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Potential biomarkers and
immune infiltration linking
endometriosis with recurrent
pregnancy loss based on
bioinformatics and machine
learning
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Jiayan Yang1 and Lianfang Zhao1*
1Prenatal Diagnosis Center, Center of Reproductive Medicine, Suining Central Hospital, Suining,
Sichuan, China, 2Department of Radiology, Suining Central Hospital, Suining, Sichuan, China

Objective: Endometriosis (EMs) is a chronic inflammatory disease characterized
by the presence of endometrial tissue in the non-uterine cavity, resulting in
dysmenorrhea, pelvic pain, and infertility. Epidemiologic data have suggested
the correlation between EMs and recurrent pregnancy loss (RPL), but the
pathological mechanism is unclear. This study aims to investigate the potential
biomarkers and immune infiltration in EMs and RPL, providing a basis for early
detection and treatment of the two diseases.

Methods: Two RPL and six EMs transcriptomic datasets from the Gene
Expression Omnibus (GEO) database were used for differential analysis via
limma package, followed by weighted gene co-expression network analysis
(WGCNA) for key modules screening. Protein-protein interaction (PPI) network
and two machine learning algorithms were applied to identify the common
core genes in both diseases. The diagnostic capabilities of the core genes were
assessed by receiver operating characteristic (ROC) curves. Moreover, immune
cell infiltration was estimated using CIBERSORTx, and the Cancer Genome Atlas
(TCGA) databasewas employed to elucidate the role of key genes in endometrial
carcinoma (EC).

Results: 26 common differentially expressed genes (DEGs) were screened
in both diseases, three of which were identified as common core genes
(MAN2A1, PAPSS1, RIBC2) through the combination of WGCNA, PPI network,
and machine learning-based feature selection. The area under the curve
(AUC) values generated by the ROC indicates excellent diagnostic powers in
both EMs and RPL. The key genes were found to be significantly associated
with the infiltration of several immune cells. Interestingly, MAN2A1 and
RIBC2 may play a predominant role in the development and prognostic
stratification of EC.

Conclusion: We identified three key genes linking EMs and
RPL, emphasizing the heterogeneity of immune infiltration in the
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occurrence of both diseases. These findings may provide new mechanistic
insights or therapeutic targets for further research of EMs and RPL.

KEYWORDS

endometriosis, immune infiltration, recurrent pregnancy loss, biomarker, endometrial
cancer

1 Introduction

Endometriosis (EMs) is an estrogen-dependent chronic
gynecological inflammatory disease. Its most typical clinical
symptoms are endometrial tissues in non -uterine cavity
(Mikhaleva et al., 2020). About 10% of childcare women suffer from
EMs.The reason for EMs currently accepted is that the endometrium
tissue is retrograde in the pelvis with menstruation, scattered to
different areas, producing local inflammatory reactions, causing
local tissue adhesion, and then dysmenorrhea, and dysmenorrhea.
EMs can lead to multiple clinical symptoms such as pelvic pain
and infertility (Barnhart et al., 2002). The prevalence of EMs
among women of reproductive age is largely due to the lack of
effective screening methods in the early days. EMs often has two
treatments in clinical practice: first, drug treatment, oral hormone
drug treatment, this treatment can only help EMs patients to relieve
symptoms. When drug treatment is interrupted, the probability of
recurrence. Second, surgical treatment, an endometrium tissue with
abnormal hyperplasia through laparoscopic surgery, separated the
adhesive part, but surgery may cause the ovarian reserve function
to decrease, and the risk of recurrence is higher. Although EMs is
a benign gynecological disease, the pain caused to patients and the
risk of a certain vicious transformation of patients brings a lot of
trouble to many patients with childbearing age (Barreta et al., 2018).
At present, in clinical practice, an efficient diagnosis and treatment
plan is needed.

The stability of the function and environment of the uterus
and its accessories is related to the stability of pregnancy and the
quality of pregnancy. Clinically, embryo or fetal loss of twice or
more than two or more pregnancy failure of pregnancy before
20–24 weeks of pregnancy is diagnosed with recurrent pregnancy
loss (RPL, Recurrent Pregnancy Loss), and 5% of women try to
experience this pain when they are pregnant (Bohlmann et al.,
2010; Practice Committee of the American Society for Reproductive
Medicine, 2020). The literature reports about 23 million abortions
each year, and the prevalence of recurrent abortion is about 2.6%
(Quenby et al., 2021). RPLnot only brings tremendous psychological
pressure to both husband and wife, but it also brings a heavy burden
on family, social, and public health systems. The cause of RPL is
complicated, and about 50%of the cause of RPL is unknown (Li et al.,
2023). The onset of RPL includes many factors such as uterus and
accessories, endocrine, immune, genetic, environmental, lifestyle,
psychological conditions, etc., (Dimitriadis et al., 2020; Liu et al.,
2021).The normal and stability of the environment in the uterus and
the accessories are crucial. Due to the lack of a clear understanding
of the RPL mechanism, the treatment of patients with RPL is more
complicated. A survey of epidemiological diseases found that nearly
half of the patients were related to EMs, and many patients caused
the failure of auxiliary reproduction (Homer, 2019).

To explore the risk factors of RPL and tap their pathogenesis,
more and more researchers have explored the relationship
between genetic factors and RPL. However, there is no high-
quality monitoring and treatment method for RPL. We focus
on EMs, using multiple bioinformatics and machine learning
approaches, such as WGCNA, PPI network construction,
function enrichment, immune infiltration deconvolution, etc.,
To reveal the common key biomarkers and their functions in
EMs and RPL. A total of eight microarray datasets including
291 samples were enrolled from the gene expression Omnibus
(GEO) database. The potential upstream regulatory factors
of the biomarkers, i.e., miRNAs or transcription factors were
predicted. Finally, we unveiled the pivotal role of two key genes
during the development and prognosis of endometrial carcinoma.
All these data offer an insightful understanding of molecular
mechanisms in EMs and RPL, providing promising directions
for early detection of EM, and future extensive studies of these
biomarkers may shed light on drug candidate discovery and
optimized clinical plans for system risk assessment and personalized
therapy of RPL.

2 Materials and methods

2.1 Data source

We retrieved eight datasets from the GEO database,
including two RPL datasets (accessing ID: GSE26787 and
GSE165004) and six EMs datasets (accessing ID: GSE51981,
GSE6364, GSE7305, GSE120103, GSE23339, and GSE7846).
Detailed information on these datasets can be found in
Supplementary Table S1. All microarray data preprocessing
was performed as previously described (Zhang et al., 2021;
Tang et al., 2022b). The “Combat” function implemented in
the “SVA” package (v3.42.0), which is a popular algorithm for
adjusting systematic variations between arrays, was utilized
to generate a combined meta-dataset by removing the batch
effects of different sets for both RPL and EMs (Zhang et al.,
2023; Guo et al., 2024), respectively, which was then used
to perform subsequent bioinformatics analysis. The online
TIMER2.0 database (http://timer.cistrome.org/) was used to
compare the expression levels of the key genes. Additionally,
the RNA-seq profile and corresponding clinical information
of EC patients (TCGA-UCEC) were acquired from the UCSC
XENA database (https://xena.ucsc.edu) (Guo et al., 2021;
Zhao et al., 2023), and log2 transformed Transcripts per
kilobase million (TPM) value was computed for normalization
(Guo et al., 2022; Tang et al., 2022b).
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2.2 DEGs screening

DEGs in EMs and RPL were screened using the R package
“Limma” (v3.50.3) with the threshold of |logFC| >0.585 and adj.P.Val
<0.05 (Sun W. et al., 2023). Considering the imbalanced sample
composition for EMs, we utilized the subset-based approach to
create the 1:1 ratio for the disease and control groups (Tang et al.,
2022a). The common DEGs derived from all five subsets were
intersected by drawing a Venn diagram, which were defined as the
DEGs of EMs. Subsequently, we obtained the intersection of DEGs
from EMs and RPL and visualized their expression patterns using
heatmap via the “pheatmap” package (v1.0.12).

2.3 WGCNA analysis

Based on the combined datasets of RPL and EMs, the “WGCNA”
package (v1.71) was applied to define functional transcriptomic
co-expression modules shared by both diseases. Outlier samples
were excluded according to the sample clustering plot, followed
by the selection of the best soft thresholding power (β) and
the establishment of a scale-free network. Dynamic and merged
gene modules were generated according to the module size and
similarity. The module-trait relationships were determined by
Pearson correlation analysis to identify important gene modules,
and gene significance (GS) and module membership (MM) were
evaluated and scatter plots were depicted.

2.4 PPI network construction and function
enrichment

PPI analysis was conducted by the STRING database (version
12.0, http://string-db.org/) with the confidence score of ≥0.25
and was further visualized by the Cytoscape software (v3.2.1).
The MCODE app was used for cluster analysis. The topological
parameters of the network including node degree and maximal
clique centrality (MCC) were computed by the “cytohubba”
application, which were used to pick out the core genes of
the network.

For a better understanding of the potential biological function
of identified gene modules fromWGCNA, GO and KEGG pathway
enrichment analyses were performed using the Metascape (http://
metascape.org) with default settings.

2.5 Machine learning algorithms to
discover potential diagnostic markers

Two machine learning algorithms including the least absolute
shrinkage and selection operator (LASSO) regression and support
vector machine-based recursive feature elimination (SVM-RFE)
were adopted for feature selection to identify candidate diagnostic
biomarkers in both RPL and EMs. The expression of the common
DEGs and core genes of the PPI network in the combined dataset
served as the input matrices for both RPL and EMs. LASSO
was carried out by the “glmnet” package (v4.1.8) and SVM-RFE

was carried out by the “e1071” package (v1.7.16). Ten-fold cross-
validation was applied to calculate the misclassification error of the
candidate model and to determine the optimal lambda. λ.1se was
used to pick out the least number of variables for LASSO. For SVM-
RFE, a ranked gene list was created using the SVM-RFE algorithm,
followed by the optimal subset acquisition with a linear kernel. We
obtained the intersection of LASSO and SVM-RFE to define the core
genes for RPL and EMs, respectively, and the overlapping core genes
of the two diseases were further regarded as common core genes
representing diagnostic biomarkers of patients with EMs and RPL.

2.6 Diagnostic/therapeutic value
assessment and immune infiltration
analysis

Based on the combined datasets, the “pROC” package (v1.18.4)
was used to depict the ROC curves to assess the diagnostic values of
the common core genes in patientswith EMs andRPL. Besides,Drug
SlGnatures DataBase (DSigDB, v1.0), which is a comprehensive
gene set resource consisting of 17,389 unique compounds covering
19,531 genes, was used to predict potential drugs/compounds that
may disturb the expression of the identified core biomarkers in
both EMs and RPL. For immune infiltration estimation, we utilized
the CIBERSORTx algorithm (Newman et al., 2019) to obtain the
abundance of immune cells in RPL and EMs based on the combined
datasets of the two diseases. The immune infiltration landscape in
different groups of RPL or EMs was presented by a heatmap plot.
Spearman correlation analysis was used to assess the relationship
between the expression of the common core genes and immune cell
infiltration.

2.7 Upstream regulation prediction

MiRNet 2.0 is an up-to-date integrated platform that illustrates
“multiple-to-multiple” relationships and functional interpretation.
In this study, MiRNet 2.0 was applied to examine the upstream
regulation of the abovementioned common core genes. Predicted
transcription factor-key gene interactions were inferred from the
Jaspar database that plugged in MiRNet 2.0. Moreover, miRNAs
that may target these common core genes were predicted with
miRTarBase 9.0, an online database to predict miRNA-target
interactions (MTIs) which were verified by series types of cell-based
experiments including microarray, CLASH, PAR-CLIP, HITS-CLIP,
and proteomics. The interactions between predicted transcription
factors or miRNAs with common core genes were displayed by
Cytoscape.

2.8 Comprehensive exploration of the
common core genes in EC

TIMER 2.0 was used to compare the expression levels of the
common core genes between tumor and adjacent normal tissues in
pan-cancer based on the whole TCGA cohort. The TCGA-UCEC
dataset was used to assess the correlation between gene expression
and clinicopathological features including age, BMI, grade,
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histology, stage, and tumor burden. Immune score and stromal score
were computed with the ESTIMATE algorithm (Yoshihara et al.,
2013) via the “estimate” package (v1.0.13). Kaplane-Meier survival
plots for overall survival (OS) and disease-free survival (DFS)
were drawn to evaluate the prognostic power of common core
genes in EC.

2.9 Human samples collection

Three samples of ectopic endometrial lesions were collected
from women aged 18–37 years, and the diagnosis was confirmed
by an experienced histopathologist. Three proliferative-phase
endometrial specimens were collected from regular cycling women
undergoing hysterectomy for non-endometrial conditions. The
tissues were fixed in formalin and embedded in paraffin for
immunohistochemistry. The written informed consent for use
of human tissues was obtained from each subject, and ethical
approval was obtained from the Suining Centre Hospital (No.
KYLLKS20240183).

2.10 Immunohistochemistry

Tissue sections (5 μm) were dewaxed, EDTA antigen repair
solution (MXB, MVS-0099) for antigen thermal repair, 3% H2O2
quenches endogenous peroxidase, 1% BSA blocked 20 min at room
temperature, washed with ddH2O and PBS, and then probed
with the primary antibody (RIBC2, Proteintech, Rosemont, IL
60018, United States; MAN2A1, HUABIO Hangzhou, Zhejiang
P.R.C; PAPSS1, Proteintech, Rosemont, IL 60018, United States) at
1/100 dilution overnight at 4°C. Following washing with 0.025%
Tween/Tris, sections were incubated with horseradish peroxidase
(HRP)–labeled streptavidin-biotin detection kits according to the
manufacturer’s instructions (Dako, Carpinteria, CA). The color
was developed by incubation with DAB chromagen (3, 3′-
diaminobenzidine; Dako, Carpinteria, CA) for 5 min.

3 Results

We downloaded two RPL datasets and six EMs datasets from
the GEO database, respectively. After batch removal in individual
diseases, we obtained two combined datasets for RPL and EMs,
which were further used for downstream analysis. The principal
component analysis (PCA) plots indicated that batch effects were
well corrected for both EMs and RPL (Supplementary Figure S1).
The combined RPL set was composed of 29 RPL and 29 control
tissue samples, while the combined EMs set consisted of 141 EMs
and 92 control tissue samples.The complete flowchart of the current
research is presented in Figure 1.

3.1 DEGs screening in RPL and EMs

Using the combined datasets of RPL and EMs, we screened the
DEGs in these two diseases with the predefined filtering criteria (abs
(log2FC) > 0.585, adj.P.Val<0.05). For RPL, a total of 330 DEGs were

achieved between 29 pairs of RPL and control samples (Figure 2A).
For EMs, we first screened the DEGs between five subsets EMs
(n = 92) and control (n = 92). Then, we intersected the DEGs to get
858 DEGs (Figures 2B, C). Next, overlapping analysis of the Venn
diagram resulted in 26 commonDEGs of RPL and EMs (Figure 2D).
The expression patterns of these common DEGs in two combined
datasets of RPL and EMs were shown by heatmap (Figures 2E, F).

3.2 WGCNA to identify key modules in RPL
and EMs

WGCNA network was constructed to unveil the co-expression
gene patterns and identify key modules related to EMs or
RPL. Outlier samples were screened by sample clustering for
both EMs and RPL (Supplementary Figure S2), followed by the
determination of optimal β values for meaningful scale-free
topology (Figures 3A, B). Subsequently, genes in the RPL and
EMs dataset were clustered into 5 and 7 modules, respectively.
Pearson correlation analysis revealed that the greenyellow gene
module was mostly positively related to RPL (r = 0.37, p = 0.004),
while the brown and blue gene modules were mostly negatively
connected with EMs (r = −0.39, p = 6e-10; r = −0.38, p = 4e-
10) (Figures 3C, D). Besides, scatter plots of these modules were
presented with GS and MM in Figures 3E–G.

3.3 Function enrichment and pathway
analysis of the three key gene modules in
RPL and EMs

We obtained three key gene modules in RPL and EMs via
WGCNA, including the greenyellow gene module in RPL and the
brown and blue modules of EMs. To understand the biological
functions of three key gene modules in RPL and EMs, we
performed GO and KEGG analysis. We displayed the top 20
results of GO biological process enrichment analysis with the
green-yellow gene module related to RPL and the brown and
blue gene modules related to EMs, respectively (Figures 4A–C).
To further investigate the link between these GO enrichment
results of RPL and EMs, we took the intersection. A total of 67
were retrieved, focused on three GTPase-related results, including
GTPase regulator activity, GTPase activator activity, GTPase activity
and protein tyrosine kinase activity, ribonucleoside triphosphate
phosphatase activity, glycosyltransferase activity, scaffold protein
binding, and transcription factor binding, etc. On the other hand,
KEGG pathway enrichment analysis found that the greenyellow
gene module was mostly involved in 96 pathways, while the blue
gene module was major related to 76 pathways. Moreover, the
brown gene module was closely related to 69 pathways. The top
20 enriched KEGG pathways of three key gene modules in RPL
and EMs are shown in Figures 4D–F. The intersection of KEGG
results of three key gene modules indicated that the PI3K-Akt
signaling pathway, pathways in cancer, p53 signaling pathway,
MAPK signaling pathway, AMPK signaling pathway, Wnt signaling
pathway, and other important KEGG term might be involved in the
pathological process of RPL and EMs.
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FIGURE 1
Flowchart of the current research.

3.4 PPI network analysis

From the three gene modules related to RPL with EMs,
98 key genes were identified and used to construct a PPI
network with the STRING database (Figure 5A). Then, the
MCC of each node was calculated and the top 30 genes with
the highest MCC were identified as potential hubs which
might be closely related to RPL and EMs (Figures 5B, C).
Next, we investigated the expression correlation of the 30 core
genes in RPL and EMs. The correlation matrices in Figure 5D
suggested that most of the 30 genes were positively related in
both RPL and EMs.

3.5 Identification of the common core
genes in RPL and EMs

Based on the 30 core genes of the PPI network and the 26
shared DEGS of RPL and EMs, we obtained 54 genes as the core
genes for RPL associated with EMs (two duplicate genes were
removed), which were then used to perform LASSO and SVM-
RFE approaches to get diagnostic biomarkers for disease diagnosis.
The workflow for screening design is presented in Figure 6A.
Following the 10-fold cross-validation procedure, LASSO regression
identified 17 candidate core genes of RPL (Figures 6B, C), and
the SVM-RFE method screened 19 candidate core genes in RPL
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FIGURE 2
DEGs screening in RPL and EMs. (A) Volcano plots illustrating DEGs between RPL and control in the combined RPL dataset. (B) Screening of the DEGs
between EMs and control by the subset-based approach. (C) Venn diagram showing the 858 DEGs shared by the subset-based DEGs. (D) Venn
diagram showing the 26 common DEGs of RPL and EMs. (E, F) The expression of all 26 DEGs in the combined RPL datast (E) and EMs dataset (F).

(Figure 6D). After taking the intersection (Figure 6H), a total of
12 core genes were retrieved in RPL. On the other hand, through
LASSO regression and SVM-RFE, we obtained 16 and 20 candidate
EMs core genes, respectively (Figures 6E–G). The 14 overlapping

genes were identified as core genes in EMs (Figure 6I). Finally,
we obtained three common core genes in both RPL and EMs by
intersecting LASSO regression and SVM-RFE including MAN2A1,
PAPSS1, and RIBC2 (Figure 6J).
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FIGURE 3
WGCNA to identify key gene modules in RPL and EMs. (A, B) The selection of the optimal soft-threshold power in RPL (A) and EMs (B). (C, D) Gene
cluster dendrograms and correlation analysis of module eigengenes of RPL (C) and EMs (D). (E) Scatter plot illustrating the relationship between GS and
MM in the greenyellow module of the combined RPL dataset. (F, G) Scatter plots of the brown (F) or blue (G) gene modules illustrating the relationship
between GS and MM in the combined EMs dataset, respectively.
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FIGURE 4
Function enrichment and pathway analysis of the three key gene modules in RPL and EMs. (A–C) GO enrichment analysis of the greenyellow module in
RPL (A), the blue (B) and the brown (C) modules in EMs. (D–F) KEGG pathway enrichment analysis of the greenyellow module in RPL (D), the blue (E)
and the brown (F) modules in EMs.
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FIGURE 5
PPI network analysis of the intersection (98 genes) of the key module of RPL and that of EMs (the blue and the brown modules). (A) PPI network
construction of the 98 genes by the STRING database. (B) The subnetwork of the core genes of EMs with comorbid RPL (Top 30 genes by the MCC
algorithm). (C) The ranking scores of the 30 core genes. (D) The expression correlation of the 30 core genes in the combined RPL dataset and the
combined EMs dataset.

3.6 Diagnostic/therapeutic values in RPL
and EMs and the upstream regulations
prediction of the three common core
genes

We drew ROC curves of the three common core genes to
evaluate their diagnostic value in RPL and EMs (Figures 7A–F).
The area under the curves (AUCs) of individual key genes exceeds
0.7, which denotes all three common core genes had significant

diagnostic value in disease discrimination. For therapeutic
implications, we inferred the putative small molecules that may
perturb the gene expression levels ofMAN2A1, PAPSS1, andRIBC2.
Consequently, all these three genes were predicted to be targeted by
more than 10 therapeutic drugs. A drug-gene interaction network
was constructed by Cytoscape for MAN2A1, PAPSS1, and RIBC2,
respectively (Figures 7G–I).

Besides, we predicted potential upstream regulations of
the three common core genes related to RPL and EMs,

Frontiers in Molecular Biosciences 09 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1529507
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Chen et al. 10.3389/fmolb.2025.1529507

FIGURE 6
Identification of the common core genes in RPL and EMs. (A) Workflow for screening of the common core genes in RPL and EMs. (B, C) LASSO
regression with ten-fold cross-validation to select the candidate core genes in RPL. (D) SVM-RFE result for feature selectin in RPL. (E, F) LASSO
regression with ten-fold cross-validation to select the candidate core genes in EMs. (G) SVM-RFE result for feature selectin in EMs. (H–J) The 12 core
genes in RPL, the 14 core genes in EMs, and the 3 common core genes in both RPL and EMs selected by LASSO regression and SVM-RFE.

which involved transcription factors and regulative miRNA
(Supplementary Table S2). Predictive transcription factors of
these three core genes were derived from the Jaspar database
deposited in the miRNet online application, and putative miRNAs
targeting these common core genes were obtained from the
miRTarBase database. A transcription factor-core gene network
consisting of 22 transcription factors and a miRNA-target network

consisting of 21 miRNAs were constructed and visualized by
Cytoscape (Figures 7J, K). Conspicuously, RIBC2 and MAN2A1
are the most important nodes in the transcription factor-core
network or the miRNA-target network, respectively, indicating their
crucial role in both RPL and EMs.These findings could provide new
insight into the further exploration of the molecular mechanisms of
RPL and EMs.
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FIGURE 7
Diagnostic values in RPL and EMs and the upstream regulations prediction of the three common core genes. (A–F) ROC curves showing the AUC
values with 95%CI of the three diagnostic markers in RPL and EMs. (G–I) Potential small drugs that may target MAN2A1, PAPSS1, and RIBC2 predicted
by the DSigDB database. (J, K) Upstream transcriptors (J) and miRNAs (K) that may regulate the expression of the three common core genes were
predicted by miRNet and miRTarBase.
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3.7 Evaluation of immune cell infiltration in
RPL and EMs

Through the CIBERSORTx algorithm, we achieved the
landscape of the 22 immune infiltration cells for RPL and EMs
(Figures 8A, B). Next, we calculated the correlation of the immune
cell infiltration for RPL and EMs.The correlation matrix of immune
cell infiltration in RPL and EMs revealed high correlations of the
22 immune infiltration cells in RPL and EMs, which suggested
immune infiltration cells may play critical roles in the development
of RPL and EMs (Figures 8C, D). The relationship between the
three core genes (MAN2A1, PAPSS1, and RIBC2) and immune
cells was further investigated using Spearman correlation analysis.
As illustrated in Figures 8E–J, distinct results were observed for
the correlation analysis of immune cells between the two groups.
Specifically, in RPL, MAN2A1 had a positive correlation with
Dendritic cells activated (r = 0.32, p = 0.01) and Macrophages M2
(r = 0.28, p = 0.04), while it showed a negative correlation with T
cells CD8 (r = −0.35, p = 0.007). PAPSS1 was positively correlated
with T cells CD8 (r = 0.26, p = 0.04), T cells Regulatory Tregs (r =
0.28, p = 0.03), Eosinophils (r = 0.26, p = 0.04), and it was negatively
correlated with Macrophages M2 (r = −0.38, p = 0.002), Dendritic
cells Activated (r = −0.28, p = 0.02). RIBC2 exhibited a positive
correlation with Plasma Cells (r = 0.27, p = 0.03), T cells CD8 (r
= 0.35, p = 0.005) and T cells CD4 memory active (r = 0.36, p =
0.005), and a negative correlation with NK cell activated (r = −0.30,
p = 0.01), B cells Naive (r = −0.27, p = 0.03, NK cells Resting (r
= −0.28, p = 0.02) (Figures 8E–G; Supplementary Table S3). On
the other hand, for EMs, MAN2A1 and PAPSS1 had a positive
correlation with Mast cells resting (r = 0.31, p = 1.36E-06 and
r = 0.36, p = 6.55E-09, respectively) and a negative correlation
with T cells CD8 (r = −0.24, p = 0.0001). RIBC2 was positively
correlated with T cells CD4 memory resting (r = 0.16, p = 0.009),
and a negative correlation with NK cell activated (r = −0.17, p =
0.007) (Figures 8H–J; Supplementary Table S4). The above findings
indicated that immune cell infiltration had great potential in the
occurrence, development, and prognosis of RPL and EMs.

3.8 The expression of three hub genes in
pan-cancer

Considering the key gene modules of RPL and EMs were
enriched in cancer-related KEGG pathways, such as PI3K-
Akt signaling pathway, mTOR signaling pathway, p53 signaling
pathway, MAPK signaling pathway, cell cycle, and Wnt signaling
pathway, etc., which indicate the innate linkage of these
diseases and the pathogenesis of cancer, we next analyzed the
expression of three core genes in various types of cancer by the
TIMER2.0 database (Supplementary Figure S3A–C). Dysregulated
expressions were observed for all three core genes in certain
cancer types. Notably, MAN2A1 and RIBC2 exhibited significantly
differential expression in endometrial cancer compared with
adjacent normal tissue, while PAPSS1 had no significant difference.
The result suggested that MAN2A1 and RIBC2 may act as a risk or
protective factor in the occurrence, development, and prognosis of
endometrial cancer.

3.9 Comprehensive analysis of RIBC2 and
MAN2A1 in endometrial cancer

To investigate the relevance to clinical variables, the RIBC2
expression in theRNA-seq profile of endometrial carcinomapatients
was assessed by different age, BMI, grade, histology, stage, and
tumor burden status. Consequently, except for age, the RIBC2
expression was significantly associated with BMI, grade, histology,
stage, and tumor burden status (Figures 9A–F). Meanwhile, the
MAN2A1 expression was significantly associated with age, grade,
and histology. There were no significant associations in BMI, stage,
and tumor burden status (Figures 9K–P). Moreover, while RIBC2
exhibited a negative correlation with stromal score (Figure 9H),
MAN2A1was negatively associatedwith immune score (Figure 9Q).
The results suggested their predominant roles in the initiation of
carcinogenesis and the involvement of the heterogeneous tumor
microenvironment in EC. For Kaplan-Meier survival analyses,
both the OS survival and the DFS survival were shown to
be significantly higher in the high-expression group of RIBC2
(Figures 9I, J). Similarly, the high-expression of MAN2A1 group
showed a significantly superior OS survival rate than that of the
low-expression group of MAN2A1 (Figures 9S, T).

3.10 Protein expression of RIBC2, MAN2A1,
and PAPSS1 in the clinical samples of EMs

To further verify the expression levels of the abovementioned
core genes in clinical samples, we enrolled three ectopic
endometriotic lesion samples and three endometrial samples for
immunohistochemistry assays. As the result, protein expression
analysis of endometrial tissue in the hyperplasia stage and
EMs showed that RIBC2 gene was expressed in both glandular
cells and stromal cells, MAN2A1 was mainly expressed in the
cytoplasm of glandular cells, and PAPSS1 was mainly expressed
in the nucleus of glandular cells. All three proteins were
abnormally expressed compared to endometrial tissue at the
hyperplasia stage (Supplementary Figure S4).

4 Discussions

Endometriosis is a chronic inflammatory disease, mainly
characterized by the colonization and growth of endometrial
cells outside the uterine cavity. This process seriously endangers
women’s physical andmental health. Despite the existence of several
proposed theories, including retrograde menstruation, endometrial
stem cell implantation, residual Mullerian abnormalities, and body
cavity metaplasia, there is currently no established theory that
can fully explain the pathogenesis of all types of endometriosis
lesions. Additionally, the definitive diagnosis and treatment of
endometriosis often entails a traumatic experience due to the
necessity for surgical procedures to visualize the abdominal or pelvic
cavity and to remove the lesions. Endometriosis alters the internal
milieu of the uterus and pelvis, thereby increasing the risk of early
miscarriage and the development of RPL.

Currently, bioinformatics employs amultidisciplinary approach,
drawing upon biology, computer science, information engineering,

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1529507
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Chen et al. 10.3389/fmolb.2025.1529507

FIGURE 8
Evaluation of immune cell infiltration in RPL and EMs. (A, B) Immune cell landscapes of RPL (A) and EMs (B) estimated by the CIBERSORTx algorith.
(C, D) Correlation matrix of immune cell infiltration in RPL (C) and EMs (D). Blue indicates negative correlation, and red indicates positive correlation.
(E–G) Correlation coefficients of MAN2A1, PAPSS1, and RIBC2 with immune cell infiltration in RPL. (H–J) Correlation coefficients of MAN2A1, PAPSS1,
and RIBC2 with immune cell infiltration in RPL.
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FIGURE 9
Comprehensive analyses of RIBC2 and MAN2A1 based on the TCGA-UCEC dataset. (A–F) Comparison of the RIBC2 expression in subsets of
endometrial carcinoma patients with different age, BMI, grade, histology, stage, and tumor burden status. (G, H) Spearman correlation analysis between
RIBC2 and immune score (G) and stromal score (H). (I, J) Kaplane-Meier survival plot of OS and DFS for the expression of RIBC2. (K–P) Comparison of
the MAN2A1 expression in subsets of endometrial carcinoma patients with different age, BMI, grade, histology, stage, and tumor burden status. (Q, R)
Spearman correlation analysis between MAN2A1 and immune score (Q) and stromal score (R). (S, T) Kaplane-Meier survival plot of OS and DFS for the
expression of MAN2A1.

and other fields, to analyze and integrate copious amounts of data,
with applications in life science research. In this study, we employed
the WGCNA methodology to identify putative biomarkers and
therapeutic targets employing clustering highly correlated genes and
analyzing the correlation between these clusters and clinical features.
The gene modules related to EMs and RPL were retrieved using
WGCNA, resulting in the identification of 98 shared genes. The
PPI network for these genes was constructed using the STRING
database, and the key genes were subsequently identified through

LASSO and SVM-RFE. The intersection of these three methods
yielded three common core genes in RPL and EMS, MAN2A1,
PAPSS1, and RIBC2.

3′-Adenosine 5′-phosphate sulfate (PAPS) synthetase 1
(PAPSS1) catalyzes the synthesis of PAPS from ATP and inorganic
sulfate (SO₄2⁻) through the reaction of ATP thiolase and adenosine
5-phosphate sulfate kinase, which serves as the substrate for cellular
sulfonation reactions. PAPSS is expressed widely throughout the
human body andmay be involved in the sulfation process of various
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organs (Xu et al., 2000). Sulfuration regulates numerous biological
effects through the modification of proteins, carbohydrates, and
lipids. An illustrative example is its role in mediating the initial
interaction between leukocytes and endothelial cells (Pouyani and
Seed, 1995; Wilkins et al., 1995). This process may be related
to early ectopic growth of endometrium. Sulfation represents a
major pathway of estrogen metabolism (Foster, 2021). Estradiol
sulfate, which can be reactivated by the desulfurization of estrogen
sulfatase. The overexpression of PAPSS1 has been demonstrated
to impede estrogen-stimulated cell proliferation (Xu et al., 2012).
The sulfation mediated by PAPSS1 is implicated in the process of
DNA damage repair (Leung et al., 2015), which, in turn, affects
the expression of estrogen-responsive genes (Sun L. et al., 2023).
The close relationship between papss1 and hormones also suggests
that PAPSS1 plays an important role in EMs and RPL, which are
closely involved in hormone regulation. Polymorphisms within
the ATP sulfurylase domain of the PAPSS1 gene are also strongly
correlated with both liver cancer susceptibility and the efficacy of
drug therapy (Shih et al., 2009). It would be of interest to ascertain
whether this structural polymorphism exerts disparate effects on
estrogen metabolism.

Mannosidase alpha class 2Amember 1 (MAN2A1), also referred
to as MAN2A1, is a glycosidase found within the Golgi apparatus.
Its primary function is to cleave N-glycan precursors into mannose
(Man) residues, rendering it an essential substrate for the formation
of complex N-glycans (Moremen and Robbins, 1991; Misago et al.,
1995). Glycan biosynthesis is essential for the maintenance of
cellular structure and function and also plays a pivotal role in
cell signaling, immune responses, and inflammatory processes.
Concurrently, MAN2A1 is a crucial enzyme in the glycosylation of
mature membrane proteins, which is essential for ensuring signal
transmission andmaterial transport (Fagerberg et al., 2014; Shi et al.,
2020). Abnormal MAN2A1 expression has also been observed to
affect pathways related to hedgehog, epidermal growth factor, and
transforming growth factor signaling (Anvarian et al., 2019). N-
glycans are involved in the expression and function of immune cell
surface glycoproteins and affect the binding of immune receptors
and ligands (Lyons et al., 2015; Li et al., 2018).

The RIB43A domain with coiled-coils 2 (RIBC2) is also
known as TRIB2. The TRIB protein family belongs to a highly
conserved type of serine/threonine pseudokinase. In the absence
of serine/threonine protein kinase activity, the domain is involved
in cell signal transduction, acting as a scaffold protein to regulate
protein stability and some protein kinase activities. This affects a
variety of cellular processes, including proliferation, differentiation,
cell cycling, and cell death (Boudeau et al., 2006; Hill et al.,
2015; Monga et al., 2022). The TRIB gene family comprises three
homologous genes, TRIB1, TRIB2, and TRIB3. Among them,
TRIB2 is mainly located in the cytoplasm and participates in the
pathogenesis and progression of various tumors (Monga et al.,
2022; Hill et al., 2015). TRIB2 mainly regulates target genes at the
post-transcriptional level, such as the modification of ubiquitinated
proteins and the subsequent alteration of their functionality, as well
as the modulation of target genes through the classical AKT or
MAPK pathways (Eyers et al., 2017).

Notably, all three of these core markers (MAN2A1, PAPSS1,
and RIBC2) in RPL and EMs showed high potential for early
detection of both diseases with AUCs greater than 0.7. Thus, more

future studies are expected to develop non-invasive biomarkers
for the diagnosis of RPL and EMs based on the three core genes,
including cell-free and exosomal-derived miRNAs, circRNAs or
DNA/RNAmethylation markers. Moreover, we evaluated the utility
of MAN2A1, PAPSS1, and RIBC2 for serving as molecular targets
in predicting novel drugs with DSigDB database. Remarkably, all
of them were predicted to be targeted by more than 10 small
compounds, suggesting the great potential in clinical drug discovery.
Taken together, the identified core genes are promising targets with
significant implications for both the diagnosis and treatment of RPL
and EMs in clinical practice.

The correlation analysis of immune cells exhibited that the
infiltration of immune cells was closely related to the development
of RPL and EMs. The analysis of MAN2A1, PAPSS1, and RIBC2
genes and immune cell infiltration found that the three genes were
also closely associated with immune cell infiltration in the two
diseases. MAN2A1 has been previously identified as a regulator of
the inflammatory response and autoimmune diseases. For instance,
MAN2A1 is involved in the development and progression of
glomerulonephritis (Chui et al., 2001). Mice lacking MAN2A1
exhibit a deficiency in N-glycans on red blood cells, resulting
in anemia and the development of a late-onset autoimmune
disease that closely resembles systemic lupus erythematosus (SLE)
(Chui et al., 1997; Chui et al., 2001). At the same time, MAN2A1
may affect vascular development and vascular deformation through
NAC (antioxidant like N-acetyl cysteine NAC) (Herrera et al., 2017;
Ningappa et al., 2021). It was postulated that the effects of MAN2A1
on endothelial cell growth and vascular deformation may be closely
related to ectopic endometrial growth and RPL. Additionally, TRB2
has been demonstrated to exhibit high expression in T cells within
normal hematopoietic cells, particularly in lymphoid tissues. Its
elevated expression is linked to the T cell receptor (TCR) signaling
pathway, particularly the Notch signaling pathway (Breit et al.,
2006; Hannon et al., 2012). TRIB2 has been shown to activate
p38, thereby reducing the chemotherapy resistance and disease
progression of myeloid leukemia (Salome et al., 2018). Collectively,
existing evidence suggests that these three genes play a role in
regulating immune cells.

Abnormal immune function has been linked to the occurrence
and development of tumors. The infiltration of immune cells has
also been implicated in regulating the development of tumors.
Given that these three genes are engaged in the regulation
of immune cells, as well as the significant enriched KEGG
pathways of well-known cancer-related terms that appeared in
EMs and RPL, such as PI3K-Akt signaling pathway, p53 signaling
pathway, MAPK signaling pathway, cell cycle and Wnt signaling
pathway, we undertook a pan-cancer analysis of their expression
to ascertain whether endometriosis is associated with endometrial
cancer. Our findings elucidated that RIBC2 and MAN2A1 are
aberrantly expressed in EC. The TCGA-UCEC dataset analysis
revealed a correlation between RIBC2 expression and various
clinicopathological variables, including body mass index (BMI),
grade, histology, stage, and tumor burden status. The Spearman
correlation analysis uncovered a negative correlation between
RIBC2 and stromal score.The Kaplan-Meier survival plot of OS and
DFS for the expression of RIBC2 was found to be associated with
both OS and DFS, which is consistent with the published literature.
Studies suggest that TRIB2 overexpression negatively regulates the
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activity of theWNT signaling pathway and inhibits WNT-mediated
transcriptional activity in hepatocellular carcinoma (HCC), which
is closely related to patient prognosis (Wang et al., 2013). In HCC,
TRIB2 has proven to inhibit Wnt signaling and tumorigenesis by
regulating the stability of βTrCP, COP1, and Smurf1 (Xu et al., 2014).
In colorectal cancer, TRIB2 is observed to block cell senescence
through ap4/p21 signaling (Hou et al., 2018).

Similar outcomes were observed with regard to MAN2A1
expression, which was found to be significantly associated with
age, grade, and histology in EC. It has been demonstrated that
MAN2A1 is markedly decreased in colorectal cancerous tissues in
comparison to adjacent normal tissues. Furthermore, it has been
observed that MAN2A1 is downregulated in metastatic colorectal
cancer in contrast to non-metastatic colorectal cancer (CRC). A
significant negative correlation was observed between increased
MAN2A1 expression and the progression of CRC (Wang et al.,
2022). The fusion of MAN2A1 with the tyrosine kinase FER results
in the transformation of MAN2A1 into an oncogene, leading to
the development of multiple cancers. MAN2A1-FER fusions have
been identified in prostate cancer, liver cancer, esophageal cancer,
and other types of malignant tumors (Yu et al., 2014; Chen et al.,
2017; Yu et al., 2021). The MAN2A1-FER fusion facilitates the
transport of the FER kinase to the Golgi apparatus, where it activates
and promotes cancer through the epidermal growth factor receptor
(EGFR) signaling pathway (Lee et al., 2014).

In conclusion, we employedmultiple bioinformatics approaches
to identify three core genes, MAN2A1, PAPSS1, and RIBC2,
which were demonstrated to play a pivotal in the occurrence and
development of EMs and RPL. Subsequent analysis confirmed all
these genes exhibited excellent performance in the diagnosis of EMs
and RPL, which were also found to be involved in the regulation of
immune cell infiltration. Interestingly, two core genes, RIBC2 and
MAN2A1, were further identified as key players in the onset and
progression of cervical cancer. These findings may prove beneficial
in providing potential targets for the diagnosis and prognosis of EMs
and RPL patients, as well as offering insights into novel treatment
strategies.
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