (Aertgeerts et al., 2011). Autogrid4 and
autodock4 software runs were used to prepare the receptor protein
for docking and collect the findings. Based on hydrogen-bond
interactions, the optimal complex was chosen from each drug’s
triple docking. The binding energies of the drug compounds
to the target proteins were determined using Autodock; more
significant negative binding energy scores denoted more favorable
interactions. Protein-drug interactions were visualized using the
PLIP tool (Salentin et al., 2015).

Molecular dynamics simulations

A 1000 ns comparative molecular dynamics simulation (MDS)
was executed using the CHARMM force field. This simulation
encompassed both the Apo (WT and MT HER2-L755S) and
the Holo state with four complexes: HER2-L755S-afatinib,
HER2-L755S-ibrutinib, HER2-L755S-lapatinib, and HER2-L755S-
neratinib, utilizing Gromacs software (Abraham et al., 2015).
SwissParam was used to create topological files for the ligand
(Zoete et al., 2011). Three chloride ions were introduced to the
system to bring it into equilibrium while keeping the temperature
(300 K), pressure, and particle count unchanged. For solvation,
the TIP3P water model was used, and the Berendsen thermostat
was used to regulate the temperature (Berendsen et al., 1984).
Every atom was placed at least 1 nm apart from the box’s
edges.Energy minimization was conducted using the steepest
descent method, with the temperature gradually increased from
0 K to 300 K during heating. The MDS consisted of three stages:
heating, equilibration, and production. Energy minimization
and equilibration steps were performed in both NVT and NPT
ensembles (nsteps = 50,000), followed by a 1,000 ns MDS run.
Covalent bond constraints were applied using the Linear Constraint
Solver (LINCS) method (Hess et al., 1997), and electrostatic
interactions were calculated using the Particle Mesh Ewald
(PME) method (Essmann et al., 1995), with default cutoff radii
for other interactions. The trajectory of each MD simulation
was examined utilizing GROMACS tools (Van Der Spoel et al.,
2005). Various structural features, including Root Mean Square
Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius
of Gyration (Rg), intramolecular hydrogen bonds, and Solvent
Accessible Surface Area (SASA), were assessed using gmx tools.
Hydrogen bond occupancy analysis was conducted using Visual
Molecular Dynamics (VMD) (Humphrey et al., 1996). VMD
identified and calculated the occupancy of hydrogen bonds over
the MDS trajectory, providing insights into the stability and
interaction patterns within the complexes. The analysis involved
specific distance (3.0 Å) and angle criteria (angle cutoff −20◦) for
hydrogen bond detection, and occupancy was quantified to reveal
the persistence of these bonds across the trajectory frames. This

information characterized the hydrogen-bonding network, essential
for understanding binding stability and structural changes in the
complexes.

Molecular mechanics Poisson–Boltzmann
surface area

Molecular Mechanics Poisson–Boltzmann Surface Area (MM-
PBSA) calculations are instrumental in integrating protein-
ligand binding free energies within high-throughput MDS. These
calculations encompass van derWaals, electrostatic, polar solvation,
solvent accessible surface area (SASA), and binding energies. In this
study, we employed the g_mmpbsa tool developed by Kumari et al.
(2014). The MM-PBSA calculation was executed in a single step
using the parameter file and the protein-ligand MD trajectory data.
The van der Waals method was utilized via the MmPbsaStat.py
Python script within the g_mmpbsa package to compute various
energies, including binding, polar solvation, electrostatic, and SASA.
Energy decomposition for the five complexes was performed using
the MmPbSaDecomp.py script, and the results were visualized with
the XmGRACE program.

Principal component analysis (PCA)

Essential dynamics involves examining the fundamental
motions of a biomolecule or group of molecules crucial for
their biological activity. PCA is commonly employed to identify
significant collective motions, extract essential dynamics from
MD trajectories, and understand their relevance (Amadei et al.,
1993). The elements of atomic vibration that contribute to
this coordinated motion were shown by the time-averaged
projection. The Gibbs free energy landscape was established using
the gmx sham tool.

Results

Identification of DEGs in meta-analysis

Nine gene expression datasets were collected from the
GEO database under stringent criteria. The datasets—GSE3744,
GSE26711, GSE5364, GSE16780, GSE15852, GSE17907,
GSE42568, GSE36295, and GSE37751—were processed and
analyzed using the ImaGEO tool, with detailed information
in Supplementary Table 1. Data quality was visualized via
boxplots (Supplementary Figures S3, S4). DEGs were integrated
using a random effect model, aggregating effect sizes from all
datasets. Significant genes were identified with an FDR-p ≤
0.05, corrected by the FDR method. Genes with a z-score > 3
were considered upregulated, while those with a z-score < −3
were considered downregulated. The meta-analysis identified
5,444 DEGs, visualized with a statistical heatmap in Figure 2A.
DEGs were compared to the TCGA-BRCA and DisGeNET
databases, identifying 61 overlapping genes. These common DEGs,
illustrated in the Venn diagram in Figure 2B, were used for
functional analysis.
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FIGURE 2
Meta-analysis results. (A) Differentially expressed genes (DEGs) in breast cancer are depicted using a heatmap. (B) The Venn diagram shows 61
overlapping DEGs among three different sets (Meta-DEGs, TCGA-BRCA, and DisGeNET(BC)).

Functional enrichment analysis

Using the shinyGO tool, the functional enrichment of the 61
overlapping genes was analyzed. The analysis focused on various
essential functions, including GO-BP, GO-MF, GO-CC, KEGG, and
TF. Each analysis was visualized using lollipop plots with a p-
value ≤ 0.05. Key GO-BP functions identified were “Regulation of
growth,” “Positive regulation of cell differentiation,” and “Regulation
of apoptotic process.” In GO-CC, functions such as “Growth factor
complex” and “Insulin-like growth factor ternary complex” were
noted. GO-MF functions included “Protein tyrosine kinase activity,”
“Growth factor binding,” and “Transcription factor binding.” Crucial
pathways identified included “Endocrine resistance,” “Cell cycle,”
“FoxO signaling pathway,” “MAPK pathway,” and “PI3K-Akt
signaling pathway.” Top enriched transcription factors (TFs), such as
E2F1,MYB, and TP53, play vital roles in controlling gene expression
and impacting various biological processes and development. These
results were visualized using bar plots, as shown in Figure 3.

PPI network and hub gene analysis

The PPI network was constructed using the STRING database,
focusing on interactions with a confidence score above 0.9. This
network was then imported into the Cytoscape tool, with the
entire network visualized in Figure 4A. Three distinct clusters
were identified within the network, as shown in Figure 4B. Hub
genes were identified using the MCC algorithm, with results
displayed in Figure 4C. The identified hub genes—MYC, EGFR,

CDKN2A, ERBB2, CDK1, E2F1, TOP2A, MDM2, TGFB1, and
FOXM1—play crucial roles in breast cancer (BC) progression and
development. Further validation of these hub genes was performed
using the GEPIA server tool. The expression of the ERBB2 gene
was found to be higher in BC compared to other cancers, with the
expression patterns illustrated. Survival analysis using KM plots was
conducted for the ERBB2 gene in both cancers. These findings are
detailed in Supplementary Figure S5.

Virtual screening and ADMET analysis

Virtual screening analysis was conducted using Glide
Schrodinger software, focusing on the mutant HER2-L755S as
the primary structure. The tyrosine kinase drug library (654
compounds) was utilized to identify potential inhibitors for the
HER2-L755S protein. Initially, 344 compounds were filtered using
the Qikprop and Lipinski modules. The final compound poses
were selected after applying the extra precision (XP) algorithm
for accurate screening. Ensuring the efficacy and reliability of
the identified compounds involved assessing pharmacokinetics
and toxicity characteristics. Parameters such as p-glycoprotein
inhibition, hepatotoxicity, carcinogenicity, and blood-brain barrier
absorption were examined. CNS permeability, indicated by
CNS > −2, suggested central nervous system penetration. None
of the compounds displayed carcinogenic or toxic profiles in
AMES toxicity or carcinogenicity studies. The chosen compounds
exhibited favorable responses according to the Lipinski rule of
five, which considers hydrogen bond donors, acceptors, and
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FIGURE 3
Functional enrichment analysis. (A) Gene ontology - biological processes. (B) Gene ontology - molecular function. (C) Gene ontology - cellular
components. (D) Gene ontology - KEGG pathways. (E) Gene ontology - transcription factors.

ligand molecule surface area. A comprehensive summary of the
ADMET analysis and virtual screening of ibrutinib outcomes is
provided in Supplementary Table 2.

Molecular docking results

Molecular docking analysis was conducted using the
conventional ligands lapatinib (drug-resistant), afatinib, and
neratinib (drug-sensitive), and ibrutinib from virtual screening.
Detailed docking results, including hydrogen bond andhydrophobic
interactions, are provided in Table 1. Lower binding energy
between protein-ligand complexes indicates a more favorable and
stable interaction. The HER2-L755S-ibrutinib complex showed
the lowest binding energy of −10.4 kcal/mol, followed by HER2-
L755S-lapatinib at −9.7 kcal/mol. Other binding energies for
the Holo complexes were HER2-L755S-afatinib at −7.7 kcal/mol
and HER2-L755S-neratinib at −9.0 kcal/mol. The standard drug-
sensitive complexes (HER2-L755S-afatinib and HER2-L755S-
neratinib) displayed lower binding energies than the HER2-
L755S-ibrutinib complex. Detailed molecular docking information
is provided in Supplementary Table 3. The 2D interactions of
the ligand-complex structures were visualized using the PLIP
tool (Figure 5).

Molecular dynamics simulations

In this study, we conducted molecular dynamics simulations
(MDS) for 1,000 ns across three independent replicates for apo and
holo states. This methodology ensures robust and reliable insights
into the system’s behavior by accounting for potential variability
in the trajectories. Each replicate represents a distinct simulation
run, facilitating a comprehensive analysis of structural stability and
conformational changes. Among the three 1,000 ns simulations,
Run1 was identified as the most stable based on key stability
parameters such as RMSD. Consequently, further detailed analyses
were performed exclusively on Run1 to derive meaningful insights
and ensure reliable conclusions from the study. The average values
of RMSD, RMSF, SASA, and Rg for both the apo and holo forms
are provided in Supplementary Table 4. Detailed RMSD graphs are
presented in Supplementary Figures S6–S8.

Molecular dynamics simulations (apo state)

A 1000 ns trajectory of MDS Run 1 was analyzed to investigate
the structural and functional changes induced by the HER2-L755S
mutation compared to the wild-type (WT) using metrics such
as RMSD, RMSF, Rg, intramolecular hydrogen bonds, and SASA.

Frontiers in Molecular Biosciences 07 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1510896
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Loganathan and George Priya Doss 10.3389/fmolb.2025.1510896

FIGURE 4
PPI Network Analysis and Hub Genes. (A) The protein-protein interaction network, represented using the STRING database. (B) MCODE analysis
identifying three clusters. (C) Representation of hub genes.

The RMSD of backbone atoms indicated overall stability, with
the WT and HER2-L755S mutant proteins showing low RMSD
values (≈0.35 nm and ≈ 0.3 nm, respectively). The WT protein
exhibited moderate conformational changes within a range of less
than 0.4 nm, suggesting that themutationmay cause local structural
deviations without disrupting the global fold of the protein. Despite
deviation during the simulation, both types remained stable. The
RMSF of C-alpha atoms was used to examine flexibility changes
in specific residues. Both WT and HER2-L755S mutants displayed
RMSF values of ≈ 1 nm. Lower RMSF values in the mutant
indicate reduced flexibility, suggesting a more rigid conformation.
Slight changes in fluctuation between residues at positions 753–755
were observed for HER2-L755S, likely due to the introduction
of a polar serine in place of hydrophobic leucine, causing local
structural changes and stabilizing the mutant conformation. Rg,
which measures protein compactness, showed values ranging from
≈1.95 to 2.1 nm, indicating a more compact structure. The HER2-
L755S mutant exhibited more fluctuations, potentially leading to
increased rigidity in specific regions and a more compact structure.
SASA, which measures the protein’s exposed surface area, showed
values of ≈ 160 nm2 for WT and ≈ 158 nm2 for HER2-L755S.
A decrease in SASA for the mutant form compared to the WT
indicates a more compact structure or a change that leads to
buried hydrophobic residues, contributing to structural stability.
The H-bond analysis, comparing the number of intramolecular
hydrogen bonds between WT and HER2-L755S, showed a range

of 175–225. The initial set of principal components, PC1 and PC2,
were utilized to map the Gibbs free energy landscape, providing
insights into the stability and energy dynamics of different states or
transitions in the biomolecular system.TheGibbs free energy profile
for each system was illustrated with color coding, representing
Gibbs free energies in kJ/mol for each structural state, from lowest
to highest. The energy values for HER2-WT (19.9 kJ/mol) and
HER2-MT (21 kJ/mol) suggest that the mutant has a slightly higher
binding energy (21 kJ/mol) compared to the WT (19.9 kJ/mol).
This small difference could indicate a subtle decrease in stability
in the mutant due to structural or conformational changes
caused by the mutation. Detailed results of the apo state are
mentioned in Figure 6.

Molecular dynamics simulation analysis
(holo state)

A comparative MDS analysis was performed on the HER2-
L755S mutation with standard drugs (afatinib, neratinib, and
lapatinib) and a virtual screening drug (ibrutinib) to evaluate
the structural instability induced by the mutation in the HER2
protein. Four MDS runs, each lasting 1,000 ns, were conducted,
assessing structural parameters such as RMSD, RMSF, Rg, SASA,
and intermolecular hydrogen (H) bonds. Additional analyses
included Principal Component Analysis (PCA) and Gibbs free
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TABLE 1 Molecular docking analysis of HER2-L755S-drug complexes.

Protein_
name

Ligand_
name

Docking score (kcal/mol) Number of h-bonds Hydrogen
Bonds
residues and
distances (Å)

Hydrophobic
Interaction
residues and
distances (Å)

HER2 Afatinib −7.7 5 SER 728A-3.28
SER 728A-1.99
GLY 729A-2.48
CYS 805A-3.37
ARG 849A-2.61

VAL 734A-3.64
LEU 852A-3.32
ASP 862A-3.78

HER2 Ibrutinib −10.4 2 GLN 799A-3.28
MET 801A-2.33

LEU 726A- 3.69
VAL 734A-3.95
VAL 734A-3.12
ALA 751A-3.67
LYS 753A-3.93
LEU 785A-3.30
LEU 796A-3.76
LEU 852A-3.61
THR 862A-3.75
ASP 863A-3.77
PHE 864A-3.77

HER2 Lapatinib −9.7 5 SER 728A-2.13
SER 728A-3.40
CYS 805A-3.63
THR 862A-2.81
ASP 863A-3.38

VAL 734A-3.93
LYS 753A-3.53
LEU 785A-3.88
LEU 796A-3.44
THR 798A-3.53
LEU 852A-3.77
THR 862A-3.90
ASP 863A-3.78

HER2 Neratinib −9 5 SER 783A-3.24
ARG 849A-3.48
ARG 849A-2.17
ASN 850A-3.73
ASP 863A-2.22

VAL 734A-3.65
LYS 753A-3.40
LEU 796A-3.71
THR 798A-3.76
ARG 849A-3.91
LEU 852A-3.31

energy landscape evaluation. RMSD values of the four HER2-
drug complexes indicated the degree of structural deviation over
time compared to their initial conformation. Lower RMSD values
typically suggest a more stable complex, whereas higher values
might indicate greater flexibility or structural changes. The RMSD
values for the four complexes were as follows: HER2-L755S-
afatinib (≈0.25 nm), HER2-L755S-ibrutinib (≈0.35 nm), HER2-
L755S-lapatinib (≈0.25 nm), andHER2-L755S-neratinib (≈0.3 nm).
All complexes exhibited low RMSD values, indicating maintained
overall protein conformation. HER2-L755S-afatinib and HER2-
L755S-lapatinib, with RMSD values of ≈0.25 nm, indicated stable
binding and structural integrity. HER2-L755S-neratinib, with an
RMSD of ≈0.3 nm, suggested moderate stability, while HER2-
L755S-ibrutinib exhibited greater structural fluctuations with an
RMSD of ≈0.35 nm (Figures 7A, B).

RMSF values for the fourHER2-L755S-drug complexes reflected
residue flexibility during the simulation. Higher RMSF values
indicate regions of greater flexibility, while lower values suggest
more rigid or stable regions. RMSF values were: HER2-L755S-
afatinib (≈0.6 nm), HER2-L755S-ibrutinib (≈0.6 nm), HER2-
L755S-lapatinib (≈0.5 nm), andHER2-L755S-neratinib (≈0.75 nm).
HER2-L755S-lapatinib showed the lowest RMSF, indicating less

flexibility. HER2-L755S-neratinib exhibited the highest RMSF,
suggesting the greatest flexibility. The moderate RMSF for HER2-
L755S-ibrutinib reflected its non-covalent binding mode, allowing
some degree of movement. The detailed results of RMSF and
boxplot were mentioned in the Supplementary Figures S9A, B. Rg
values described overall size and compactness of the molecular
complex. The Rg values were: HER2-L755S-afatinib (≈2.05 nm),
HER2-L755S-lapatinib (≈2 nm), HER2-L755S-neratinib (≈2 nm),
and HER2-L755S-ibrutinib (≈2.1 nm). HER2-L755S-lapatinib and
HER2-L755S-neratinib showed the most compact conformations,
while HER2-L755S-afatinib was slightly more open. HER2-L755S-
ibrutinib exhibited the most extended conformation. SASA values
measured the surface area accessible to solvent molecules. SASA
values were: HER2-L755S-afatinib (≈165 nm2), HER2-L755S-
lapatinib (≈160 nm2), HER2-L755S-neratinib (≈165 nm2), and
HER2-L755S-ibrutinib (≈168 nm2). HER2-L755S-lapatinib was
the most compact, with the least surface exposure. HER2-L755S-
ibrutinib was the most exposed, indicating a less compact and more
flexible complex. The Rg and SASA graphs were mentioned in
Supplementary Figures S9C, D. Intermolecular H-bond analysis,
essential for stabilizing protein-ligand interactions, revealed the
following: HER2-L755S-afatinib (n = 5), HER2-L755S-ibrutinib (n
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FIGURE 5
Molecular Docking Analysis. The molecular docking analysis of four different complexes of the mutated HER2 L755S structure. (A)
HER2-L755S-afatinib. (B) HER2-L755S-ibrutinib. (C) HER2-L755S-lapatinib. (D) HER2-L755S-neratinib. Results were generated using the PLIP tool.

= 7), HER2-L755S-lapatinib (n = 5), and HER2-L755S-neratinib
(n = 5). The HER2-L755S-ibrutinib complex exhibited the highest
number of hydrogen bonds. The MDS results for intermolecular
H-bonds are detailed in Figure 7C. Hydrogen bond occupancy
for the four complexes was assessed using Visual Molecular
Dynamics (VMD), focusing on the last 500 ns of the MDS to
capture stabilized interactions. Occupancy values indicated the
proportion of time each bond met the defined criteria, providing
insights into stabilized hydrogen bonding. This analysis revealed
which hydrogen bonds were consistently maintained in the final
phase, with occupancy values indicating the proportion of time
each bond met the defined criteria. This selective analysis provided
insights into stabilized hydrogen bonding, aids in understanding
the structural integrity and interaction dynamics at the later
simulation stages. In this study, HER2-afatinib found five H-
bonds, highest occupancy is 72.69% (LIG994-side–ASP808-side),
whereas HER2-ibrutinib found nine H-bonds, highest occupancy
is 34.23% (LYS736-side–LIG994-side), HER2-lapatinib found seven
H-bonds, highest occupancy is 54.30% (PHE731-Main–LIG994-
side) and HER2-neratinib found 14 H-bonds, highest occupancy
is 48.90% (LIG994-side–ASP845-side). A high occupancy suggests
the H-bond is stable and persistent throughout the simulation.
Detailed information on H-bond occupancy for the four complexes
is provided in Supplementary Table 5. Binding free energy of the
four complexes, estimated using MM-PBSA analysis, showed
the following: HER2-L755S-afatinib (−23.48 ± 24.999 kJ/mol),
HER2-L755S-lapatinib (−75.517 ± 24.188 kJ/mol), HER2-L755S-
neratinib (−63.620 ± 49.573 kJ/mol), and HER2-L755S-ibrutinib
(−230.422 ± 28.203 kJ/mol). HER2-L755S-ibrutinib demonstrated

the strongest binding affinity. Detailed results are presented in
Table 2 and Figure 7D.

MDS analyzes the fundamental motions of biomolecular
systems using Essential Dynamics (ED) or Principal Component
Analysis (PCA). The MD trajectories of the four complexes are
projected into the subspace defined by Principal Components
(PCs) 1 and 2. ED analysis reveals that PC1 and PC2 capture
the primary motions. All four complexes exhibited motion
ranging from −5 to 7 on PC1 and -3 to 5 on PC2, occupying a
larger conformational space and displaying varied conformations.
Changes in cluster morphology were also observed in the
conformational space for all complexes. The stability and energetics
of different states or transitions within the biomolecular system
were shown by projecting the Gibbs free energy landscape using
the first pair of major components, PC1 and PC2. Color coding
was used to depict each system’s Gibbs free energy landscape;
the color bar shows the Gibbs free energies in kJ/mol for each
structural state, going from lowest to highest. The energy values
for the four complexes were as follows: HER2-L755S-afatinib
(19.2 kJ/mol), HER2-L755S-ibrutinib (18.3 kJ/mol), HER2-L755S-
lapatinib (19.9 kJ/mol), and HER2-L755S-neratinib (19.7 kJ/mol).
Detailed results of 2D and 3D interactions are provided
in Figure 8.

Discussion

Globally, BC significantly impacts cancer incidence and
mortality rates. Understanding the molecular mechanisms of BC is
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FIGURE 6
Molecular Dynamics Simulations in Apo State. The structural impact of wild-type (HER2-WT) and mutant-type (HER2-L755S) was analyzed over
1,000 ns. (A) Time plot of RMSD values for backbone atoms, with the X-axis indicating time in ns and the Y-axis indicating RMSD in nm. (B) RMSF values
for Cα atoms over time, with residue number on the X-axis and RMSF (nm) on the Y-axis. (C) Rg plot, showing time in ps on the X-axis and Rg in nm on
the Y-axis. (D) SASA plot, with the X-axis representing time in ns and the Y-axis indicating SASA in nm2. (E) Graph displaying intramolecular hydrogen
bond interactions, with the Y-axis showing the number of hydrogen bonds and the X-axis representing time in ns. The wild type is represented in black,
and the mutant type in red. (F) The Gibbs free energy landscape of 2D and 3D of HER2-WT were represented. (G) The Gibbs free energy landscape of
2D and 3D of HER2-MT were represented.

crucial for early detection, diagnosis, and treatment (Kashyap et al.,
2022). This study analyzed BC mechanisms using computational
methods, including screening for differentially expressed genes
(DEGs), conducting MCODE analysis, identifying hub genes
in the protein-protein interaction (PPI) network, validating
them, and performing mutation analysis. These findings could
aid in understanding BC development at the molecular level
and identifying potential biomarkers for BC diagnosis and
treatment. While numerous studies have focused on BC biomarkers
(Zeng et al., 2021; Tian et al., 2020; Bankhead et al., 2017), none
have specifically combined mutation analysis of hub genes with
identifying alternative treatments tailored to these mutations for
personalized medicine.

Treatment of BC, particularly in HER2-positive subtypes, has
been revolutionized by targeted therapies like lapatinib, a dual
tyrosine kinase inhibitor (TKI) that blocks HER2 and EGFR
signaling (Yang et al., 2020). However, resistance to lapatinib poses
a significant challenge, as many patients eventually relapse or fail
to respond to the therapy. This study addresses these challenges
by exploring gene expression profiling, hub gene identification,
mutation analysis, and alternative therapeutic strategies to overcome
lapatinib resistance. Gene expression profiling is a powerful tool that
comprehensively examines transcriptional changes in cancer cells
(Hijazo-Pechero et al., 2021).

We collected nine GEO datasets based on strict inclusion and
exclusion criteria and performed a meta-analysis on these datasets
(GSE3744, GSE26711, GSE5364, GSE16780, GSE15852, GSE17907,
GSE42568, GSE36295, and GSE37751), identifying DEGs. This
study identified several key genes in cancer development and
progression by analyzing differential gene expression between
BC samples and normal tissues. Meta-DEGs were compared
to TCGA-BRCA and DisGeNET databases, identifying 61
overlapping genes. The functional analyses were performed on
overlapping genes. Functional analyses were performed on these
overlapping genes, revealing associations with kinase binding,
signaling pathways, and cell-cycle functions, widely reported
in BC studies (Song et al., 2014; Song and Farzaneh, 2021;
Butti et al., 2018).

Network analysis identified MCODE clusters and hub genes.
Hub genes with high connectivity within the molecular interaction
network may be master regulators of oncogenic processes. The
identified hub genes—MYC, EGFR, CDKN2A, ERBB2, CDK1,
E2F1, TOP2A, MDM2, TGFB1, and FOXM1—play significant roles
in BC progression and are potential biomarkers for diagnosis,
prognosis, and therapy.These genes are involved in crucial pathways
related to cell cycle regulation, proliferation, apoptosis, DNA
repair, and metastasis, serving as biomarkers for prognosis and
predicting breast cancer aggressiveness and potential outcomes
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FIGURE 7
Molecular Dynamics Simulation in Holo State. Analysis of the protein-ligand complexes over 1,000 ns. Four different complexes were studied. (A) Time
plot of RMSD values for backbone atoms, with the X-axis indicating time in ns and the Y-axis indicating RMSD in nm. (B) Boxplot displaying the
respective RMSD values, with the X-axis denoting ligand types and the Y-axis denoting RMSD value. (C) Graph showing the total number of hydrogen
bond interactions, with the Y-axis indicating the number of hydrogen bonds and the X-axis representing time in ns. HER2-L755S-afatinib is shown in
black, HER2-L755S-ibrutinib in red, HER2-L755S-lapatinib in green, and HER2-L755S-neratinib in blue. (D) Bar plot displaying the overall binding
energies for the four different complexes.

TABLE 2 MM-PBSA analysis of HER2-L755S-Drug Complexes.

Complex name Van der Waal
energy (kJ/mol)

Electrostatic
energy (kJ/mol)

Polar solvation
energy (kJ/mol)

SASA energy
(kJ/mol)

Binding energy
(kJ/mol)

HER2-L755S-Afatinib −211.071 ± 15.248 −37.411 ± 35.715 247.934 ± 5.204 −22.932 ± 1.191 −23.480 ± 4.999

HER2-L755S-Ibrutinib −132.347 ± 27.274 −461.228 ± 30.447 381.712 ± 26.388 −18.559 ± 2.135 −230.422 ± 28.203

HER2-L755S-Lapatinib −259.315 ± 10.985 −23.353 ± 22.992 185.664 ± 16.710 −25.219 ± 1.092 −75.517 ± 24.188

HER2-L755S-Neratinib −225.834 ± 25.888 −141.806 ± 105.517 329.955 ± 86.932 −25.935 ± 2.614 −63.620 ± 49.573

(Duffy et al., 2021; Hsu and Hung, 2016; Milioli et al., 2020;
Zhang et al., 2000; Almeida et al., 2014; Cheng et al., 2023).
The top five hub genes were validated using TCGA expression
data on different cancers and respective survival plots. Many of
these genes are therapeutic targets, influencing the effectiveness of
specific treatments like HER2-targeted therapies (HER2), CDK4/6
inhibitors (CDKN2A), and anthracyclines (TOP2A). From the
COSMIC database, only HER2 among the top 20 mutations showed
enrichment with a 5% mutation frequency. Additional analysis
focused on the prevalent HER2 mutation at position L755S for
further investigation.

Amplification or overexpression of HER2 occurs in
approximately 15%–30% of BC cases and is associated with

aggressive tumor behavior and poor prognosis. HER2-positive BC
is often treated with targeted therapies, including trastuzumab
(Herceptin) and lapatinib (Tykerb), a dual tyrosine kinase
inhibitor of HER2 and EGFR (Dean, 2012). Lapatinib inhibits
the intracellular tyrosine kinase domains of HER2 and EGFR,
preventing phosphorylation and activation of downstream signaling
pathways involved in cell proliferation and survival, such as the
PI3K/AKT and MAPK pathways (Segovia-Mendoza et al., 2015).
Despite its initial efficacy, resistance to lapatinib is a major clinical
challenge.

MDS analysis of the apo state (WT and MT HER2-L755S)
types was conducted over 1,000 ns, evaluating structural parameters
such as RMSD, RMSF, Rg, SASA, and intramolecular H-bonds.
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FIGURE 8
Principal Component Analysis and Gibbs free energy landscape of four complexes (HER2-L755S-afatinib, HER2-L755S-ibrutinib, HER2-L755S-lapatinib,
and HER2-L755S-neratinib), exhibiting 2D projections of trajectories on the first two eigenvectors.

The RMSD value was higher in MT HER2-L755S than WT,
suggesting local instability with the rest of the protein compensating
to maintain overall structural integrity (Yang et al., 2015).
Lower RMSF in MT HER2-L755S compared to WT suggests
reduced flexibility, potentially stabilizing the protein’s inactive
form. Increased rigidity might stabilize a constitutively inactive
conformation of HER2, promoting continuous signaling and
cancer cell proliferation (Yang et al., 2015). The HER2-L755S
mutation could decrease SASA by affecting hydrogen bonds and
hydrophobic interactions, impacting protein folding and interaction
with other molecules (Martínez, 2015). Hydrogen bonds are
crucial for maintaining protein secondary and tertiary structures
(Pace et al., 2014). Mutant HER2-L755S has increased potential for
intramolecular hydrogen bonding due to serine, altering stability,
flexibility, and conformational dynamics. The L755S mutation in
the tyrosine kinase domain plays a crucial role in ATP binding and
phosphorylation catalysis. Introducing polarity into a hydrophobic
environment destabilizes local folding, potentially altering the ATP
binding site and affecting kinase activity (Xu et al., 2017). In both
HER-WT and HER2-MT, a reduction in hydrophobic interactions
may impact the stability and conformation of the protein. These
changes can disrupt the core structural integrity, potentially altering
the drug binds to HER2 protein. These analysis were performed
using ProteinTools (Ferruz et al., 2021). The HER2-WT has 38
contacts, and HER2-MT has 32 contacts. Hydrophobic contacts
were reduced in the mutant type (Supplementary Table 6). The
resistance of the HER2-L755S mutant to lapatinib is primarily
due to structural and electrostatic changes at the binding site.

Specifically, this mutation, which substitutes leucine for serine,
alters the local conformation and dynamics around the binding
pocket. These changes create hindrances that disrupt the optimal
fit of lapatinib within the pocket. The HER2-L755S mutation may
alter the local hydration environment around the binding pocket.
Serine can bond with hydrogen and interact with water molecules
differently than leucine, affecting local water networks. Such changes
in hydration could alter binding energies and impact the stability
of lapatinib’s binding. Each of these factors could combine to
weaken the binding affinity of lapatinib for the HER2L755S, leading
to the inhibitory effectiveness. These structural changes reduce
lapatinib’s binding ability, making it less effective in inhibiting HER2
phosphorylation and downstream signaling, thereby promoting
tumor cell proliferation and survival (Mariana et al., 2013). Cells
with the L755S mutation exhibit reduced sensitivity to lapatinib
but may remain sensitive to other inhibitors like neratinib and
afatinib, which have different binding mechanisms and can inhibit
the mutated HER2 receptor. To identify an alternative drug for
HER2-L755S, 654 tyrosine kinase library compoundswere screened.
Among them, 344 passed the criteria for further processing, and
ibrutinib was recognized as the top candidate based on binding
affinity and MM-GBSA energies. Discovered in the early 2000s,
ibrutinib irreversibly binds to BTK, blocking signals that promote
B-cell cancer growth (Davids and Brown, 2014). Like afatinib and
neratinib, ibrutinib is also an irreversible inhibitor (Dubovsky et al.,
2013). This comparative study revealed atomistic insights into the
binding mechanisms of sensitive drugs (neratinib and afatinib),
resistance drugs (lapatinib), and virtual screening drugs (ibrutinib)
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upon HER2-L755S mutation. Molecular docking was performed
on these four drugs, each exhibiting good binding affinity, and the
best complexes were chosen based on hydrogen bond interactions.
Ibrutinib showed the lowest binding energies among the three drugs.
Further MDS analyses were conducted on these four HER2-L755S-
drug complexes, examining various structural parameters such as
RMSD, RMSF, Rg, SASA, intramolecular H-bonds, PCA, Gibbs free
energy, and MM-PBSA analysis.

The RMSD measure assesses a molecular system’s stability and
conformational changes. The HER2-L755S-afatinib and HER2-
L755S-lapatinib complexes display stable RMSD values, implying
strong binding and limited conformational fluctuation. HER2-
L755S-neratinib and HER2-L755S-ibrutinib exhibit moderate
stability, reflecting their strong but slightly more flexible interaction
with HER2 (Carugo and Pongor, 2001). These RMSD values offer
a snapshot of the relative stability and conformational dynamics of
each HER2-L755S-drug complex. RMSF is another essential metric
in MDS, analyzing the flexibility and movement of individual atoms
or residues over time. HER2-L755S-lapatinib is the most stable
complex, with minimal fluctuation in protein-ligand interactions.
HER2-L755S-afatinib and HER2-L755S-ibrutinib exhibit moderate
flexibility, indicating a balance between stability and movement.
HER2-L755S-neratinib shows the highest flexibility, indicating
dynamic regions within the complex despite covalent binding.
These RMSF values provide insights into the stability and flexibility
of different HER2-L755S-drug complexes, which could relate to
their effectiveness or inhibition mechanisms (Martínez, 2015). Rg
measures overall compactness and size in MDS (Lobanov et al.,
2008). HER2-L755S-afatinib, HER2-L755S-lapatinib, and HER2-
L755S-neratinib show compact conformations, reflecting strong
interactions that maintain structural stability. HER2-L755S-
ibrutinib shows a slightly more open conformation due to its
binding nature.These Rg values complement RMSDandRMSFdata,
indicating that HER2-L755S-lapatinib and HER2-L755S-neratinib
promote compact, stable conformations, while HER2-L755S-
ibrutinib induces a more extended and flexible structure. SASA
measures surface accessibility to solvent molecules (Durham et al.,
2009). Low SASA values indicate regions buried or less accessible to
solvent. HER2-L755S-lapatinib, HER2-L755S-afatinib, and HER2-
L755S-neratinib form compact complexes with minimal solvent
exposure, indicating tight and stable interactions.TheHER2-L755S-
ibrutinib complex is stable but retains some surface exposure,
indicating flexibility despite strong binding. Hydrogen bonds are
critical in stabilizing structure. HER2-L755S-ibrutinib forms the
most hydrogen bonds, reflecting its covalent interaction strategy
with HER2. Covalent inhibitors (afatinib and neratinib) rely on
covalent bonds, while lapatinib depends on specificity and non-
covalent bonding.These intermolecular H-bonds correlate well with
overall complex stability (Pace et al., 2014). MM-PBSA analysis is
essential for understanding biomolecular interaction energetics
and protein-ligand interactions. The MM-PBSA value for the
HER2-L755S-ibrutinib complex is highest compared to HER2-
L755S-afatinib, HER2-L755S-neratinib, andHER2-L755S-lapatinib.
In MDS, essential dynamics refers to determining and examining
primarymotionmodes in a biomolecular system.All four complexes
occupy larger space areas, suggesting more coordinated atomic
movement during simulation. Gibbs free energy landscape analysis
revealed lower energy minima for all complexes, indicating stable

states (Maisuradze et al., 2009). In MDS, HER2-L755S-lapatinib
stands out as the most favorable inhibitor structurally but shows
reversible inhibition, leading to transient effects and resistance
risks. HER2-L755S-afatinib and HER2-L755S-neratinib exhibit
similar structural compactness and flexibility, ensuring long-
term binding due to covalent inhibition. HER2-L755S-ibrutinib
is also a covalent inhibitor to some degree of HER2, primarily
targeting the BTK receptor. Ibrutinib binds to BTK’s cysteine-481
near the ATP binding domain, preventing phosphorylation and
downstream pathway activation (Yang et al., 2013).This mechanism
may apply to HER2 inhibition. Experimental studies suggest
ibrutinib inhibits BC progression by converting myeloid-derived
suppressor cells to dendritic cells (Varikuti et al., 2020).HER2-L755S
poses significant treatment challenges due to lapatinib resistance.
Understanding this mutation’s implications has led to alternative
therapeutic strategies. Ibrutinib offers a promising avenue for
overcoming resistance and improving outcomes for patients with the
HER2-L755S mutation. Following a multi-step approach, further
experimental validation is needed to assess ibrutinib’s efficacy
against HER2 in BC.

Limitations

Integrating computational findings into experimental
research often presents challenges due to differences in scales,
methodologies, and data availability. Computational methods
offer insights into molecular interactions, dynamics, and
energetics under controlled conditions. However, experimental
results capture the complexity of biological systems, including
environmental factors and allosteric effects. Bridging this gap
requires identifying overlaps, refining computational models with
experimental data, or designing complementary experiments
to validate predictions in future studies. The above statement
highlights the challenge on experimental methods, performed
MDS in triplicate. This approach ensures reproducibility
and strengthens the reliability of the results obtained from
the simulations.

Conclusion

Traditional drug discovery is a lengthy and costly endeavor,
often requiring years and substantial financial investment.
Computational techniques, such as in silico modeling, virtual
screening, and statistical analysis, have significantly reduced
these timelines by identifying potential drug candidates early in
the process. In this study, integrating gene expression profiling,
hub gene identification, and mutation analysis in BC provided
valuable insights into the molecular mechanisms driving tumor
progression and drug resistance. Network analysis revealed several
hub genes crucial for regulating BC growth and metastasis,
representing potential therapeutic targets andbiomarkers for disease
prognosis.Mutation analysis identified specificHER2-L755S genetic
alterations associated with lapatinib resistance, contributing to
therapeutic failure and underscoring the need for personalized
approaches in treating BC.This study explores promising alternative
therapies to overcome lapatinib resistance using molecular docking
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and dynamics studies to compare resistant and sensitive drugs.
Ibrutinib demonstrated higher binding energies than control
drugs (afatinib and neratinib) and lapatinib. In conclusion, this
research underscores the importance of a multi-faceted approach,
combining gene expression analysis, mutation identification, and
targeted therapy development to address the challenges of drug
resistance in BC.
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