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This study presents a novel computational approach for engineering nanobodies
(Nbs) for improved interaction with receptor-binding domain (RBD) of the
SARS-CoV-2 spike protein. Using Protein Structure Reliability reports, RBD
(7VYR_R) was selected and refined for subsequent Nb-RBD interactions.
By leveraging electrostatic complementarity (EC) analysis, we engineered
and characterized five Electrostatically Complementary Nbs (ECSb1-ECSb5)
based on the CeVICA library’s SR6c3 Nb. Through targeted modifications
in the complementarity-determining regions (CDR) and framework regions
(FR), we optimized electrostatic interactions to improve binding affinity and
specificity. The engineered Nbs (ECSb3, ECSb4, and ECSb5) demonstrated
high binding specificity for AS3, CA1, and CA2 epitopes. Interestingly, ECSb1
and ECSb2 selectively engaged with AS3 and CA1 instead of AS1 and
AS2, respectively, due to a preference for residues that conferred superior
binding complementarities. Furthermore, ECSbs significantly outperformed
SR6c3 Nb in MM/GBSA results, notably, ECSb4 and ECSb3 exhibited superior
binding free energies of −182.58 kcal.mol-1 and −119.07 kcal.mol-1, respectively,
compared to SR6c3 (−105.50 kcal.mol-1). ECSbs exhibited significantly higher
thermostability (100.4–148.3 kcal·mol⁻1) compared to SR6c3 (62.6 kcal·mol⁻1).
Similarly, enhanced electrostatic complementarity was also observed for
ECSb4-RBD and ECSb3-RBD (0.305 and 0.390, respectively) relative to SR6c3-
RBD (0.233). Surface analyses confirmed optimized electrostatic patches and
reduced aggregation propensity in the engineered Nb. This integrated EC
and structural engineering approach successfully developed engineered Nbs
with enhanced binding specificity, increased thermostability, and reduced
aggregation, laying the groundwork for novel therapeutic applications targeting
the SARS-CoV-2 spike protein.
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1 Introduction

The COVID−19 pandemic, caused by SARS-CoV-2, created a
global health crisis of unprecedented magnitude, overwhelming
healthcare systems (Ranney et al., 2020) and leading to substantial
loss of life (Wu and McGoogan, 2020), financial strain (Nicola et al.,
2020), unemployment (Coibion et al., 2021), and widespread supply
chain disruptions (Golan et al., 2020). Additionally, the pandemic
highlighted social and economic disparities, with marginalized
communities often bearing a disproportionate burden of the virus’s
impact (Egede and Walker, 2020; Tai et al., 2021). While posing
immense challenges, the pandemic also spurred innovation in
vaccine development (Krammer, 2020) and restructuring of work
environments (Kniffin et al., 2021), reshaping the future of global
health and society. Notwithstanding this progress, the virus’s swiftly
evolving nature necessitated a prompt and pressing need for
research on efficacious therapies to curb emerging/evolving strains
and mitigate the pandemic’s ongoing impact (Graham, 2020).
Developing such therapies entails an understanding of themolecular
mechanisms underlying SARS−CoV−2 infection, particularly the
role of the spike (S) protein in facilitating viral entry into host cells.

The S protein comprises S1 and S2 subunits, with S2 containing
highly conserved regions (Premkumar et al., 2020). A successful
SARS-CoV-2 infection hinges on the specific binding of the
viral spike (S) protein to cellular entry receptors, primarily
the angiotensin−converting enzyme 2 (ACE2) (Lan et al., 2020;
Shang et al., 2020; Walls et al., 2020; Wang et al., 2020; Zhou et al.,
2020; V’kovski et al., 2021). This receptor engagement has been
a key factor in the virus’s adaptation from an animal reservoir
and its ongoing evolution (Letko et al., 2020). The immune
system combats SARS−CoV−2 by generating a diverse array of
antibodies that target various viral epitopes, thereby inhibiting
cellular entry, and by activating T cells that eliminate infected host
cells. Monoclonal antibodies (mAbs) targeting conserved regions of
the S1 or S2 subunits, such as hmAb 1249A8, S2P6, and CC40.8,
have demonstrated broad efficacy against SARS-CoV-2 variants
(Tian et al., 2020; Cameroni et al., 2021; Chen P. et al., 2021;
Starr et al., 2021; Park et al., 2022). These mAbs can directly
interfere with viral pathogenesis by neutralizing virions, opsonizing
infected cells, or inducing cell death. While mAbs offer broad
efficacy, their widespread use is hindered by high production costs
(Flaxman et al., 2022; Popping et al., 2023) and the risk of repeated
viral evasion (Liu et al., 2021; Wang Q. et al., 2022). Therefore,
alternative strategies are needed to address these challenges and
develop more affordable and sustainable countermeasures against
SARS−CoV−2 infection.

Nanobodies (Nbs), as single−domain antibodies (Hamers-
Casterman et al., 1993), offer several distinct advantages over mAbs,
including reduced size, enhanced stability, lower immunogenicity,
and streamlined manufacturing process (Muyldermans, 2013;
Steeland et al., 2016). Their therapeutic potential has garnered
increasing attention, particularly following the FDA’s approval of
the first Nb therapeutic in 2019 (Morrison, 2019). The superior
stability of a Nb arises from their compact, single−domain structure
and their highly polar surface. Nevertheless, achieving optimal
Nb performance requires careful optimization of their binding
affinity and stability (Kunz et al., 2018; Esparza et al., 2020)
which are influenced by a sophisticated interplay of factors,

including hydrogen bonding, hydrophobic interactions, van der
Waals forces, and electrostatic interactions (Chakrabarti and Janin,
2002; Dellisanti et al., 2007; Boehr et al., 2009; Kastritis and
Bonvin, 2013). This intricate balance of forces orchestrates robust
and highly selective protein complex formation, underscoring their
profound significance given that approximately 80% of proteins
functionwithin such assemblies (Gavin et al., 2002; de Las Rivas and
Fontanillo, 2010).

Collectively, these forces define binding properties by
establishing multiple layers of complementarity—surface (Sc),
hydrophobic, and electrostatic (EC)—between the interacting
entities (Korn and Burnett, 1991; Braden and Poljak, 1995;
Meyer et al., 1996; McCoy et al., 1997; Sinha and Smith-
Gill, 2002; Basu and Biswas, 2018). Sc arises from the precise
geometric fit of molecules facilitated by van der Waals forces and
hydrogen bonding (Chothia and Janin, 1975), while hydrophobic
complementarity is driven by the association of nonpolar side chains
through hydrophobic interactions (Richards, 1977). Conversely, the
alignment of opposite surface charges establishes EC, which plays
a pivotal role in protein−protein interactions (PPIs) (McCoy et al.,
1997; Sheinerman et al., 2000). EC facilitates the initial encounter
between binding partners through long−range electrostatic
attractions, effectively steering them toward the correct orientation
for binding (Vijayakumar et al., 1998; Sheinerman et al., 2000).
This directed guidance reduces the entropic barrier associated with
random collisions, thereby increasing the likelihood of productive
interactions (Schreiber and Fersht, 1995; Selzer et al., 2000).
Furthermore, electrostatic interactions enhance binding strength
by forming salt bridges and hydrogen bonds at the interface,
augmenting both affinity and specificity (Baker and Hubbard,
1984; Jones and Thornton, 1996; Xu et al., 1997). By stabilizing
the transition state and lowering the activation energy required for
complex formation, EC significantly contributes to the robustness
and efficacy of PPIs (Vijayakumar et al., 1998; Sheinerman et al.,
2000). Recognizing its critical role, it becomes essential to explore
innovative strategies that leverage EC to enhance the binding
properties of therapeutic molecules such as Nbs.

However, despite the significant EC role, previous computational
approaches for affinity maturation of Nbs targeting the
SARS−CoV−2 RBD have primarily relied on two strategies: (1)
grafting complementarity−determining regions (CDRs) from
neutralizing Abs onto stable scaffold frameworks (Cao et al.,
2020; Wu et al., 2020a; Yang et al., 2021; 2023; Gopal et al., 2022;
Rangel et al., 2022; Ferraz et al., 2024), and (2) structure−based
site−mutagenesis of CDR amino acids within Nb-RBD docked
complexes (Laroche et al., 2022; Longsompurana et al., 2023;
Zhu et al., 2023; Hannula et al., 2024; Singh et al., 2024). To the
best of our knowledge, the simultaneous engineering of CDRs and
FRs has not been previously explored, as prior research has typically
focused onmodifying either CDRs or FRs independently to enhance
binding affinity through electrostatic attractions (Sinha et al., 2002;
Fukunaga and Tsumoto, 2013; Kiyoshi et al., 2014; Du Q. et al., 2019;
Yoshida et al., 2019; Nguyen et al., 2021).This novel approach allows
for a more comprehensive optimization of Nb interactions with the
SARS−CoV−2RBD, potentially can lead to the development ofmore
effective therapeutic agents. Leveraging computational techniques,
we have predicted the Nbs with enhanced paratope−epitope EC
employing this methodology. Unlike earlier EC enhancing studies
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that primarily targeted binding affinity, our approach systematically
evaluates the impact of this strategy on key parameters—including
binding interfaces, binding free energy, thermostability, aggregation
propensity, and post−translational modification reactivity—with
the objective of predicting Nbs with superior binding affinity and
stability. To substantiate our approach, we conducted a comparative
analysis with the well−characterized Nb SR6c3 from the CeVICA
library, which is renowned for its robust neutralizing ability and
high thermal stability. Our results on Nb engineering with predicted
improvement provide a computational framework for developing
effective Nbs against SARS−CoV−2. This approach can offer a
promising avenue for engineering of novel and effective therapeutic
options by optimizing Sc and hydrophobic complementarity.

2 Materials and methods

2.1 Sequence retrieval and RBD structure
analysis

A dataset of ten RBD structures, including 7EAM_A (Li et al.,
2021), 7EAM_B (Li et al., 2021), 7B0B_F (Korenkov et al., 2023),
7BZ5_A (Wu et al., 2020b), 6M0J_E (Lan et al., 2020), 7VYR_
C (Jeong et al., 2022), 7VYR_R (Jeong et al., 2022), 7BNV_
A (Bullen et al., 2021), 8EL2_A (Hermet et al., 2023), and
8EL2_B (Hermet et al., 2023), was retrieved from the Protein
Data Bank (PDB). These structures pre−processed employing
the Protein Preparation Wizard (PPW) (Madhavi Sastry et al.,
2013; Schrödinger, 2023e) with default settings in BioLuminate
(Beard et al., 2013; Salam et al., 2014; Zhu et al., 2014;
Schrödinger, 2023a) to ensure optimal quality. Subsequently,
Protein Structure Reliability (PSR) analysis was performed to assess
most suitable structure for the subsequent energy minimization
and loop refinement using Prime module (Jacobson et al., 2002;
Jacobson et al., 004; Schrödinger, 2023d) employing the VSGB
solvation model (Li et al., 2011) and the OPLS3e force field
(Roos et al., 2019). This was achieved by specifically addressing
the amino acids that displayed high−temperature factors, peptide
planarity problems, or steric clashes while maintaining the original
sequence as provided. Finally, the structures were further validated
through PSR, Structure Quality Reports (SQR), and Ramachandran
plot analysis (Ramachandron et al., 1963).

2.2 Epitope selection and their biophysical
analysis

We focused on three previously reported neutralizing epitopes,
AS1 (Hansen et al., 2020; Pinto et al., 2020), AS2 (Hansen et al.,
2020; Robbiani et al., 2020), and AS3 (Yuan et al., 2020), which are
established binding sites for single−chain variable fragment (scFv)
antibodies (Figure 1A). Additionally, we expanded our repertoire
by incorporating two more recently reported immunoglobulin G
(IgG)−targeted epitopes, CA1 and CA2 (Contreras et al., 2023).
This comprehensive approach leverages both well−studied and
newly discovered epitopes to maximize the potential for effective
neutralization. To comprehensively characterize the selected
epitopes, a detailed analysis of their titration curves and ionizable

residues was conducted in BioLuminate. The protonation states of
these ionizable residues were determined by employing PROPKA
(Li et al., 2005; Bas et al., 2008; Olsson et al., 2011) with default
parameters, ensuring accurate representation of the electrostatic
properties within the molecular environment.

2.3 Complementarity−determining regions
(CDR) designing

SR6c3, a CeVICA Nb with IC₅₀ of 62.7 nM and melting
temperature of 72°C, was selected as the reference Nb for the
current study due to its robust neutralizing capability and highest
thermal stability within the Nb library (Chen X. et al., 2021).
Although the monomeric form of SR6v15 exhibits a superior
inhibitory potency with an IC₅₀ of 2.18 nM, SR6c3 was preferred
for its exceptional thermal resilience coupled with substantial
neutralizing efficacy. SR6v15 demonstrated lower refolding capacity,
with a heated/non−heated ratio of 0.72, in contrast to SR6c3,
which achieved a ratio greater than one indicating an enhanced
binding affinity following complete thermal denaturation at 98°C
and refolding. Therefore, SR6c3 was chosen based on its superior
performance.

Using standard frame sequences of SR6c3 as scaffolds, we
designed CDRs to enhance EC between the paratope and the
epitope, by prioritizing residues with opposing charges and
significant sidechain pKa. For neutral epitope residues, polar amino
acidswith high free energies of associationwere chosen (Du H. et al.,
2019). CDR1 andCDR2 lengthswere constrained to 5-7 amino acids
to prevent the potential structural instability, while CDR3 lengthwas
allowed to vary randomly. The incorporation of cysteine residues, a
defining characteristic of the CeVICA library, was also considered
during CDR design (Figure 1B). ColabFold v1.5.2 (Mirdita et al.,
2022) was used, with default settings, to predict the structures of five
Nbs involving CDR design, alongside the reference Nb SR6c3.

2.4 Framework regions (FR) engineering

The initial Nb structures were subjected to pre-processing using
the PPW program with the default settings (Madhavi Sastry et al.,
2013; Schrödinger, 2023e) in BioLuminate (Beard et al., 2013;
Salam et al., 2014; Zhu et al., 2014; Schrödinger, 2023a). Unlike
traditional sequence-based CDR designing approaches, our strategy
for engineering the FRs of SR6c3 was essentially structure−based.
Pre−processed Nbs were carefully examined using BioLuminate to
identify specific residues that are suitable for mutation, as proposed
by Fukunaga et al., (Fukunaga and Tsumoto, 2013). A selection
range of five residues was defined in the vicinity of the CDRs from
FR1, FR2, and FR4, while for longer FR3, this range was extended
to eight. It is noteworthy that FR2 hallmark residues (F37, E44, R45,
and V48) were deliberately left un-mutated due to their crucial role
in the independence of the light chain (Muyldermans et al., 1994;
Padlan, 1994; Vu et al., 1997; Muyldermans, 2013).

We refined our residue selection process based on Fukunaga
et al., (Fukunaga and Tsumoto, 2013), targeting residues adjacent
to CDRs, exposed to the molecular surface, and with sidechains at
least 20% accessible to the solvent to ensure the relevance of our
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FIGURE 1
(A) Structure of SARS−CoV−2 spike protein (ribbon representation) and neutralizing epitopes on receptor binding domain (RBD), visualized by ChimeraX
1.8. Spike protein structure labelled with sub−domains S1 (Blue) and S2 (Golden) with particular indication of RBD (Red) (A). Enlarged view of the RBD
showing the locations of three neutralizing epitopes: AS1, AS2, and AS3 (B). Additional view of RBD highlighting two more recently identified epitopes:
CA1 and CA2 (C). (B) Integrated approach of CDR designing and FR engineering to develop a greater electrostatic complementarity. Initial nanobody
(blue) and antigen (red) interaction (left) with less EC against epitope with fewer counterpart charged amino acids in CDRs (orange) and FRs (blue). The
circular inset shows the amino acid sequence at the binding interface, with the antigen sequence in purple and the nanobody sequence in blue and
orange. Modified nanobody with optimized amino acid sequence (Centre) with complete randomization of amino acids in CDRs (green) with
engineered FRs (lavender) generating a greater EC against epitope with greater electrostatic potential (blue lines on CDRs).

mutation targets. Following these specified criteria, we analyzed the
electrostatic topography of the RBD and epitopes, then formulated a
mutation strategy to introduce charged amino acids into each Nb
structure. The initial phase of the strategy involved mutating the
neighboring residues around the CDRs to amplify EC between the
CDRs region and the epitope, while mutating outlying residues to
improve the overall EC between Nb and RBD. Furthermore, we
substituted specific hydrophobic residues with polar ones to reduce
aggregation and enhance solubility (Figure 1B).

For the computational evaluation of Nbs’ humanization profiles,
AbNatiV (Ramon et al., 2024), a deep learning tool was used with
default settings. The amino acid sequences of the newly designed
Nbs and SR6c3 were submitted to AbNatiV, utilizing the VHH
domain mode. However, alignment with CeVICA revealed the
adoption of the same VHH hallmark residues (F37, E44, R45,
and V48) in lieu of human residues, reflecting their advantageous
role in post−minus pre−affinity maturation (Chen X. et al., 2021).
ColabFold v1.5.2 (Mirdita et al., 2022) was then employed with
default settings to predict the structural conformations of the five
Electrostatically Complementary Nbs (ECSbs) and SR6c3 based on
their consensus sequences.

2.5 Structural refinement and analyses

Initial structural refinement of SR6c3 and ECSbs was performed
using PPW (Madhavi Sastry et al., 2013; Schrödinger, 2023e) with
default settings in BioLuminate (Beard et al., 2013; Salam et al.,
2014; Zhu et al., 2014; Schrödinger, 2023a), addressing potential
issues like steric clashes, peptide planarity, temperature factors,

and dihedral angles. Each ECSb then underwent a meticulous PSR
assessment, resulting in the selection of SR6c3, ECSb2, ECSb3,
and ECSb5 for subsequent surface analyses. ECSb1 and ECSb4
required additional energy minimizations and loop refinement
at specific amino acids, which were conducted using Prime
employing the VSGB solvation model (Li et al., 2011) and
the OPLS3e force field (Roos et al., 2019), followed by PSR
reassessment and structure finalization (Jacobson et al., 2002; 2004;
Schrödinger, 2023d). All six structures were further evaluated
using SQRs and Ramachandran plots (Ramachandran et al., 1963).
Post evaluation, an exhaustive analysis of electrostatically charged
patches, aggregation scores using AggScore (Sankar et al., 2018),
and residues reactivity profiles of each structure was conducted.
These comprehensive analyses, performed using BioLuminate’s
protein surface analysis tool, were subsequently compared with
analogous analyses of SR6c3. Following the surface analyses,
the FoldX Suite 4.0 (Schymkowitz et al., 2005), integrated as a
YASARA View (Krieger and Vriend, 2014), was employed for the
computation of the thermal stability of Nbs. To further investigate
the grounds underneath the enhanced stability of ECSbs compared
to SR6c3, we utilized ProDy’s InSty module (Bakan et al., 2011;
Bakan et al., 2014; Zhang et al., 2021). Using default parameters
(distance, angle, and cutoff distance), we analyzed seven types
of intramolecular interactions, including hydrogen bonds (HBs),
salt bridges (SBs), repulsive ionic interactions (RIB), hydrophobic
interactions (HPh), disulfide bonds (DiBs), π−stacking (Pistacking),
and π−cation (PiCation) interactions. Additionally, key residues
with significant contributions to these interactions were identified,
particularly those playing prominent roles in the interaction
network of each Nb.
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2.6 Protein-protein docking

To identify potential binding sites on the pre-processed RBD for
Nbs (ECSbs and SR6c3), we initially employed an FFT-based global
docking approach using PIPER within BioLuminate (Kozakov et al.,
2006; Chuang et al., 2008; Fernández-Recio and Sternberg, 2010;
Desta et al., 2020; Schrödinger, 2023c). This procedure generated
30 unique conformations for each RBD-Nb complex. Due to the
inherent rigidity of PIPER’s docking methodology, each docked
pose was pre-processed before calculating the binding free energy
using the Molecular Mechanics Generalized Born Surface Area
(MM/GBSA) method (Genheden and Ryde, 2015). To identify
the most optimal pose between the Nbs and RBD, binding free
energy calculations were performed, which subsequently provided
the foundation for in-depth interaction analysis and subsequentMD
simulations.

To visually validate the EC of the binding interfaces in Nb-RBD
complexes, we utilized the APBS (Adaptive Poisson−Boltzmann
Solver) (Jurrus et al., 2018) plugin within PyMOL version 3.1.1
(Schrodinger, 2024) to generate and visualize electrostatic potential
maps. Molecular structures were prepared using PDB2PQR
(Dolinsky et al., 2004; 2007) with default parameters. Electrostatic
potentials were calculated over a range of ±2.0 kcal.mol−1·e,
employing a solvent-excluded surface and a grid spacing of 0.50 Å.

The rigidity of FFT-based approach may limit conformational
sampling; therefore, we subsequently employed the Rosetta flexible
dockingmodule (Gray et al., 2003;Wang et al., 2005; Chaudhury and
Gray, 2008; Marze et al., 2018). This flexible protocol refines both
backbone and side-chain conformations. Accordingly, all structures
were meticulously prepared to ensure optimal backbone and side-
chain integrity. Preparation involved reassigning chain IDs: Chain A
was designated for RBD, previously labeled as Chain R, while Chain
B was assigned to Nb, formerly designated as Chain A. The residues
were then renumbered so that the RBD encompassed residues 1–186
and the Nb commenced from residue 187 onward. Subsequently
cleaning each PDB file to preserve only standard atomic records,
then assessing initial energetic properties with the Rosetta Energy
Function 2015 (REF 2015) (Alford et al., 2017). To relieve steric
clashes without disrupting the overall fold, a constrained FastRelax
protocol was applied (Nivón et al., 2013). Afterward, interfacial
residues were identified using a 6.0 Å distance criterion, enabling
selective side−chain repacking confined to the interface via the
PackRotamersMover with REF 2015.The prepacked structures were
subsequently used for further steps.

Docking was conducted using the Rosetta protein docking
module to generate 1000 decoys for each complex, wherein the
RBD and Nbs were imported and subjected to FastRelax to
achieve local geometric optimization. The optimized structures
were subsequently assembled into a single pose by introducing a
jump, preserving the native configurations derived from the PIPER-
docked conformations. Interfacial residues were identified, and
side-chain repacking was selectively confined to these regions to
maintain the native-like conformation of the remaining protein
structure, thereby minimizing structural perturbations outside the
binding interface. A final relaxation phase was applied to further
refine both side-chain and backbone orientations, resulting in a
set of convergent RBD−Nb complexes. For each docking trajectory,
the RMSD was calculated based on the heavy atoms of the

interface residues, using the PIPER-docked poses as reference
structures. This analysis was conducted utilizing the Rosetta
InterfaceAnalyzerMover (Benjamin Stranges and Kuhlman, 2013).
To characterize the docking funnel, the interface score (I_score)
was plotted against the interface RMSD (I_rmsd), facilitating the
identification of energetically favorable conformations.

The top-ranked decoys, exhibiting optimal binding energetics
and structural stability, were selected for subsequent post−docking
analyses. Post-docking analyses included the calculation of binding
free energy (ddG), calculations of solvent-accessible surface area
(SASA), and evaluations of Sc and EC. The ddG of each bound
complex was recalculated using REF 2015 (Alford et al., 2017),
and the change in SASA upon complex formation (dSASA)
was determined. Shape and electrostatic complementarity (EC)
were assessed using the Shape Complementarity Calculator and
Electrostatic Complementarity Calculator, providing insights into
the geometric fit and electrostatic compatibility at the interface.
Additionally, interface residues were identified using the Interface
Analyzer Mover in PyRosetta 4.0 (Chaudhury et al., 2010), which
is configured to analyze designated chains by computing packing
statistics and dSASA. Residues are classified as interface residues
based on distance−based contact criteria, with both the total
count and the specific set of residues defining the interface
extracted from the analysis. Subsequently, the interaction types
between these partnered residues are determined by generating a
Pose object from the PDB structure and applying the Interface
Analyzer Mover (Benjamin Stranges and Kuhlman, 2013) to
evaluate intermolecular interactions. In this step, hydrogen bonding
and van der Waals contributions were quantified using the HB and
LJ Att/LJ Rep energy terms, respectively; salt bridges are identified
from the Elec, while π-π, π-cation, and π-anion interactions are
inferred from the side−chain geometry and relative orientation of
residues. Finally, an interaction network was constructed by parsing
dataset of residue-residue interaction data with Pandas and building
a graph using NetworkX, where residues serve as nodes and their
interactions as edges.

2.7 Molecular dynamics simulations

MD simulations were conducted to assess the stability of I_score
based top ranked decoys of each Nbs-RBD complex using Desmond
(Banks et al., 2005) software within the Schrodinger suite. Nbs-
RBD complexes were prepared, optimized, andminimized using the
PPW (Madhavi Sastry et al., 2013; Schrödinger, 2023e) in Maestro
(Schrödinger, 2023b). The System Builder tool was employed to
prepare all systems, utilizing the OPLS-2005 (Bowers et al., 2006)
force field with the TIP3P (Hornak et al., 2006) solvation model in
an orthorhombic box. To achieve the physiological equilibrium, the
systems were neutralized by introducing 0.15 M sodium chloride.
The simulations were executed at 1 atm and 310.0 K using Martyna-
Tobias-Klein barostat (Martyna et al., 1994) and Nose-Hoover
thermostat in an NPT ensemble (Nosé, 1984; Hoover, 1985). Prior
to the simulation, the models underwent a relaxation process, and
the stability of these complexes was analyzed during a 100 ns MD
production run. Trajectories were saved at 100 ps intervals, and the
simulation’s stability was assessed by comparing the Nb-RBD’s root
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mean square deviation (RMSD) and root mean square fluctuation
(RMSF) over time (Maiorov and Crippen, 1994).

2.8 MM/GBSA analysis

Following MD simulations, binding free energy (ΔG)
calculations were performed at intervals of 20 ns using the Prime
(Jacobson et al., 2002; 2004; Schrödinger, 2023d) on equilibrated
MD trajectories to quantify the thermodynamic drivers of Nb-RBD
interactions. The total ΔG was computed as:

ΔG = GComplex − (GRBD +GNb)

where GComplex, GRBD, and GNb represent the free energies of
the bound complex, isolated RBD, and isolated Nb, respectively.
The MM/GBSA energy decomposition dissects ΔG into six key
components:

ΔGCoulomb quantifies electrostatic interactions between charged
residues, calculated using Coulomb’s law, capturing the influence
of charge−charge interactions on ΔG. ΔGvdW encompasses van
der Waals contributions, including both attractive dispersion
forces and repulsive Pauli exclusion effects, reflecting short−range
atomic interactions. ΔGSolvGB quantifies polar solvation energy,
modeled through the Generalized Born approximation to account
for solvent−mediated electrostatic shielding and desolvation
penalties. ΔGLipo measures hydrophobic burial energy, proportional
to the reduction in solvent−accessible surface area (SASA) of
non−polar residues, capturing the entropic gain from solvent
exclusion. ΔGHbond denotes energy contributions from hydrogen
bond formation, derived from geometric and electrostatic criteria,
highlighting the role of specific polar interactions. Finally, ΔGCovalent
represents internal strain energy arising from bonded interactions
(bonds, angles, dihedrals) within the Nb or RBD during binding,
reflecting conformational changes induced by complex formation.

To account for entropic effects, a quasi−harmonic entropy
analysis was integrated into the workflow. Conformational entropy
changes (ΔSbinding) were computed from MD trajectories using
Maestro’s Simulation InteractionAnalysis tool (Schrödinger, 2023b),
which employs a quasi−harmonic approximation to estimate
vibrational entropy:

ΔSbinding = Scomplex − (SRBD + SNb)

The total binding free energy was then thermodynamically
refined using:

ΔG = ΔGMM/GBSA −TΔSbinding

where T is the simulation temperature (300 K).

3 Results

3.1 RBD refinement and analysis

A thorough review using Protein Structure Reliability reports
identified RBD (7VYR_R) as the most suitable candidate due to its
minimal structural defects. This RBD structure was further refined

by removing ions and crystallographic water molecules located
beyond 5 Å, introducing disulfide bonds, and capping termini to
get stable and correct conformation. Hydrogen bond networks were
optimized through the prudently incorporation of hydrogens and
the rotation of the amide (Asn, Gln, andHis) and hydroxyl (Ser,Thr,
and Tyr) functional groups. Energy minimization improved peptide
planarity for specific bonds (C336−P337, E340−V341, T345−R346,
N360−C361, and A388−D389) and reduced temperature factor for
L518, H519, and A520. Loop optimization improved backbone
dihedral angles (Φ and Ψ) for A372, K386, F392, D442, and Y505
(Supplementary Table S1). These refinements effectively addressed
the structural issues present in RBD structure (Figure 2).

3.2 Epitopes characterization and
electrostatic analysis

The analysis of titration curves over a pH range of 2–12 to
determine the pKa values of ionizable residue in each epitope
was conducted (Supplementary Figure S1). In addition, PROPKA
[59–61] was used to visualize the pKa values of epitope residues
at a pH of 7.2 ± 0.2 (Supplementary Table S2). The epitopes were
characterized by their number of ionizable residues: CA1 had the
most (9), followed by AS3 (6), AS1 (4), AS2 (2), and CA2 (2). This
analysis suggested that CA1 would have the strongest and the most
favorable EC, followed by AS3 and AS1.

Surface analyses assessed the overall electrostatic charge of the
epitopes and RBD. CA1 and AS3 exhibited the highest positive
charge, while AS1 demonstrated the most negative charge. These
findings established the basis for recommendation for replacing
specific charged amino acids in FRs with those selected formutation
from the prior structure.

3.3 ECSbs construction

This study presents a novel approach to FR engineering, building
upon the SR6c3 Nb for an integrated strategy (Chen X. et al.,
2021). This approach uniquely integrates CDR design with the
optimization of the overall electrostatic potential between the
epitope and the RBD. Unlike traditional FR engineering approaches
that primarily focus on stability, solubility, and immunogenicity
(Lawrence et al., 2007; Miklos et al., 2012), this approach
empowers FRs to actively contribute to enhanced binding affinity
and specificity in conjunction with the CDRs. We strategically
engineered specific amino acids in both the FRs and CDRs
of the ECSb sequences to minimize aggregation propensity,
induce complementary dipole, and optimize electrostatic potential
(Figure 3; Supplementary Table S3). Balancing net charges of CDRs
and entire ECSbs with their corresponding epitopes and RBD, led
to improved ECSb binding to the RBD. To specifically isolate the
effect of EC on binding affinity and specificity, a minimal number of
hydrophobic residueswere introduced, as described earlier (Chothia
and Janin, 1975; Rose et al., 1985; Nicholls et al., 1991).

All Nbs (ECSbs and SR6c3) demonstrated strong nativeness
(overall) scores, with values consistently near the threshold level of
0.8, ranging from0.76 to 0.79 (Figure 4). ECSb2 and SR6c3 exhibited
the highest scores (0.79), while ECSb3 had a lower score (0.76).
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FIGURE 2
Structural representation and evaluation of the RBD facilitating ECSb nanobody construction. (A) 3D structure of RBD (red) retrieved from protein data
bank underwent structural refinement protocols resulting in a refined RBD structure (blue; (B) with fewer structural issues. (C) A visual comparison of
the two structures, highlighting the improvements achieved through the refinement process. Both models fitted well within electron density
maps of 7VYR_R.

Notably, the FR sequences of all Nbs consistently demonstrated
high nativeness, surpassing the threshold with an average score
of 0.93, due to their high sequence conservation. In contrast,
the CDRs exhibited significantly lower nativeness scores (<0.8),
ranging from 0.12 to 0.6, reflecting their completely randomized
sequences (Figure 4).

These results demonstrate the potential of our novel approach
in Nb engineering, balancing EC with structural integrity. The
high nativeness scores of the FRs, coupled with the strategically
designed CDRs, suggest that our method successfully integrated FR
engineering with CDR design while maintaining overall antibody
structure.

3.4 Structure prediction analysis

All predicted structures of Nbs demonstrated high
confidence, with pLDDT score consistently exceeding 85
(Supplementary Figure S2). ECSb2 demonstrated the highest
average pLDDT scores of 93.6, followed by SR6c3 at 92.9, ECSb5
at 90.5, ECSb1 at 89.6, ECSb4 at 88.8, and ECSb3 at 87.8. Each
Nb exhibited distinct variations in pLDDT scores, suggesting
distinct structural characteristics within their flexible regions.
Consistent with other protein structure prediction tools (Du et al.,
2021; Su et al., 2021; Cohen et al., 2022; Lin et al., 2022; 2023;
Wang W. et al., 2022; Wu et al., 2022; Ruffolo et al., 2023), pLDDT

scores were generally lower in loop regions but remained high (>95)
in the non−loop region (Supplementary Figure S2).

3.5 Structural refinement and analyses

Structural refinements of the Nbs were performed using Prime
(Jacobson et al., 2002; 2004; Schrödinger, 2023d). However, ECSb3
and ECSb4 exhibited persistent structural anomalies, including
distorted backbone and sidechain dihedrals, deviations in bond
angles and lengths, non−planer peptides, and the buried unsatisfied
hydrogen bond acceptors. These issues were rectified through
additional energy minimization and loop refinement, though this
process was challenging due to the exacerbating factors such as
temperature, bond angle and length deviations, steric clashes, and
sidechain dihedrals. The remaining Nb structures demonstrated
satisfactory reliability, as validated by PSRs andRamachandran Plots
(Supplementary Table S4; Supplementary Figure S3).

Surface evaluations of the refined structures were conducted
using BioLuminate (Beard et al., 2013; Salam et al., 2014;
Zhu et al., 2014; Schrödinger, 2023a) to assess their electrostatic
characteristics, aggregation tendency, and reactivity. Aggregation
score calculations identified SR6c3 as having the highest aggregation
propensity (190.548), followed by ECSb5 (70.451), while ECSb3
exhibited the lowest score (0.853) (Table 1). This observation
implies that SR6c3 and ECSb5 have a higher propensity for
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FIGURE 3
Framework regions (FRs; upper section) and complementarity−determining regions (CDRs; lower section) sequences displaying mutations in ECSbs
sequences generated through integrated engineering strategy. The mutations introduced into the FRs (FR1, FR2, FR3, and FR4) of ECSbs sequences to
minimize aggregation propensity are outlined in red and mutations to induce complementary dipole are outlined in blue. The CDR sequences of ECSb
variants are aligned and compared with the SR6c3 reference sequence, illustrating the modifications made to optimize binding affinity and electrostatic
potential. Asterisks under residues (F37, E44, R45, and V48) represent the VHH hallmark residues.

FIGURE 4
Humanization profile of nanobodies evaluated by AbNatiV. The bar chart comparing the computational humanization profile of the whole nanobodies
(ECSbs and SR6c3) and their overall score, CDR score, and FR scores. The x−axis represents the names, and the y−axis represents the score.
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TABLE 1 Comparison of the sum of aggregation score (AggScore) and
thermostability between ECSbs and SR6c3.

Nbs Sum of AggScore Thermostability
(kcal.mol−1)

ECSb1 9.094 100.4

ECSb2 0.927 96.72

ECSb3 0.853 110.9

ECSb4 18.347 148.3

ECSb5 70.451 109.8

SR6c3 190.548 62.6

aggregate formation and can lead to structural misfolding during
in vitro or in vivo development compared to the remaining
Nbs (Lijnzaad et al., 1996; Nissley et al., 2022; Van Gils et al.,
2022; Peruzzi et al., 2024). Patch analysis further elucidated
the basis of aggregation scores by examining the distribution,
intensity, and orientation of hydrophobic patches (Sankar et al.,
2018) (Supplementary Figure S4C; Supplementary Figure S5).
SR6c3, with its 85% hydrophobic amino acids, displayed five
hydrophobic patches with an average intensity of 0.639. In
contrast, ECSb1 and ECSb3 had fewer patches, 6 and 4 with
average intensity of 0.543 and 0.503, respectively. Regarding
distribution and orientation, patches in SR6c3 are clustered
majorly around CDRs, driven by the substantial involvement
of hydrophobic residues, which facilitate orientation changes
due to CDR flexibility. Conversely, ECSb1 and ECSb3 had
highly scattered hydrophobic patches along FRs, hindering
aggregate formation.

Our electrostatic engineering strategy increased the number
and intensity of negatively charged patches on ECSbs, enhancing
their solubility potential and reducing aggregation propensity
(Kramer et al., 2012; Ganesan et al., 2016; Carballo-Amador et al.,
2019). Notably, ECSbs exhibited an average of 12 patches with
an intensity of 1.26, while SR6c3 exhibited 15 scattered patches
with a lower intensity of 1.10 (Supplementary Figures S4A, B;
Supplementary Figure S5). The higher average intensity of
ECSbs is due to distribution of 64 residues on average in
12 patches compared to SR6c3’s 64 residues distribution in
15 patches (Supplementary Figure S6).

Assimilation of more charged residues; 13 residues in
positive patches and 12 residues in negative and four residues
in hydrophobic patches in ECSbs’ CDRs result in higher
electrostatic steering potential than SR6c3 (Wade et al.,
1998; Patil and Nakamura, 2007; Tsutakawa et al., 2017)
(Supplementary Figure S4; Supplementary Figure S7). As in
contrast, SR6c3 CDRs have 5 positively charged residues, 13
negatively charged, and 10 hydrophobic residues.This finding aligns
with the above results of higher aggregation around CDRs in SR6c3
(Supplementary Figure S5; Supplementary Figure S6).

Our integrated approach successfully developed electrostatically
complementary patches and potential between the Nbs and specific
epitopes, as well as the overall RBD. ECSbs, such as ECSb1,

exhibited a balance distribution of positively (16) and negatively
charged (14) residues, complementing AS1’s net charge of ‒2e.
Across the full ECSb1 structure, 59 residues contribute to positively
charged patches and 67 to negatively charged patches, aligning with
the overall RBD charge of +2e (Supplementary Figure S6). Similar
pattern was consistent across all ECSbs.

BioLuminate (Beard et al., 2013; Salam et al., 2014; Zhu et al.,
2014; Schrödinger, 2023a) was also employed to predict reactive
hotspots in the Nbs structures, focusing on vulnerabilities to
post−translational modifications (PTMs), including cysteine
modifications, glycosylation, deamination, oxidation, proteolysis,
and Asp isomerization (Farnsworth et al., 1989; Cohen, 2002;
Blom et al., 2004; Ohtsubo and Marth, 2006; Aebersold et al.,
2018; March and Smith, 2020). These PTMs can significantly
impact protein stability, immunogenicity, and function (Tsien,
1998; Hermeling et al., 2004; Walsh, 2010; Kumar et al., 2016;
Lee et al., 2023). While no N− or O−linked glycosylation sites were
identified in any of the Nbs, several reactive PTMhotspot, including
deamidation, oxidation, proteolysis, Aspartate isomerization, and
free cysteine sites, were found, with SR6c3 exhibiting the highest
number (38) and ECSb3 the fewest (25) (Supplementary Table S5).
Proteolysis and oxidation were the predominant PTMs across all
Nbs, with SR6c3 showing the highest number of oxidation hotspots
(14), indicating a higher susceptibility to oxidative damage in
comparison to the other Nbs. In contrast, ECSbs displayed a higher
number of proteolytic sites, suggesting increased vulnerability to
proteolytic degradation compared to SR6c3.

Thermostability predictions using FoldX (Schymkowitz et al.,
2005) revealed significantly higher thermostability in the ECSbs
compared to SR6c3, with ECSb4 demonstrating the highest
thermostability at 148.3 kcal.mol−1, while SR6c3 had the lowest
(62.6 kcal.mol−1) (Table 2). Further analysis of intramolecular
interactions, including hydrogen bonds (HBs), salt bridges
(SBs), repulsive ionic bonding (RIB), disulfide bonds (DiBs),
π−π stacking (Pistacking), π−cation (PiCation) interactions, and
hydrophobic interactions (HPh), revealed that ECSbs possess
superior characteristics. Electrostatic engineering resulted in a
greater number of SBs in ECSbs, which contain an average of
seven SBs compared to four in SR6c3 (Supplementary Figure S7).
Moreover, SR6c3 possesses four RIBs, while ECSbs typically
have only one RIB per structure. SR6c3 also lacks both π−π
stacking and π−cation interactions, which significantly contribute
to changes in free energy (ΔΔG), another factor of its lower
stability. Furthermore, the presence of more DiBs in ECSbs, as
compared to SR6c3, enhances their overall stability. In terms of
HBs, ECSb5 and ECSb2 exhibit the highest number of interactions,
with 33 and 32 HBs respectively, surpassing SR6c3, which
has 25 HBs (Supplementary Figure S7). In contrast, SR6c3, due to
a greater number of hydrophobic residues, has a higher propensity
for aggregation, resulting in 32 HPh interactions compared to an
average of 28 HPh interactions in ECSbs.

A total of 10 key residues contributing to Nb stability were
identified due to their prominent involvement in the intramolecular
interaction landscape (Figure 5). While the precise functions of
these residues remain to be fully elucidated, their potential roles can
be inferred. Cysteine residues likely stabilize the nanobody through
disulfide bond formation. Arginine, a positively charged amino
acid, may form salt bridges, contributing to stability and antigen
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TABLE 2 Comparison of the binding free energy (ΔG), Coulombic component of binding free energy (ΔGC), hydrogen bonding component of binding
free energy (ΔGHB) between ECSbs and SR6c3.

Nbs ΔG (kcal.mol−1) ΔGC (kcal.mol−1) ΔGHB (kcal.mol−1)

ECSb1-RBD −88.911 14.966 −5.252

ECSb2-RBD −71.777 105.049 −2.867

ECSb3-RBD −57.452 43.808 −8.705

ECSb4-RBD −65.942 56.526 −8.785

ECSb5-RBD −90.094 121.156 −11.802

SR6c3-RBD −70.525 −12.828 −8.421

binding. Aromatic residues like tyrosine can participate in various
interactions, including pi−pi stacking and hydrogen bonding.
Hydrophobic residues like valine often stabilize the protein’s core.
However, further research is needed to fully understand the specific
roles of these residues in nanobody function.

The integrated electrostatic engineering approach effectively
increased the number of SBs in ECSbs. Notably, mutations such
as S50R, S61D, and W106R in ECSb2; G26D, A50D, N59R,
Y95D, and W110D in ECSb3; and A23E, S25R, Q39D, S63D, and
W107R in ECSb5 were instrumental in SB formation. Conversely,
the two RIB interactions present in SR6c3 (W105−R45 and
Y95−R45) are attributed to residues W105 and Y95, which are
mutated in ECSbs. The comparison of thermostability results
with the intramolecular contact analysis of Nbs elucidated one
of the contributing factors to the heightened stability in ECSbs
compared to SR6c3 (Vogt et al., 1997; Kumar et al., 2000). These
computational analyses indicated that the electrostatic integration
strategy was successful in enhancing the thermostability in ECSbs
compared to SR6c3.

3.6 Protein−Protein docking

MM/GBSA calculations was used to rank the 30 poses of
each Nb-RBD docked system based on their binding free energy.
Notably, ECSb5-RBD pose (P) 15 exhibited the highest binding free
energy (ΔG) of 90.094 kcal.mol−1, closely followed by P26 of ECSb1-
RBD at 88.911 kcal.mol−1. SR6c3-RBD ranked fourth with ΔG of
70.525 kcal.mol−1, while ECSb3-RBD P14 exhibited the lowest ΔG
at 57.452 kcal.mol−1 (Table 2).

Each Nb in the docked pose with the highest ΔG exhibited
a distinct binding mode relative to the whole spike protein
(Figure 6). ECSb1 and ECSb3 bound to a cryptic site within the
RBD, whereas ECSb2, ECSb4, and SR6c3 targeted the receptor-
binding motif (RBM) region. Detailed analysis of ECSb1 and ECSb2
interactions revealed unexpected binding patterns. Contrary to
their intended targets (AS1 and AS2), these Nbs demonstrated
a preference for residues that offered a more favourable binding
architecture. This unexpected behaviour was characterized by the
formation of two hydrogen bonds, resulting from engineering
within the FRs. ECSb1 bound to AS3 instead of AS1, whereas
ECSb2 bound with CA1 instead of AS2. In contrast, other ECSbs

exhibited specific interactions that alignedwith their target antigenic
sites, highlighting the binding specificity conferred by electrostatic
complementation (Figure 6).

Visualization of the electrostatic potential maps for the
binding interfaces of each Nb-RBD complex corroborated the
results of calculated EC scores (Supplementary Figure S8). The
electrostatic maps of the ECSb2-RBD interface revealed similar
charge distributions, leading to repulsive interactions that resulted
in the lower EC score−. In contrast, ECSb1-RBD and ECSb5-
RBD complexes displayed both high EC and Sc, resulting from
strong molecular attractions. For the SR6c3-RBD complex, the
electrostatic map of SR6c3 exhibited a high negative charge density
in the upper region and a high positive charge density in the
lower right region, whereas the RBD displayed a slight negative
charge density in the upper portion and a high positive charge
density in the lower right region (Supplementary Figure S8).
This analogous charge distribution reduced the EC score for the
SR6c3-RBD complex.

In the second stage of docking, 1,000 decoys were generated
for each complex using Rosetta, and the docking funnel was
characterized by plotting interface scores (I_score, in Rosetta
Energy Units, REU) against interface RMSD (I_rmsd). Among the
engineered nanobodies, ECSb4-RBD exhibited the most favorable
binding energy, with the lowest I_score of −133.232 REU, followed
by ECSb2-RBD (−121.634 REU). In contrast, ECSb1-RBD showed
the least favorable I_score (−32.619 REU) among the top-scoring
decoys (Figure 7). The reference SR6c3-RBD demonstrated an
intermediate I_score of −79.541 REU. For each complex, the
decoy with the lowest I_score was extracted from the docking
trajectory, representing the energetically optimal conformation
for subsequent structural and functional analyses (Figure 9).
These results highlight the enhanced interface energetics
of ECSb4 and ECSb2 compared to both SR6c3 and
other ECSb variants.

Among these structural and functional analyses, the
comprehensive scoring elucidated the detailed energetic breakdown
of Nb-RBD complexes. The major energetic contributions
include Lennard-Jones attractive (LJ Att) and repulsive (LJ
Rep) components, in conjunction with the Lazaridis-Karplus
solvation energy (LK Sol) and Coulombic electrostatics (Elec),
as well as hydrogen bond (HB) energies, collectively informed
the calculation of the overall binding free energy (ddG). Among
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FIGURE 5
3D structures of the all the nanobodies, (A) ECSb1, (B) ECSb2, (C) ECSb3, (D) ECSb4, (E) ECSb5, and (F) SR6c3 highlighting key residues contributing to
their stability. The top 10 critical residues for each nanobody are listed in the boxes. Structural regions are color−coded as follows: purple for CDR1,
green for CDR2, orange for CDR3, and red for key stability residues. The background density maps provide a visual context for the Nb structure.

the complexes, ECSb1-RBD displayed the most favorable ddG
of −802.83 REU, driven by robust LJ Att. of −1642.61 REU and
HB energy of −280.36 REU (Table 3). Coupling with the highest
dSASA 15,285.66 Å2, ECSb1--RBD’s scoring analysis yielded a
normalized ddG/dSASA ratio of −0.0525. Conversely, although
ECSb4-RBD was identified as possessing the lowest I_score
(−133.232 REU) in the docking funnel, scoring analysis showed
ddG (−592.35 REU) and dSASA (13,852.21 Å2) resulted in a less
favorable normalized ddG/dSASA ratio of −0.04276 (Table 3).
This lower ddG evidenced by higher LK Sol (973.46 REU) and
LJ Rep (372.90 REU) coupled with lower individual energetic
contributions of LJ Att; −1617.54 REU, Elec: −390.23 REU, and
HB: −246.08 REU.

While ECSb5-RBD demonstrated robust binding energetics as
well (ddG = −718.91 REU) yielding a normalized ddG/dSASA
ratio of −0.0507 coupled with dSASA of 14,171.11 Å2 (Table 3).
The second highest ddG was due to the major contributions
of highest LJ Att (−1680.14 REU) and HB (−288.20 REU)
energetics even with the highest LJ Rep of 395.94 REU and
moderate score of LK Sol energy (975.81 REU). On the other
hand, SR6c3-RBD showed intermediate ddG (−615.84 REU)
even with lowest Coulombic (Elec: −357.99 REU) and hydrogen
bonding (HB: −241.33 REU) energetics (Table 3). Although, it
has lowest yet balanced LJ Att and LJ Rep −1539.38 REU
and 363.17 REU, respectively. However, the lowest solvation
penalty (LK Sol: 852.80 REU) and second highest buried surface
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FIGURE 6
Specific interactions between RBD (A) and the Nbs; ECSb1 (B), ECSb2 (C), ECSb3 (D), ECSb4 (E), ECSb5 (F), and SR6c3 (G) are highlighted in the circles.

area (15,117.49 Å2) improve ddG by requiring less energetic
cost for desolvating the binding interface and increasing buried
surface area to amplify the net favorable hydrophobic interactions.
These data suggest that while Nb-RBD complexes may offer the
most energetically favorable interactions, the interplay between
individual energy components and the solvent exposure upon
complex formation remains critical for the holistic assessment of
binding affinity.

The structure of interfacial interaction networks coupled with
Sc and EC further characterized factors underneath these scorings.
TheECSb-RBD complexes demonstrated distinct interfacial binding
profiles compared to the SR6c3-RBD, as revealed by Sc and EC
analyses. ECSb3-RBD achieved the highest Sc (0.7304), attributed
to its extensive network of geometrically constrained interactions,
including 17 hydrogen bonds (e.g., T10-D236) and five π-π stacking
interactions (e.g., R11-F223) (Table 4; Figure 8). These interactions
demand precise spatial alignment, enabling exceptional structural
fit. In contrast, SR6c3-RBD exhibited moderate Sc (0.6302),
limited by narrow interactions network (14 hydrogen bonds, five
π−π) and the absence of salt bridges (Supplementary Table S6).
Notably, ECSb1-RBD, despite its small interface (18 residues),
displayed intermediate Sc (0.6851), supported by six hydrogen
bonds and a stabilizing salt bridge (174R-298D), underscoring

the impact of targeted polar interactions on structural alignment
(Table 4; Figure 8).

Electrostatic optimization varied markedly across complexes.
ECSb5-RBD exhibited the highest EC (0.5295), driven by strategic
integration of salt bridges (N8−R236) and π-cation interactions
(T10−D249), which enhanced charge complementarity despite
its modest interface size (31 residues). Conversely, SR6c3-
RBD showed the lowest EC (0.2325), a consequence of its
reliance on non-polar interactions (28 hydrophobic, five π-π)
and lack of salt bridges (Table 4; Figure 9). ECSb4-RBD, despite
possessing the largest interface (67 residues), displayed poor EC
(0.3047), as its interaction profile was dominated by hydrophobic
clustering (39 instances), which lacks electrostatic specificity
(Table 4).

The interplay between Sc and EC revealed design-driven trade-
offs. While ECSb3-RBD achieved structural precision (Sc = 0.7304),
its moderate EC (0.3901) suggested that geometric optimization
alone insufficiently resolves electrostatic mismatches. In contrast,
ECSb5-RBDprioritized charge complementarity, achieving superior
EC (0.5295) through targeted electrostatic interactions, even with
fewer total interactions (23 vs. SR6c3’s 47). Intermediate performers
included ECSb2-RBD, with moderate EC (0.4570) linked to four
salt bridges and three π-anion interactions, and ECSb4-RBD,
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FIGURE 7
Docking funnels for each Nb-RBD complex. The interface scores (REU) are plotted against I_rmsd (Å) for each complex, (A) ECSb1-RBD, (B)
ECSb2-RBD, (C) ECSb3-RBD, (D) ECSb4-RBD, (E) ECSb5-RBD, and (F) SR6c3-RBD. Red colored data points have the lowest interface scores.

TABLE 3 Key scoring components including Lennard-Jones attractive (LJ Att), repulsive (LJ Rep), and solvation (LK Sol) energies, electrostatic
contribution (Elec), hydrogen bonding (HB), and the resulting binding free energy change (ddG) per solvent−accessible surface area (dSASA) of Rosetta
Energy Function 2015.

Complexes LJ Att
(REU)

LJ Rep
(REU)

LK Sol
(REU)

Elec (REU) HB (REU) ddG (REU) dSASA (Å2) ddG/dSASA

ECSb1-RBD −1,642.61 341.93 956.97 −485.36 −280.36 −802.83 15,285.66 −0.053

ECSb2-RBD −1,625.75 381.94 972.03 −425.82 −257.63 −613.41 13,995.39 −0.044

ECSb3-RBD −1,655.05 356.30 997.17 −448.29 −277.92 −694.47 14,651.11 −0.047

ECSb4-RBD −1,617.54 372.90 973.46 −390.23 −246.08 −592.35 13,852.21 −0.043

ECSb5-RBD −1,680.14 395.94 975.82 −443.58 −288.20 −718.91 14,171.11 −0.051

SR6c3-RBD −1,539.38 363.17 852.80 −358.00 −241.33 −615.84 15,117.49 −0.041

whose low EC (0.3047) reflected over-reliance on hydrophobic
contacts.

Collectively, ECSbs outperformed SR6c3-RBD in EC, with
ECSb5-RBD achieving a 2.3-fold improvement. The SR6c3-RBD’s
suboptimal EC underscored the limitations of natural systems in

balancing hydrophobic packing with electrostatic optimization − a
challenge mitigated in the ECSb series through rational design of
interaction networks. These results highlight the efficacy of tailored
electrostatic synergy (ECSb5) and structural precision (ECSb3) in
advancing molecular recognition beyond natural benchmarks.
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FIGURE 8
Schematic representation of interfacial interactions in the Nb-RBD complexes. The network of interactions for ECSb1-RBD (A), ECSb2-RBD (B),
ECSb3-RBD (C), ECSb4-RBD (D), ECSb5-RBD (E), and SR6c3-RBD (F), with Nb residues shown as blue balls and RBD residues as red balls. The various
types of interactions are color−coded as follows: Hydrophobic interactions (dark pink), π-Anion interactions (purple), Hydrogen bonds (green), π-π
stacking (blue), Repulsive Ionic Bonding (red), Salt bridges (orange), and π-Cation interactions (grey).

The comprehensive analysis of docking energetics, interface
complementarity, and binding affinity reveals distinct mechanistic
advantages and trade−offs among the ECSbs compared to the SR6c3.
ECSb4-RBD, despite exhibiting the most favorable initial interface
energy, demonstrated suboptimal ddG and EC. This disparity arises
from its over-reliance on hydrophobic clustering (39 instances) and
high solvation penalties, which offset favorable interfacial contacts.
Conversely, ECSb1-RBD achieved the most favorable ddG, driven
by robust LJ Att and HB, despite its small interface (18 residues).
Its superior normalized ddG/dSASA ratio underscores efficient
energy utilization per unit of buried surface area, highlighting the
importance of packing density in hydrophobic−driven interactions.

ECSb3-RBD emerged as a paradigm of structural precision,
with the highest Sc of 0.7304 due to its dense HB network (17)
and π-π stacking (5). However, its moderate EC reflects unresolved
electrostatic mismatches, illustrating that geometric optimization
alone cannot fully compensate for charge misalignment. In contrast,
ECSb5-RBD prioritized electrostatic synergy, achieving the highest
EC through strategic salt bridges and π−cation interactions,
which enabled a competitive ddG and normalized ratio despite
fewer total interactions (23 vs. SR6c3’s 47). This underscores

the efficacy of targeted charge complementarity in enhancing
binding efficiency.

The SR6c3-RBD, while leveraging hydrophobic packing (28
instances) and moderate shape fit, exhibited the lowest EC and
intermediate ddG. Its performance highlights inherent limitations
in natural systems: a reliance on broad, spatially tolerant interactions
limits electrostatic optimization, despite advantages in solvation cost
and buried surface area.

3.7 MD simulations

The molecular dynamics (MD) simulations of Nb-RBD
complexes revealed critical insights into their structural stability,
interfacial dynamics, and solvent accessibility, elucidating the
biophysical underpinnings of their binding efficacy. ECSb5-
RBD emerged as the most stable complex, exhibiting the lowest
average RMSD (3.72 Å) and RMSF (1.41 Å), indicative of a
rigid, well−optimized interface (Figures 9B, C). This exceptional
stability likely stems from its strategic integration of electrostatic
interactions (e.g., salt bridges, π-cation pairs) and a high proportion
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FIGURE 9
Structural and stability analysis of Nb-RBD complexes. (A) Solvent−accessible surface area (SASA) over time, highlighting the extent of exposure of
hydrophobic and polar regions for the ECSb1-RBD (black), ECSb2-RBD (green), ECSb3-RBD (blue), ECSb4-RBD (cyan), ECSb5-RBD (purple), and
SR6c3-RBD (yellow) complexes, (B) Root−mean−square deviation (RMSD) over time, reflecting the overall structural deviation during the simulations,
and (C) Root−mean−square fluctuation (RMSF) analysis, indicating the flexibility of residues within each complex across the simulation, with higher
RMSF values corresponding to greater flexibility. The data provide insights into the structural stability and conformational changes of the complexes
throughout the simulation period.

of secondary structure elements (35.96% SSE, predominantly β-
strands), which collectively minimize conformational entropy
and resist structural deviations. The low RMSF, particularly
at the binding interface, underscores restricted residue-level
flexibility—a hallmark of geometrically precise and electrostatically
complementary interactions, as previously identified in its high Sc
and EC scores.

In stark contrast, ECSb1-RBD displayed the highest RMSD
(7.74 Å) and RMSF (2.39 Å), reflecting significant conformational
plasticity (Figure 9C). While this dynamic behavior suggests
ongoing structural adjustments to optimize binding, the
paradoxically low SASA (9,981.11 Å2) indicates a deeply buried
interface dominated by hydrophobic clustering (Figure 9A). This
duality implies that ECSb1-RBD’s binding mechanism prioritizes
strong, enthalpically favorable van der Waals interactions and
hydrogen bonds (HB: −280.36 REU) over rigid structural alignment,
allowing it to maintain affinity despite flexibility (Table 3).
However, the elevated solvation penalty (LK Sol: 973.46
REU) observed in prior scoring analyses likely exacerbates its
conformational instability, as desolvation costs destabilize the
complex over time.

ECSb2-RBD and ECSb3-RBD exhibited intermediate stability
(RMSD: 3.81–3.94 Å) but distinct interfacial characteristics
(Figure 9B). ECSb2-RBD’s high SASA (16,594.02 Å2) suggests
a solvent−exposed interface, which may enhance adaptability
through dynamic interactions but compromises hydrophobic
stabilization. Conversely, ECSb3-RBD’s moderate SASA (15,998.14
Å2) aligns with its geometrically constrained network of hydrogen
bonds and π-π stacks, balancing rigidity with partial solvent
accessibility (Figure 9A). Notably, both variants lack the electrostatic
optimization seen in ECSb5-RBD, underscoring the trade-off
between structural precision and charge complementarity.

ECSb4-RBD, despite its expansive interface (67 residues),
displayed suboptimal stability (RMSD: 4.13 Å) and moderate RMSF
(1.59 Å), consistent with its over-reliance on hydrophobic clustering
(39 instances) and poor EC (0.3047) (Figure 9). The lack of polar
specificity likely permits minor interfacial fluctuations, as non-
directional hydrophobic interactions fail to fully constrain residue
mobility. This aligns with its elevated solvation penalties (LK
Sol: 973.46 REU) and repulsive forces (LJ Rep: 372.90 REU),
which collectively destabilize the complex despite favorable initial
interfacial energy (Table 3).
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The SR6c3-RBD exhibited intermediate metrics across all
parameters (RMSD: 4.44 Å; RMSF: 1.94 Å; SASA: 16,048.02 Å2),
reflecting its developmental honed balance of hydrophobic packing
and moderate structural adaptability (Figures 9A–C). Its relatively
low solvation penalty (LK Sol: 852.80 REU) highlights artificial
selection’s preference for energetically efficient desolvation and
broad interfacial contacts (Table 3). However, its limited EC and
sparse salt bridges reveal inherent limitations in natural systems,
which prioritize robustness over precision.

3.8 MM/GBSA analysis

The MM/GBSA methodology (Genheden and Ryde, 2015),
applied to equilibrated MD trajectories, provides a comprehensive
thermodynamic perspective on the binding free energies (ΔG) of
ECSbs and SR6c3.This analysis reveals distinct bindingmechanisms
and highlights the potential of this EC based design of ECSbs.

ECSb1-RBD exhibits moderate binding affinity (ΔG:
−51.25 kcal·mol−1), primarily driven by strong van der Waals
interactions (ΔGvdW: −56.25 kcal·mol−1) and lipophilic stabilization
(ΔGLipo: −20.41 kcal·mol−1) (Table 5; Supplementary Table S7).
These contributions reflect its deeply buried interface (low
SASA: ∼9,981 Å2) and efficient hydrophobic packing density,
which is further evidenced by transiently favorable ΔG values
at 80 ns (−74.10 kcal·mol−1), correlating with maximal lipophilic
burial (Supplementary Table S7). However, polar solvation
penalties (ΔGSolvGB: +10.40 kcal·mol−1) and variable Coulombic
contributions (ΔGCoulomb: +12.53 kcal.mol−1) partially offset these
gains, aligning with its high desolvation costs (LK Sol: 973.46 REU)
noted earlier (Supplementary Table S7; Table 3). The significant
conformational flexibility observed in MD simulations (RMSD:
7.74 Å) suggests a substantial entropic penalty, which likely
reduces binding affinity (Figure 10). Despite these trade−offs,
ECSb1-RBD’s exceptional normalized energy density (ddG/dSASA:
−0.0525) highlights its efficiency in leveraging hydrophobic-driven
interactions, albeit at the expense of dynamic adaptability (Table 3).

In similar, ECSb5-RBD achieves a moderate average ΔG
(−64.39 kcal.mol−1), underpinned by ΔGvdW of −93.95 kcal·mol−1

and ΔGLipo of −50.31 kcal.mol−1 contributions (Table 5;
Supplementary Table S7). Its structural rigidity (RMSD: 3.72 Å)
minimizes entropic penalties, allowing robust hydrophobic
network−powered enthalpic gains to dominate. However,
polar solvation (ΔGSolvGB: +24.33 kcal·mol−1) and electrostatic
interactions (ΔGCoulomb: +16.46 kcal.mol−1) despite highest EC
(0.5295) driven by salt bridges and π-cation pairs remains
unfavorable (Supplementary Table S7). Notably, its low solvation
penalties and high secondary structure content (SSE: 35.96%)
minimized entropic costs, reflecting its rigid, pre-organized binding
interface. This enthalpic precision underscores the success of
rational design in optimizing electrostatic synergy.

ECSb4-RBD yielded highest ΔG (−182.58 kcal.mol−1), yet the
decomposition of energy terms reveals critical weaknesses (Table 5).
The Coulombic contribution (ΔGCoulomb: +49.02 kcal.mol−1) is
destabilizing, aligning with the low EC (0.3047) and underscoring
poor electrostatic optimization evidenced by interfacial repulsion
(R174-R279 charge clash) (Supplementary Table S7; Table 4).
Conversely, van der Waals (ΔGvdW: −116.65 kcal.mol−1) and

TABLE 4 Interface characteristics including shape complementarity (Sc),
electrostatic complementarity (EC) and number of interface residues for
each Nb-RBD complex.

Complexes Interface residues Sc EC

ECSb1-RBD 18 0.685 0.384

ECSb2-RBD 60 0.623 0.457

ECSb3-RBD 46 0.730 0.390

ECSb4-RBD 67 0.621 0.305

ECSb5-RBD 31 0.632 0.530

SR6c3-RBD 50 0.630 0.233

lipophilic (ΔGLipo: −28.85 kcal·mol−1) terms dominate the
stabilization, consistent with the hydrophobic−driven interface
(39 instances). However, the solvation energetics (ΔGSolvGB:
−29.15 kcal.mol−1) and negligible hydrogen−bond contributions
(ΔGHbond: −0.92 kcal.mol−1) further highlight weak polar specificity
(Supplementary Table S7). Temporal fluctuations in ΔG (e.g.,
ΔGCoulomb ranging from −11.72 to +225.25 kcal.mol−1 over
100 ns) reflect transient electrostatic repulsions and interfacial
rearrangements, indicative of an electrostatic instability. Contrarily,
the progressive decline in covalent binding energy (ΔGCovalent)
from −13.22 to −106.33 kcal·mol−1 suggests strengthening
interfacial cohesion over time (Supplementary Table S7). This
analogous inclination between ΔGCoulomb and ΔGCovalent over
simulation trajectory reflects the influence of electrostatic
instability on ΔGCovalent. However, the conversed drift in dominate
energetics of ΔGvdW (−138.66 to −59.38) and ΔGLipo (−81.03 to
+20.97 kcal.mol−1) align with MD observations of rising RMSD
(1.96 Å at 0.2 ns to 4.66 Å at 100 ns) (Supplementary Table S7;
Figure 10).

ECSb2-RBD and ECSb3-RBD exhibited divergent profiles,
reflecting their distinct interfacial strategies. ECSb2-RBD’s
average ΔG (−66.94 kcal.mol−1) is driven by strong van der
Waals (ΔGvdW: −114.96 kcal.mol−1) and lipophilic contributions
(ΔGLipo: −97.91 kcal.mol−1) (Table 5; Supplementary Table S7).
At 60 ns of ΔG calculations trajectory, ECSb2-RBD displayed a
pronounced outlier of +516.50 kcal.mol−1 driven by anomalously
high ΔGCovalent, ΔGCoulomb, and ΔGvdW (+103.81 kcal.mol−1,
+207.60 kcal.mol−1, and +331.74 kcal.mol−1, respectively)
contributions (Table 5; Supplementary Table S7). This likely
reflects transient conformational artifacts or force field
limitations. Excluding this outlier, the complex showed
high ΔG (−183.63 kcal.mol−1), supported by robust ΔGvdW
(−204.30 kcal.mol−1) and ΔGLipo (−100.47 kcal.mol−1) interactions.
However, its elevated SASA (∼16,594 Å2) incurred solvation
penalties (ΔGSolvGB: + 17.63 kcal·mol−1), while reduced
EC (0.4570) limited ΔGCoulomb gains. This aligns with its
intermediate stability (RMSD: ∼3.81 Å) and suggests a design
compromise between adaptability and interfacial specificity. In
contrast, ECSb3-RBD achieves the second highest average ΔG
(−119.07 kcal·mol−1), supported by geometric precision (Sc: 0.7304)
via extensive hydrophobic bonding (ΔGvdW: −129.73 kcal·mol−1)
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TABLE 5 Binding free energies (kcal·mol⁻1) for each Nb-RBD complex, measured at 0, 20, 40, 60, 80, and 100 ns, along with the average (Avg) binding
energy across the simulations.

Time (ns) ECSb1-RBD
(kcal.mol−1)

ECSb2-RBD
(kcal.mol−1)

ECSb3-RBD
(kcal.mol−1)

ECSb4-RBD
(kcal.mol−1)

ECSb5-RBD
(kcal.mol−1)

SR6c3-RBD
(kcal.mol−1)

0 −55.02 −252.39 −233.05 −194.32 −118.03 −219.02

20 −27.85 −131.24 −165.99 −225.88 −95.56 −123.11

40 −55.63 −225.32 −105.19 −162.16 58.19 −29.40

60 −67.42 516.49 −115.79 −179.23 −78.33 −87.77

80 −74.10 −156.80 −49.45 −165.13 −110.61 −118.25

100 −27.46 −152.41 −44.93 −168.75 −42.01 −55.43

Avg −51.25 −66.94 −119.07 −182.58 −64.39 −105.50

and π-π stacking (ΔGLipo: −47.67 kcal.mol−1). However, its
electrostatic inefficiency (EC: 0.3901) manifested in suboptimal
Coulombic contributions (ΔGCoulomb: +17.08 kcal.mol−1).
Although its moderate entropy and solvation penalty (ΔGSolvGB:
+47.86 kcal.mol−1) tempers affinity, ECSb3-RBD’s structural
precision exemplifies the advantages of engineered hydrogen bond
networks in enhancing binding efficacy.

Conversely, SR6c3-RBD showed stronger ΔG (−105.50 kcal.
mol−1), driven by favorable vdW (ΔGvdW: −80.58 kcal.mol−1)
and lipophilic terms (ΔGLipo: −56.59 kcal.mol−1) (Table 5;
Supplementary Table S7). ΔGvdW and ΔGLipo partially offset by
weak electrostatic contributions (ΔGCoulomb: +175.61 kcal.mol−1)
reflecting the lowest EC (0.3047), which were frequently
counteracted by polar desolvation (ΔGSolvGB: −96.37 kcal.mol−1)
(Table 5; Supplementary Table S7). These calculation trajectories
aligned with the development prioritization of hydrophobic packing
over charge optimization, a limitation that ECSbs effectively
addresses.The highest electrostatic penalty and entropic costs reflect
SR6c3-RBD’s natural trade−off between adaptability and stability,
further underscoring the advantages of rational design in achieving
superior binding profiles.

4 Discussion

This study aimed to explore the potential of electrostatically
tailored Nbs as a therapeutic strategy against SARS-CoV-2, focusing
on generating high-affinity and stable binding with RBD of the spike
protein. Our findings demonstrated the successful development and
characterization of ECSbs designed to target the Spike protein’s
RBD. By leveraging computational biology and engineering, we
created Nbs with enhanced electrostatic profile and binding
affinities (Cheloha et al., 2020).

The structural refinement of the RBD effectively addressed
various anomalies inherent in the initialmodel, enhancing its overall
accuracy and stability. Disulfide bond formation,− the introduction
of hydrogen bonds, loop refinements and energy minimizations of
selected residues were pivotal in achieving conformational stability.
Key residues (such as C336−P337, T345−R346, and A388−D389)

demonstrated improved peptide planarity and reduced thermal
fluctuations, particularly around the critical loop regions (A372,
K386, and Y505). A prior study has shown that different amino
acid residues R403, K/N/T417, L455, F486, Y489, F495, Y501, and
Y505 on RBD play a key role in the protein recognition mechanism
(Biskupek and Gieldon, 2024). Our methodical approach to ECSb
design, focusing on optimizing electrostatic interactions through
strategic amino acid modifications, proved effective in enhancing
binding affinity and specificity towards the RBD (Khan et al.,
2021). This aligns with the previous study (Zhu et al., 2023) that
successfully engineered Nbs with higher binding affinity to the
S protein using a combination of template selection, mutation
analysis, and single−site saturated mutagenesis in CDRs. However,
our methodical approach for ECSbs represents a novel approach
in the field of Nb engineering and differ principally, as our study
focused on ECSb design, through strategic amino acid modification
both in CDRs and FRs based on electrostatic complementation
(Entzminger et al., 2017; Gąciarz and Ruddock, 2017).

The engineered Nbs in this study exhibited varying binding
patterns to the SARS-CoV-2 spike protein. Three of the five
Nbs (ECSb3-ECSb5) successfully bound to the targeted antigenic
sites, demonstrating their specificity. However, ECSb1 and ECSb2
displayed unexpected binding behavior, binding to alternative
sites on the spike protein. ECSb1 bound to AS3 instead of the
intended AS1, while ECSb2 bound to CA1 rather than AS2. These
findings deviate from recent studies that have shown antibodies
binding to the conserved fusion peptide region adjacent to the
AS2 epitope (Premkumar et al., 2020; Dacon et al., 2022). The
steric constraints imposed by the high density of spike proteins on
the viral surface make this region difficult to access for antibodies
(Low et al., 2022; Zhu et al., 2023). The unexpected binding patterns
observed in ECSb1 and ECSb2 suggest that these Nbs may have
evolved to overcome steric hindrances or target alternative regions
on the spike protein.

The detailed features of the designed Nbs are presented in
the supplemental material, providing a better comprehension of
the biophysical principles underlying their binding efficiency.
From the pKa−mapped ionizable residues essential for contact
specificity (Supplementary Figure S1) to the structural predictions
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and validations that give our designed structures confidence
(Supplementary Figures S2–S4). Supplementary Figures S1–S9 offer
a visual compendium that captures everything. Interestingly,
the surface patch analyses (Supplementary Figures S4–S6) point
to possible aggregation sites, which is an important factor to
consider during antibody design. This study demonstrates that
our integration strategy simultaneously enhances binding affinity
via EC optimization and improves aggregation propensity and
thermostability, which should be considered when designing such
candidates (Chiu et al., 2019; Muyldermans, 2021).

Electrostatic attraction plays a key factor in antibody-antigen
interactions, enhancing binding specificity. Analysis of RBD
epitopes based on their ionizable residues identified CA1 as the
most favorable epitope for EC. Surface charge analysis of both
Nb-RBD complexes and their binding interfaces reinforced the
electrostatic differences between epitopes, with CA1 and AS3 being
predominantly positively charged, while AS1 was more negative
charged. These differences guided epitope-focused Nb design and
mutation strategies to improve binding affinity. Engineered CDRs
of ECSbs, paired with optimized FRs, enhanced EC, leading to
higher binding specificity and stability (Tu et al., 2016). ECSbs
demonstrated a better balance between net charge and electrostatic
interactions, resulting in improved binding affinity to the RBD.
This balance was particularly evident in ECSb2 and ECSb5, which
exhibited high native structure scores and outperformed SR6c3
in terms of EC and CDR nativeness. The same idea could be
implemented in bispecific antibody design, potentially resulting in
more effective and scalable treatments (Fennell et al., 2013).

Rosetta docking, scoring, MD simulations, and MM/GBSA
calculations revealed distinct mechanistic advantages and trade-offs
for engineered nanobodies (ECSbs) compared to SR6c3. ECSb4-
RBD, despite an initially favorable interface energy, exhibited
suboptimal ddG and poor EC due to excessive hydrophobic
clustering (39 instances) and high solvation penalties. This
instability was further corroborated by MD simulations, which
revealed moderate RMSF and RMSD values, indicative of limited
polar specificity and ongoing interfacial fluctuations (Mangat et al.,
2022). Conversely, ECSb3-RBD, with the highest Sc, demonstrated
structural precision driven by extensive hydrogen bonding (17 H-
bonds) and π-π stacking. While its MM/GBSA ΔG was high,
suboptimal Coulombic contributions limited EC. Despite a well-
packed interface, moderate EC and a positive ΔGCoulomb suggest
unresolved charge misalignments limit binding stability, consistent
with previous findings (Zhou and Pang, 2018). ECSb2-RBD
showed intermediate performance with a broad SASA, indicating
a solvent-exposed interface that enhanced conformational
adaptability but reduced hydrophobic stabilization, as seen in
its moderate EC and Sc. A transient MM/GBSA outlier, likely
from interfacial disruptions, highlighted the flexibility-stability
trade-off (Childers and Daggett, 2017). Excluding this outlier
revealed amore favorable ΔG, indicating hydrophobic and lipophilic
interactions primarily drove binding. ECSb5-RBD’s balance of
rigidity (low RMSD/RMSF) and electrostatic optimization (high
EC, salt bridges, π-cation interactions) yielded a competitive
MM/GBSA ΔG and impressive ddG/dSASA, highlighting the
efficacy of targeted electrostatic design for enhancing binding
efficiency, even with a moderate interface (Zhang et al., 2011).
ECSb1-RBD, relying on a deeply buried hydrophobic interface,

exhibited the most favorable ddG but high solvation penalties
and entropic costs. SR6c3, in contrast, showed limitations
in electrostatic optimization, with moderate ΔG, RMSD, and
RMSF, underscoring the advantage of rational design (Derat and
Kamerlin, 2022). These analyses demonstrate that ECSbs achieved
improved binding affinity through tailored interfacial optimization,
highlighting the importance of balancing shape complementarity,
electrostatic interactions, and hydrophobic packing for potent
nanobody design.

Our approach, which is based on in-depth structural and
biophysical investigations, allowed us to precisely tailor Nbs to
match the electrostatic environment of the RBD. Specifically, the
ECSb1-RBD complex demonstrated a consistent interaction profile
across simulated parameters, suggesting a viable treatment target.
The dynamic nature of the interactions between ECSb5 and RBD,
along with the varying surface area exposure, highlights the ability
of modified Nbs to adjust to changing viral structures (Mei et al.,
2022; Shi et al., 2022). The higher stability and affinity seen in
ECSb1-RBD and ECSb5-RBD complexes are fundamentally derived
from the harmonious interplay between surface and electrostatic
compatibility at the binding interfaces, as illustrated by the docking
poses and complementarity plots (Supplementary Figure S8). This
additional data not only supports the conclusions made in the main
text but also offers a concrete tool for research into Nb design in
the future (Price et al., 2018).

In silico techniques have revolutionized antibody development,
making significant contributions across various stages of the process.
These approaches have been instrumental in several key areas:
identifying antigen epitopes (Chen et al., 2019; Amitai, 2021;
Mason et al., 2021; Tubiana et al., 2022; Xu et al., 2022), exploring the
vast sequence space of CDRs (Lim et al., 2022; Pooja Mahajan et al.,
2022; Prihoda et al., 2022), optimizing CDR sequences, predicting
antibody structures (Ruffolo et al., 2023), forecasting binding
modes (Schneider et al., 2022), and estimating the binding affinity
between antibodies and antigens (Myung et al., 2022). These
computational approaches have been particularly valuable in the
context of SARS-CoV-2, accelerating the discovery and optimization
of therapeutic antibodies (Taft et al., 2021; 2022; Shan et al.,
2022; Shaver et al., 2022; Zhang et al., 2022). These advancements
are enhancing our ability to design antibodies with improved
binding affinity, specificity, and other desirable properties. Our work
significantly contributes to the growing body of knowledge in Nb
development by providing a comprehensive dataset that correlates
residue substitutions in Nb CDRs and their binding affinity to
the SARS-CoV-2 spike protein. This dataset not only adds to our
understanding of Nb-RBD interactions, but also to support the
future in silico driven Nbs engineering efforts. Such engineered
Nbs have potential beyond binding affinity. They can be used as
scaffolds for targeted drug delivery, conjugated with therapeutic
agents or imaging probes (Sakthikumar et al., 2022). Studying Nb-
viral protein interactions helps understand resistance mechanisms,
informing strategies against emerging variants (Nasution et al.,
2018). This multifaceted approach enriches our comprehension
of Nb functionality and paves the way for innovative solutions
in combating infectious diseases. By leveraging computational
technologies, our study can advance the development of potent and
targeted Nb−based therapeutics to combat SARS-CoV-2 and other
pathogens.
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5 Conclusion

Conclusively, our innovative and integrated computational
approach to Nb engineering has yielded promising results, with
ECSbs demonstrating superior stability, binding affinity, and EC
compared to the referenced SR6c3. Notably, ECSbs exhibited
significantly higher thermostabilities (100.4–148.3 kcal·mol⁻1)
compared to SR6c3 (62.6 kcal·mol⁻1). In terms of binding free
energy (ΔG), ECSb4-RBD and ECSb3-RBD achieved superior
values of −182.58 and −119.07 kcal·mol⁻1, respectively, versus
−105.50 kcal·mol⁻1 for SR6c3-RBD. Additionally, ECSb4-RBD and
ECSb3-RBD showed enhanced electrostatic complementarity (EC)
values of 0.305 and 0.390, respectively, compared to 0.233 for SR6c3-
RBD. These key findings make a strong case for the incorporation
of electrostatic principles into Nb design, indicating a significant
improvement in our ability to combat viral infections through
creative biotechnological developments. further experimental
validation and optimization of the ECSb design process are a
prerequisite.
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