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Successful prediction of LC8
binding to intrinsically
disordered proteins sheds light
on AlphaFold’s black box

Douglas R. Walker, Gretchen Fujimura, Juan M. Vanegas and
Elisar J. Barbar*

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States

Introduction: LC8 is a hub protein involved in many processes from tumor
suppression and cell cycle regulation to neurotransmission and viral infection.
Despite recent progress, prediction of binding sites for LC8 is plagued by motif
variability and a multitude of weakly binding motifs, especially when binding
depends on multivalency. Our binding site prediction algorithm, LC8Pred has
proven useful for uncovering new LC8 binders, but is insufficient for finding all
LC8 binding sites.

Methods: To address this, we probed the ability of a general structure
predictor, AlphaFold, to predict whether a given sequence binds to LC8. Certain
combinations of in-built AlphaFold scores were extracted and distributions of
scores of binders were compared to scores of nonbinders.

Results: AlphaFold successfully places proteins at the correct interface of LC8.
A set of threshold values of built-in AlphaFold scores enables differentiation
between known binders and nonbinders with minimal false positive (8%) and
acceptable false negative rates (20%). This cutoff, along with a more inclusive
cutoff, was used to predict elusive LC8 binding sites in proteins known
to bind LC8.

Discussion: Correlations between binding affinities and AlphaFold scores
provide insight into the black box and indicate that AlphaFold learned an
inaccurate energy function that nevertheless is useful for making inferences
and conclusions about physical systems. Binding sites predicted by this method
can be prioritized for investigation by comparing to result by LC8Pred, local
structure, and evolutionary conservation.

KEYWORDS

AlphaFold 2, intrinsic disorder, LC8 dynein light chain, hub protein, explain AI, protein
binding, binding predictions

Introduction

It is estimated that there are between 130,000 and 600,000 protein–protein interactions
(PPIs) at work in human biology (Bonetta, 2010; Venkatesan et al., 2009), which make
up the human interactome. From enzymatic activity to gene regulation and repair,
cell signaling, transport, structure, and the cell cycle, proteins are the workhorses
of the cell, and protein interactions are the means by which cellular functions
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are carried out. One particularly large class of PPIs is mediated
by short linear motifs (SLiMs) (Dinkel et al., 2012). Similarly, it
has been predicted that there are on the order of hundreds of
thousands of SLiMs in the human proteome, which likely dominate
the human interactome (Tompa et al., 2014). However, despite the
predominance of these interactions, they remain extraordinarily
understudied since they are difficult to detect, even more difficult
to pinpoint, and thus problematic to characterize.

Hub proteins and their interactions represent a significant
proportion of the interactome, given that the majority of proteins
only interact with a few partners, but hubs interact with a large
number of proteins through complex networks (Jeong et al., 2001;
Jeong et al., 2000). Hub proteins include (1) multi-interface hubs,
which bind to many different proteins simultaneously at different
sites of the protein, and (2) single-interface hubs, which bind to
many different partners or locations on partners, but all at the
same binding site (or symmetric binding sites), allowing interaction
with only one (or two) partners at a time (Han et al., 2004;
Kim et al., 2008). Interestingly, protein disorder plays an important
role in the binding of single-interface hubs to their partners,
whether that be in the hub or the partner (Kim et al., 2008;
Patil et al., 2010; Uversky, 2016).

SLiMs (also called eukaryotic linearmotifs [ELMs] ormolecular
recognition features [MoRFs]) are common in intrinsically
disordered regions (IDRs) (Uversky, 2016; Oldfield et al., 2005;
Vandereyken et al., 2018) and often serve as vehicles for interactions
between hubs and their partners (Vandereyken et al., 2018;
O’Shea et al., 2017). When the hub is disordered and the partner is
ordered, the hub will often contain a SLiM to facilitate recognition.
The reverse scenario is also true, as seen in the hub protein LC8
(Benison et al., 2007; Barbar, 2008; Rapali et al., 2011), where the
hub is ordered and binds disordered proteins at SLiMs. Hub proteins
like LC8 have recently been further classified as linearmotif-binding
(LMB) hubs (Jespersen and Barbar, 2020), which also include 14-
3-3, calmodulin, SH3 domains, and the serine/threonine-specific
protein kinase B. This reclassification formalizes and highlights
the importance of the link between dynamic hub proteins and
linear motifs, thereby bridging questions and problems observed in
each area of research and hopefully leading to further collaboration
and answers.

The intersection between SLiMs and hub proteins offers a
promising avenue for expanding our grasp of the extent of protein
interactions: the ability of a protein to recognize a variable motif
across many different partners suggests that algorithmic reasoning
can recognize suchmotifs and thereby discover previously unknown
interactions. This was the impetus behind our design of the
algorithm LC8Pred (Jespersen et al., 2019). The prediction of
binding between the hub protein LC8 and new partners has been
useful in elucidating the function of these partners (Howe et al.,
2022). However, an algorithm like LC8Pred can only be trained
on information from previously identified binding partners and
their identified SLiMs. LC8-binding partners for which no SLiM
has been experimentally identified (Di Bartolomeo et al., 2010;
Den Hollander and Kumar, 2006; Nakano et al., 2010) have been
reported, and in some of these cases, LC8Pred cannot confidently
predict a binding site (Rayala et al., 2005; Emi et al., 2005). For this
reason, it is important to go beyond simple motif recognition and
use our understanding of protein structure, folding, and interactions

to predict whether, and where, a protein will bind to LC8 (or, by
extension, to predict interactions between any two proteins).

LC8 (dynein light chain 8) is an 89-residue protein that
forms a rotationally symmetric homodimer. Along the edge of the
binding interface, parallel to the axis of symmetry, LC8 binds to
its partner proteins. Binding two copies of a client, one on each
side, allows LC8 to duplex its partners, which is the mechanism
by which LC8 functions. Duplexing by LC8 serves a variety of
purposes such as associating two strands to enable functions
inaccessible to monomers, strengthening the association of two
already associated strands to increase the potency of a function,
scaffolding structural proteins throughmultivalent interactions, and
facilitating heterogeneous complexation for concentration sensing
and regulation. LC8 binds its partners at an 8–10-residue-long
motif. The most strongly conserved position, known as the anchor,
is often glutamine (Q) (although asparagine, methionine, serine,
and even glycine have been observed) with flanking threonines
(T). The binding motif extends 2 residues C-terminally and 5–7
residues N-terminally from the anchor. For the remaining positions,
subtle patterns are present and have been discussed previously
(Jespersen et al., 2019; Erdős et al., 2017).

Currently, the most efficient way to use our knowledge base
of protein folding and interactions is through structure prediction
algorithms like AlphaFold2 (Baek et al., 2021). With the advent
of AlphaFold-Multimer (Evans et al., 2021), we could predict
the structures of multimeric protein complexes. Independent
improvement packages like ColabFold (Mirdita et al., 2022) have
accelerated AlphaFold calculations, making it more useful as a
high-throughput technique and accessible to all. AFsample has
further improved the quality of structural models using different
sampling schemes to generate thousands of models (Wallner,
2023). Depending on the system, AlphaFold can predict alternate
conformational states (Stein and Mchaourab, 2022). AlphaFold
and RoseTTAFold (Baek et al., 2021) have been used to explore
interactomes and reveal new protein interactions (Humphreys et al.,
2021; Lim et al., 2023). EvoBind, based onAlphaFold, was developed
to design peptides that bind to protein interfaces (Bryant and
Elofsson, 2022). Multiple reports have discussed AlphaFold’s ability
to distinguish binding from non-binding peptides, to characterize
non-canonical binders, and even to rank the affinities of peptide
binders to proteins (Bryant and Elofsson, 2022; Chang and Perez,
2023; Ibrahim et al., 2023). AlphaFold can predict the location
of a SLiM within a long disordered region of a protein with
high accuracy (>80%) (Bret et al., 2024). Even more promising, it
successfully predicts structures of PPIs involving IDRswith similarly
high accuracy (>75%) (Omidi et al., 2024). This analysis studied
a variety of IDR binding modes, which included homogeneous
binding and dynamic fuzzy complexes. These reports are significant
because AlphaFold is often considered inadequate for predicting
disordered domains.

AlphaFold evaluates its own structure predictions with four
metrics: predicted local distance difference test (pLDDT), predicted
aligned error (PAE), predicted template modeling (pTM), and
interface pTM (ipTM) scores. pLDDT reports on local confidence
(Mariani et al., 2013; Magana Gomez and Kovalevskiy, 2024) and
ranges from 0 to 100. PAE measures the confidence in the relative
position of two residues. According to the EMBL-EBI AlphaFold
training (Magana Gomez and Kovalevskiy, 2024), PAE is defined as
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“the expected positional error at residue X, measured in Ångströms
(Å), if the predicted and actual structures were aligned at residue
Y.” PAEs range from 0 to 31.5. pTM and ipTM are specific to
AlphaFold-Multimer and are derived from template modeling (TM)
scores (Magana Gomez and Kovalevskiy, 2024; Xu and Zhang,
2010), which measure the accuracy of the protein structure globally,
without overweighting the local inaccuracies. ipTM in particular
reports on the interface between the proteins being predicted.When
AlphaFold-Multimer ranks its predictions for reporting, it calculates
a confidence score that is a weighted average of the TMs, specifically,
it is 80% ipTM and 20% pTM.

AlphaFold has learned an energy function through its training
(Roney and Ovchinnikov, 2022; Herzberg and Moult, 2023;
Ahdritz et al., 2024), so it may predict rare structures or even ones
that do not resemble anything found in the PDB (Berman et al.,
2000; Berman et al., 2003). Duignan proposed that while this learned
energy function must share minima with the true protein energy
landscape due to the high representation in AlphaFold’s training
set of energy minimum structures, the learned energy function
will deviate from the true landscape at higher energies (Duignan,
2024). Although reports illustrating AlphaFold’s ability to predict
alternate conformations (Stein and Mchaourab, 2022) imply that
the magnitude of these “higher energies” necessary to observe
significant differences may be greater than intuition would suggest,
this is likely due to the presence of NMR solution structures in the
PDB, on which AlphaFold was trained.

Given this context, AlphaFold is a promising tool for
complementing our predictions of LC8 interactions through its
general knowledge of proteins. However, for applications such as
this, it is advised and important to include examples of nonbinders
(Lee et al., 2024). Suggested approaches include randomizing
protein sequences or mutating the SLiM to polyalanine. Similarly,
concerns have been raised about the multiple different versions of
AlphaFold and metrics used to distinguish its ability to accurately
assess binding (Lee et al., 2024). In this work, we investigate
AlphaFold’s ability to distinguish proteins that bind LC8 from
known nonbinders. We establish criteria to distinguish binders
from nonbinders based on AlphaFold’s pLDDT, PAE, pTM, and
ipTM scores. We explore the potential for AlphaFold scores to
correlate with binding affinities as might be expected if AlphaFold
has learned something about protein folding energetics. Finally, we
apply these lessons to predict new LC8 binding sites in a selection of
proteins that (1) are known to, but not where, bind LC8, (2) are not
predicted by LC8Pred, or (3) for which LC8Pred predicts that more
sites may exist than have been experimentally found. LC8Pred and
AlphaFold predictions are compared to guide hypothesis generation
and experimental design to find new LC8 binding sites.

Methods

Identification of proteins for analysis

The information on LC8 binders was collected from the
literature, which included our database LC8hub (Jespersen et al.,
2019), previously assembled libraries, and other reports on binders.
The selection of nonbinders was determined from multiple sources,
such as (1) mutants of binders in which the anchoring triad is

mutated to AAA, (2) the selection of nonbinders reported in
Jespersen et al. (2019), and (3) regions of well-studied, highly
characterized LC8-binding proteins that are not in the binding
region. The proteins chosen for investigation and detection of
new LC8-binding sites were selected based on one or more of
several features of interest: (1) LC8Pred predicts more binding
sites than have been reported, (2) LC8hub contains no binding
sequence for a known LC8 binder, (3) LC8Pred does not provide
good predictions for the experimentally characterized binding sites,
and (4) proteins that also contain binding sites for other proteins,
suggesting a mechanism of partnership between LC8 and the other
binder. This refers to Supplementary Presentation 1 as named in the
production forum.

To parse long protein sequences into smaller sections for more
precise identification of LC8-binding sites and to obtain lower,
tenable scores for analysis, a Python script was employed that
reads a full protein sequence, extracts a subsequence, adds the
necessary LC8 sequences, and generates a new FASTA file for
prediction.

LC8-binding site modeling and assessment

All sequences of interest were run using ColabFold, locally
installed on a server hosted by the Vanegas laboratory, with all
the necessary contexts: one or two copies of the protein, wild-
type or mutated anchoring site, and an LC8 dimer. The majority
of predictions were prompted to return 25 structures; however, a
few early runs returned five structures and were still included in the
analysis, and some later runswere prompted to return 100 structures
to better investigate the correlation between successful prediction
rates and binding affinities.The results were downloaded locally and
processed with a set of three Python scripts to extract the AlphaFold
scores from each prediction, which were used throughout the rest of
the analysis.

Aggregating and analyzing the full set of
processed predictions

After processing each prediction and assembling the results,
additional Python scripts were used to aggregate the data into a
unified dataset. These scripts assigned a binding status—binder,
nonbinder, or unknown binder—to each prediction, classified each
identified bound sequence into a known binder as on- or off-target,
linked results from 2-client runs to the appropriate results from 1-
client runs, plotted results, assessed false-positive and false-negative
rates for set score thresholds, and trained an optimal classifier for
differentiating binders from nonbinders, along with generating the
accompanying learning curve. In training the classifier, a genetic
algorithm was used to optimize the AUROC. This process was used
to construct a learning curve where different amounts of the data
were randomly separated for training and testing.The learning curve
plots the computed accuracy of the most accurate threshold along
the ROC. The thresholds used were then taken from one of the runs
trained on 90% of the data, in particular, the run that achieved the
highest AUROC, regardless of how the test data performed.
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Affinity analysis by linear regression and
mutual information

A set of LC8-binding motifs (8-AA-long) with known binding
affinities was collected from the literature. A script was written to
scan through the AlphaFold predictions, searching for sequence
matches among the known binders. When sequence matches were
found, all pertinent scores we have described were extracted and
included in new .csv files, whichwere further analyzed in Excel using
the LINEST function to calculate R2 values for the relationships
between the scoring parameters and binding affinities. For the
calculation of the adjusted mutual information (AMI), another
script was written because Excel does not support the evaluation
of mutual information. This script took the .csv file output from
affinity_analysis.py and used the sklearn package (Pedregosa et al.,
2011) to calculate mutual information. This script binned the
values of both the affinities and the scores in question. For
each scoring parameter, identical bins were used for each data
subset to enable direct comparison between dataset evaluations.
MI quantifies how much knowledge of one variable informs an
associated variable. It represents the overlap between the individual
Shannon entropies of two compared variables. Adjusted mutual
information corrects for the effect of agreement that comes from
randomness. An expected MI is calculated under the assumption
that two distributions are randomly clustered. This expected MI is
then subtracted from the calculated MI, and the resulting difference
is the numerator. The denominator consists of the difference
between the greater entropy of the two datasets and the expected
mutual information, forming the quotient used to calculate the
AMI. This quotient ensures that the AMI falls in the range of
0–1. The calculations of the AMI are performed using the sklearn
Python package.

Bayesian Inference

Bayesian probability interprets probabilities as the degree of
rational belief in a statement rather than as a propensity or relative
frequency of occurrence. Bayesian inference uses this principle and
formalizes a method for determining the probability of a given
hypothesis being true based on a given piece of evidence, according
to Equation 1:

P(Hi|E) =
P(E|Hi) ∗ P(Hi)

P(E)
, (1)

where Hi indicates some hypothesis, E indicates evidence, and | is
the symbol for given. Thus, P(H|E) is the probability that hypothesis
H is true, given that evidence E is true. It should be noted that
when comparing two different hypotheses [P(H1|E)/P(H2|E)], the
denominator cancels out because it is always the same, regardless of
which hypothesis is being considered. P(E) has no dependence on
H. P(H) is called the prior probability, i.e., the probability that the
hypothesis is true before considering any evidence. In qualitative
assessments, this term is often set as equal for all hypotheses,
which means that it also cancels out in a comparative ratio. This
is shown in Equation 2, and illustrates a key reason why handling

these values with logarithms is advantageous.

log(
P(H1|E )
P(H2|E )

) = log(P(H1|E)) − log(P(H2|E)) = log (P(E|H1))

− log (P(E|H2)) = log(
P(E|H1)
P(E|H2)

). (2)

As shown in Equation 2, this approach yields multiple benefits.
(1) Absolute probabilities are not needed—only a difference between
two log-likelihoods is important. (2) As mentioned in the main
text, this is how human perception scales, making this an intuitive
evaluation. (3) Combining multiple pieces of evidence is as
simple as adding the log-likelihood differences for both pieces
of information. (4) The problem of comparing more than two
hypotheses increases linearly, rather than quadratically. If H1 has
already been compared to H2 and H3 separately, H2 can be
compared toH3 through simple subtraction of theH1/H2 andH1/H3
comparisons.

Predicting new binding sites and their
affinities

Another script searches through all the assembled AlphaFold
runs, looking for predictions of sequences with an unknown LC8-
binding status. The combination of all AlphaFold scores assessed
was compared to the cut-off thresholds that were established in this
work. Structures that achieve the cut-off threshold are predicted to
bind LC8 with the false-positive and false-negative rates associated
with each threshold set of values. Because all AlphaFold runs were
completed before we performed our affinity analysis of different
subsets, all of these predictions were run with 16 amino-acid-
long sequences. The anchor motif was determined by finding the
residue in the client sequence that is closest to G63 in one of the
LC8 protomers in the .pdb structure file and setting that residue
as position 0. Affinity predictions are rudimentary because the
prediction ismeant only to be taken as approximate due to the nature
of the relationships and the relatively weak ormoderate correlations.
Equations 3 and 4 show the affinity calculations for sites containing
a TQT anchor and those containing any other anchor:

A f finityTQT =
1clientDimerPAE− 0.89

0.0035
, (3)

A f finity!TQT =
Average1clientAvgP→ LPAE− 4.45

0.135
, (4)

where “Average 1client Avg P- > L PAE” takes the average of
the “1client Avg P- > L PAE” across all 25 structures in the given
AlphaFold prediction. These relationships were used because they
represent the strongest linear relations calculated for each subset
of predictions on 16 amino-acid sequences. It should be noted
that these are linear relations and so inevitably result in a negative
affinity prediction for some binding sites. In such cases, we set the
predicted affinity to 1 µM. To emphasize the degree of uncertainty
in these predictions, it is worth mentioning that the R2 value for
the TQT set was 0.609, and it was 0.292 for the subset with different
anchors. These predictions illustrate how important it is that more
LC8 binding sites be characterized so that additional homogeneous
sub-datasets can be evaluated.

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1531793
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Walker et al. 10.3389/fmolb.2025.1531793

FIGURE 1
AlphaFold predicted structures. (A) Overlay of the 25 structures produced by an AlphaFold prediction of the LC8 dimer illustrating prediction
robustness. (B) Overlay of six AlphaFold structure predictions of the dASCIZ LC8-binding domain, illustrating variability in the prediction. (C) Four
predictions of LC8 with dASCIZ QT3, with WT or AAA mutant linker and predicted with 1 or 2 copies of the client. Structures are colored by pLDDT on a
gradient from red to blue for values from 70 to 100. As observed, the linker mutation disfavors the nonbinding sequence, but the half-bound (1-client)
structure is a better discriminator.

Results

Benchmarking AlphaFold predictions of
LC8 dimers

When assessing predictions of proteins bound to a homodimer,
it is prudent to first assess the homodimer alone. When predicting
the LC8 homodimer, all 25 resulting structures were found to align
perfectly (Figure 1A) and consistent with the known structure of
LC8, even down to the partially folded state of β3. This consistency
lends confidence to further predictions involving partner proteins
and suggests that low-confidence predictions are due to the client
rather than a random, inaccurate LC8 prediction. Confidence scores
range from0.89 to 0.91, which signifies high-confidence predictions.
Average PAE values for contacting residues in the interface
(excluding the C-termini) range from 0.94 to 1.08 Å, reflecting a
highly confident predicted distance between the protomers. This
average PAE metric was tracked throughout the analysis to ensure
that the quality of the LC8 dimer prediction remained robust. In
contrast, the LC8-binding domain of ASCIZ would serve as a poor
benchmark for this type of analysis.The variability in the predictions
of the multivalent LC8 partner ASCIZ (Figure 1B) would make
multiple comparisons difficult, if not impossible.

Dataset characteristics

Having established confidence in AlphaFold’s ability to predict
LC8, we then assessed its ability to distinguish between binders and
nonbinders. When LC8 binds a partner, the intrinsically disordered
partner folds as a beta-strand and binds to β3 of LC8, stabilizing β3

in the process. We co-predicted LC8 with many client sequences
of various lengths and analyzed the quality of these results using
AlphaFold’s self-reported scores. A series of scripts located the
binding region of the client and extracted appropriate scores, such
as (1) the confidence score, (2) the average pLDDT value along
the length of the bound region, (3) the average PAE of β3 relative
to the bound client (hereafter called LtoP for LC8 to peptide),
(4) the average PAE of the bound client to β3 (PtoL), and (5)
the average PAE of the LC8 dimer interface (a more in-depth
discussion is in the Methods section). The first two PAE values
appear, by definition, to be equal, but in practice, they are not
and require separate evaluation. To explain anthropomorphically,
one of the PAEs represents how comfortable LC8 β3 is with
the environment, while the other is for the client peptide. The
LtoP PAE will always be better than the PtoL PAE due to the
structure of LC8 compared with the intrinsic disorder of the
client peptide.

In brief, it is important to consider the entirety of a given
interaction to generate a fair assessment of a method used to predict
said interaction. LC8 binding is cooperative, with the first binding
event incurring an entropic penalty due to the rigidification of LC8,
resulting in the second binding event being more stable than the
first (Estelle et al., 2023). This ensures that very little LC8 exists
in a half-bound state and that LC8 binds symmetrically: different
clients are not bridged (Reardon et al., 2020), and LC8 does not bind
off-register when binding multivalent clients (Reardon et al., 2020).
For further context, some multivalent clients bind multiple LC8
dimers cooperatively, like Nup159 (Nyarko et al., 2013), but some
bind LC8 both cooperatively and anti-cooperatively at different sites
(Reardon et al., 2020; Clark et al., 2018; Walker et al., 2023) like
ASCIZ, depending on the function of LC8 in the interaction.

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1531793
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Walker et al. 10.3389/fmolb.2025.1531793

FIGURE 2
AlphaFold scores of the predictions of LC8 modeled with binders and nonbinders show distinct score differences between the average binder and the
average nonbinder. (Top) Scores of the 2-client predictions. (Bottom) Scores of 1-client predictions. (left to right) Confidence score, average pLDDT of
the binding site and binding sequence, average LtoP PAE, average PtoL PAE, and the average dimer interface PAE. Binding status is color-coded:
binders are shown in cyan, and nonbinders are shown in orange.

Since LC8 binding is cooperative, there may be clients that are
stable when doubly bound but cannot surpass the energy barrier of
the singly bound intermediate to reach the doubly bound state. As
such, it is important to consider whether AlphaFold can distinguish
between binders and nonbinders in either of these two states;
a prediction is considered successful when AlphaFold correctly
predicts a nonbinding sequence to not bind when only one copy
is present, even if it incorrectly predicts binding with two copies.
Therefore, AlphaFold predictions were carried out for LC8 with
two copies of the partner protein (2-client) and with one copy
(1-client) (Figure 1C). Furthermore, as we did when developing
LC8Pred (Jespersen et al., 2019) and as cautioned by others
working with AlphaFold (Lee et al., 2024), we tested AlphaFold’s
ability to predict known nonbinding sequences. These were
sourced from those used in developing LC8Pred, AAA mutations
of the anchoring triad of a binder (illustrated in Figure 1C),
non-binding regions of well-characterized binders, and
nonbinding proteins.

Approximately 7,500 different AlphaFold predictions were
run, with the majority of them producing 25 structures (a few
only produced five structures). These predictions included 641
nonbinding sequences (of which 382 are AAA mutants) and 333
binding sequences with an approximately even split between 2-
client- and 1-client-type predictions. The sequence lengths of the
client in these predictions vary from 10 to 71 amino acids. The
remaining >6,000 predictions were run with the intent of using
AlphaFold to locate novel binding sites in known LC8-binding
proteins: 24 proteins were parsed into 16-amino acid-long sections
with an 8-amino acid overlap and predicted with LC8 in both 1-
client and 2-client runs. As mentioned above, the average PAE
of the LC8 dimer interface was tracked, and in all cases is
consistent with the highly confident LC8-dimer-alone prediction,
indicating a robust LC8 dimer is the foundation for each prediction,
as shown in Figure 2.

Prediction of LC8 binding

The assembled AlphaFold predictions and their scores were
analyzed as described. An initial examination of the predicted
structures shows LC8 binding in nearly all cases andmight lead to us
concluding that AlphaFold has no ability to predict nonbinders but
will always just “put proteins together” as it does regularly. However,
structures are the superficial part of the prediction, and AlphaFold’s
confidence in its own predictions must also be considered. The
distributions of the scores from the predictions are shown in
Figure 2. Interestingly, distinct patterns emerge between the two
client types analyzed; 2-client runs show good scores for binders,
but a significant portion of nonbinders also yield confident scores
despite being nonbinders, and 1-client runs achieve the desired
deficiency of nonbinders in the confident region, but binders display
a bimodal population in which a significant number of binders have
scores more typical of nonbinders. Supplementary Figure S1 shows
the corner pair plot of all scores, further illustrating the separation
based on the binding status. This shows that AlphaFold can provide
some level of discrimination between binders and nonbinders.

It is important to note that the analysis in the previous section
includes the results of all the structures in each prediction. It is
common for lower-ranked AlphaFold structures to be less reliable
and commonly disregarded in practice.Thus, we also considered the
scores of each prediction’s best-ranked structure to inquire whether
this improves the differentiation. AlphaFold structures are ranked by
confidence score; however, Figure 2 shows that the confidence score
is a poorer predictor than the other scores.We sorted the predictions
by the average pLDDT score in the binding interface. As shown in
Figure 3, considering only the structures with the highest pLDDT
scores greatly improves the success rate of binders’ predictions;
however, nonbinding structures also appear more confident than
seen in Figure 2. Supplementary Figure S2 shows the corner pair
plots of these parameters. Qualitatively, these plots all suggest a
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FIGURE 3
AlphaFold scores of the best predictions of LC8 modeled with binders and nonbinders show the predictability between binders and nonbinders. Panels
and colors are identical to Figure 2.

high degree of separation and predictability between binders and
nonbinders.

We have established that AlphaFold has predictive ability, but
the question remains “How error-prone is this predictability?” To
answer this, we linked 2-client results to analogous 1-client results.
Then, we utilized a genetic algorithm to train a composite threshold
set for all 10 scoring parameters simultaneously. A receiver operating
characteristic curve (ROC; plots of false-positive rate vs. true-
positive rate of a given set of threshold values of the 10 parameters)
was computed during the training, and the genetic algorithm
optimized the area under the ROC (AUROC) of all threshold
sets explored throughout the training. To ensure predictive quality,
we generated learning curves (plotting the accuracy of the most
accurate threshold found along the ROC) by training on different
fractions of the available data and testing on the rest. Within
each run, 10 iterations were completed on each fraction to enable
the calculation of mean and standard deviations. Six replicates of
this learning curve are shown in the Supplementary Presentation 3.
The ROCs corresponding to the best iterations are also shown
in the Supplementary Presentation 3. Of these, the iteration that
achieved the highest AUROC was chosen to perform the analysis
in the remainder of this paper. The final thresholds and their
associated rates are provided in Table 1. It was possible to compute
exhaustive ROC curves for each parameter individually. These
are shown for comparison in the Supplementary Presentation 3.
AUROCs can investigate the ability of the method to differentiate
binders from non-binders (the perfect method has an area of 1,
while randommethodswill have an area of 0.5). ROCs andAUROCs
are provided in the Supplementary Presentation 3. Importantly, the
AUROC for the composite threshold, considering all 10 scores
simultaneously, is greater than that for any of the parameters
alone, thus showing that it is the better method. The composite
threshold achieves an AUROC value of 0.9274, whereas the best
competitor (2-client LtoP) achieves an AUROC value of 0.9104. It
should be noted that the entire parameter space for the composite

TABLE 1 Parameters leading to the exclusive (low false pos.) and
inclusive (low false neg.) predictions.

Exclusive Parameter Inclusive

>0.78 2-client Conf. Score >0.62

>95.4 2-client Average pLDDT >69.4

<4.97 2-client LtoP PAE <4.80

<9.03 2-client PtoL PAE <3.35

<0.922 2-client Dimer PAE <1.103

>0.88 1-client Conf. Score >0.77

>34.8 1-client Average pLDDT >35.4

<8.14 1-client LtoP PAE <11.30

<10.99 1-client PtoL PAE <13.73

<1.158 1-client Dimer PAE <1.249

5.5% False-positive rate 27.9%

28.1% False-negative rate 7.5%

threshold could not be exhaustively traversed, as is possible for
the individual parameters. Exhaustively optimizing 10 dimensions
of the parameter space is unfeasible. Consequently, although the
complete ROC was found for each individual parameter, it is likely
that the ROC found for the composite threshold system is not
optimal, and the calculated AUROC represents a lower limit of the
true AUROC.

We opted for two different thresholds, one that prioritizes low
false positivity and the other prioritizing low false negativity. To
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FIGURE 4
Overlaid scatter plots of four different sub-datasets of AlphaFold predictions. TQT refers to the anchoring triad of the motif. 14AA refers to the length of
the sequence used in the AlphaFold prediction. The most general dataset has the worst fit, and the most specific dataset possesses the best fit. This
implies that the general dataset is a heterogeneous aggregation of many smaller homogeneous datasets. Two outlier sequences are highlighted, from
MUC4 in magenta and from Nup159 in black.

make predictions for finding new LC8-binding partners, it is useful
for a parameter set to minimize false positives while maintaining
an acceptable false-negative rate. The exclusive threshold achieved
a reduced false-positive rate of 5.5% combined with a false-negative
rate of 28.1%, as shown inTable 1.On the other hand, a parameter set
thatminimizes false negativeswhilemaintaining an acceptable false-
positive rate can be useful for identifying elusive or noncanonical
examples of binding sites in a protein that is known to bind LC8,
from which our understanding of LC8 binding can be improved.
The inclusive threshold has a false-negative rate of 7.5%, with a
false-positive rate of 27.9%, as shown in Table 1.

This analysis alone is illustrative of the predictive ability of
AlphaFold for differentiating between binders and nonbinders;
however, several features of this analysis suggest that the
predictability power might go beyond a simple binary and may
even assess the relative stabilities of binders. This is consistent
with findings that AlphaFold learned an energy function in the
process of its training (Roney and Ovchinnikov, 2022; Herzberg and
Moult, 2023; Ahdritz et al., 2024). Features implying this include (1)
the difference between 1-client and 2-client scores, which track the
cooperativity of the second LC8-binding event compared with the
first, (2) the large population of binders that fail to be predicted to
bind in the full set of predicted structures but are absent from the
subset with only the best structure from each prediction, and (3) the
presence of many of the false-positive predictions, which are AAA
mutations of very strong binders.

Affinity assessment

To evaluate whether AlphaFold predictions correlate with LC8-
binding affinities, we extracted 62 sequences, eight amino acids
long, with known LC8-binding affinities. This was compared with
the list of binders, producing a list of 108 AlphaFold predictions

with sequences present in the affinity list (some of the 62 are
present multiple times). Although 62 affinities is not a small number
experimentally, it is important to note that the sample space of
possible LC8 binding sites is not well represented in this set. Thus,
while the results may generalize well for some binders, it is expected
that they may not generalize well for poorly represented binders.

Experimental binding affinities were plotted against 21 scoring
metrics in a grouping of 2 × 5 × 2+1 categories. To clarify, the
best and average (2) of the confidence scores, average pLDDT of
the binding interface, average LtoP PAE, average PtoL PAE, and
average LC8 dimer PAE (5) of 1-client or 2-client predictions (2)
were each plotted against binding affinities, and the coefficient
of determination (R2) was calculated for the resulting scatterplot
(Figure 4 for example). Additionally, the exclusive parameter
threshold determined above was applied to all structures reported
for each AlphaFold prediction to calculate success rates (success rate
= # structures predicted to bind/# all structures in each prediction),
which were also plotted against affinities. Given the heterogeneity
present in the anchors of sequences with known affinities and of the
context used in AlphaFold predictions, the analysis was completed
for the full set of 108 and more homogeneous subsets, such as
binders with TQT anchors, binders with different anchors, short
predicted sequences, predicted sequences of specific lengths, and
subsets meeting pairs of these criteria. Fit assessments are shown
in Table 2 (additional subsets were considered but omitted due to
low counts [<10]). Similar tables displaying RMSEs of these fits
and p-values, corrected (Miller, 1991; Haynes et al., 2013) to avoid
p-hacking, and assessing the likelihood of a non-zero correlation
for each cell can be found in the Supplementary Presentation 2.
High R2 values mean high precision in predictions from the given
model. The majority of these R2 values would not typically be
considered quality R2 values. However, we must remember a few
things: (1) we are investigating a utility that is not intended by the
developers. (2) R2 is “the coefficient of determination” because it
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is the fraction of the variance in a dataset that is explained by the
model: even R2 = 0.2 means that the given metric explains 20% of
the variation in the data. (3) AlphaFold is a black box algorithm and
is difficult to investigate directly, so any information for evaluating it
is valuable. (4) AlphaFold struggles with certain cases, such as single
amino acid changes (Pak et al., 2023) and fold-switching proteins
(Chakravarty et al., 2024), so it is not surprising that AlphaFold
predictions fail to explain a significant portion of the variation in
affinities, particularly in cases where proteins switch from disorder
to β-sheet and where single-amino acid changes are known to
significantly impact affinity. (5) As shown in Figure 4, the overall
AlphaFold dataset is a mixture of sub-datasets. As R2 values increase
for subsets, it is likely that other subsets would also yield improved
correlations compared to the full dataset.

Figure 4 highlights that, generally, a higher confidence
prediction trends with stronger binders. As mentioned above,
this trend is stronger in more homogeneous datasets. However,
outliers exist in the broadest dataset and the most specific dataset.
In particular, Figure 4 shows a high-confidence, weak binder from
Nup159 and a low-confidence, strong binder from MUC4. For
the MUC4-binding site, a Trp occupies position −5 of the LC8-
binding motif. It is likely that AlphaFold perceives this residue
as destabilizing, resulting in a low confidence prediction. The
sequence from Nup159 is a weak binder but compensates for this
via multivalency. LC8Pred assigns this sequence a poor volume and
polarity (V&P) score, despite a decent amino acid score. AlphaFold’s
assessment misses this key information regarding this binding site.

Although R2 is useful for linear relationships and intuitive for
comparing two variables, it has limitations, such as its inability
to assess non-linear relationships. There is no reason to believe
that the correlations in this instance should be linear, so we
analyzed the variables again, this time with mutual information.
Mutual information (MI) is another way of assessing how well
one variable can explain another variable; it reports how much
information is shared between two sets of data. MI is related to
Shannon information theory, and its calculation is similar to the
calculation of Shannon entropy (Shannon, 1948). In this study,
AMI was used to better handle small sub-datasets and to assess
the strength of relationships. AMI modifies MI to account for
expected random associations and has an upper bound of 1, unlike
MI, which is unbounded. Although it is reflexive to ask, “What
is a good value range?”, it misses the purpose of the analysis (as
described in the previous paragraph) and of the technique. We are
not aiming, primarily, to use these measures to determine whether
affinity can be predicted (although that is of value); rather, we are
investigating whether there are any indicators that AlphaFold has
some understanding of binding energy. That being said, establishing
lower limits for relevant values to consider is necessary for drawing
conclusions. When comparing AMI to R2, lower AMI values are
more credible in indicating a relationship than R2 values. Thus,
while R2 > 0.4 is a strong indication of a relationship, AMI >0.2 is
significant.

MI can only assess discrete variables: any analysis of continuous
variables first requires binning the variables. We employed three
binning strategies for both the affinities and the AlphaFold scores,
which were each considered pairwise, yielding nine different AMI
calculations with distinct bins. Binding affinities are typically
compared with respect to the order of magnitude rather than
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linearly, so the three sets of bins used were set accordingly,
considering both full and half orders of magnitude (10^0.5 = 0.316):
[0, 0.316, 1, 3.16, 10, 31.6, 100], [0, 1, 10, 100], and [0, 0.316, 3.16,
31.6, 100], where each comma-separated value indicates a bin edge.
For AlphaFold scores, bin edges were calculated for a geometric
relationship, a linear relation, or with quantiles (bins all contain an
equal number of items; bins will have varying widths). Bin edges
were set based on the full dataset: sub-datasets were binned into
the same bins as the full dataset to enable comparability across the
datasets for a given binning strategy.

Many of the trends in Table 2 are also present in Table 3.
The main exception is that AMI detects a relationship with sub-
datasets where AlphaFold predictions use a 12-amino-acid-long
client, whereas R2 analysis does not. This is true for the dataset
with no specified anchor and the one with only TQT anchors. In
both AMI and R2, each score on the datasets represented by the
central columns (length = 14; anchor = TQT, length = 16; anchor
= TQT, length = 14; and anchor = TQT, length = 12) exhibits a
strong relationship with binding affinities. More subtly, both tables
indicate that 1-client predictions have a closer relationship with
affinities than 2-client predictions. The scores for each binning
strategy separately are found in the Supplementary Tables 1-9.

Despite our statement that this analysis is not intended for
achieving quality affinity predictions fromAlphaFold calculations, it
would be irresponsible to leave this potential application untouched.
Both tables indicate that if the anchor of a binding site is TQT,
AlphaFold predictions are best with a client that is 14 amino acids
long, although clients 12 or 16 amino acids long will also enable
decent predictions. Aside from these lengths, we did not run enough
predictions to ascertain robust associations. However, if the anchor
is not TQT, the predictions will be weaker because of the sparsity of
affinities known for this type of LC8 client and the heterogeneity in
the sequences of the motifs remaining in this dataset. For this type,
only the length= 16 sub-dataset contained enough entries to analyze,
and only four of the scoring metrics yield usable AMIs, namely, the
best 1-client average pLDDT and PtoL PAE and the average 1-client
average pLDDT and dimer PAE. It should be noted that if AMI
relationships are used for predicting the affinity, predictions can only
be made within the bins used in the analysis.

Evaluating the possibility that AlphaFold
has learned an energy function

Because it is a black box algorithm, accessing AlphaFold’s inner
workings is difficult without a thorough, systematic investigation of
its output. However, even without such a systematic investigation,
our findings are more likely to align with certain hypotheses
over others. We, therefore, utilized an approach that formalizes
this type of thinking: qualitative Bayesian reasoning (Jaynes and
Bretthorst, 2003; Fairfield and Charman, 2017; Fairfield and
Charman, 2019). Qualitative Bayesian creates a framework in which
pieces of evidence are systematically evaluated in the context of
each hypothesis and then combined in a way that is grounded
in mathematics and logic. With qualitative Bayesian, one posits
mutually exclusive hypotheses and then establishes multiple pieces
of evidence (E). With these in hand, each piece of evidence is
judged for its likelihood while mentally inhabiting the universe

of each hypothesis separately. Then, the relative likelihoods of
the two hypotheses are compared pairwise. It is advantageous to
express this comparison on a log-odds scale for a few reasons:
(1) human perception works on a log scale (Fechner et al., 1966),
so the spectrum from weakly to strongly favoring one hypothesis
over another can be assigned a value on a log scale (with units of
decibels, dB), as shown at the top of Figure 5, drawing inspiration
from the measurements of sound; (2) log-odds allows for simple
addition of the relative likelihoods of each piece of evidence; (3)
this enables comparison between more than two hypotheses via
simple subtraction of two pairwise comparisons to obtain the third;
and (4) this mathematically based analysis reduces the potential
for a judgment of one piece of evidence to bias the judgment
of an unrelated piece of evidence because each is being assessed
separately rather than as an aggregate. Using Bayesian inference
in this manner is consistent with the methods established by the
pioneers in Bayesian and qualitative Bayesian approaches (Jaynes
and Bretthorst, 2003; Fairfield and Charman, 2017). We provided
a more detailed discussion of Bayesianism and qualitative Bayesian
in the Methods section.

The mutually exclusive hypotheses are as follows: during its
training,Hs (structural): AlphaFold did not learn an energy function
and onlymemorized structures. All predictions that appear novel are
simply piecewise amalgamations of structures found in the training
set. Hn (natural): AlphaFold learned the energy function that is
at work in natural protein folding and interactions within some
residual error. Hi (inaccurate): AlphaFold learned an inaccurate
energy function that does not match the natural energy function
but shares similar minima. When evaluating these hypotheses,
we discuss each one separately and assess pairwise comparisons
log(P(Hn)/P(Hs)) and log(P(Hi)/P(Hs)), following the format
outlined in the Methods section. The value of log(P(Hi)/P(Hn))
is found by simple subtraction. For simplicity, we denote these
comparisons as Hn/Hs, Hi/Hs, and Hi/Hn in the following
discussion.

In assessing the evidence (E), let us consider each piece, one at a
time. E1: As shown in Figure 2, 1-client scores are a better predictor
of nonbinders than 2-client scores, consistentwith the statement that
the first binding event represents the energy barrier in LC8 binding.
In the context ofHs, this is likely because when one copy of a client is
present, part of the LC8 structure (β3) remains disordered without
the second copy. The cooperativity of the second binding event is
known to propagate through the structure of LC8, so this could lead
to worse scores for 1-client predictions. In Hn and Hi, this event is
slightly more likely because, in addition to the structural reasons,
energetically the half-bound state is less stable than the fully bound
state. Using the scale shown in Figure 5 as a guide,Hn/Hs andHi/Hs
are both 3 dB for this evidence.

E2: When considering all the structures produced from
predictions of binders versus nonbinders, the 2-client scores of
the binders cluster on the confident side of each plot, while
the 1-client scores are bimodal, with the poorly predicted peak
being populated by lower-ranked structures from the predictions
of weak binders (Figure 2). In the context of Hs, this is a likely
observation because of the bias toward more stable structures in
the PDB. However, in both Hn and Hi, this is a highly likely
circumstance because the proposed energy function in both cases
can differentiate strong (approximate energy minima) from weak
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(higher energy structures) interactions. Hn/Hs and Hi/Hs are both
6 dB for this evidence.

E3: Depending on the cut-off used, one-sixth or one-half of
the false positives are AAA mutants of strong LC8 binders. In Hs,
this would be unlikely because the client folds as a beta-sheet upon
binding, and according to the Chou–Fasman parameters (Chou and
Fasman, 1974), a triple Ala stretch has a significantly higher alpha
helix than beta-sheet propensity, while the TQT motif is favored to
fold as a beta-sheet. This should be understood through structural
training. InHn, however, this observation would be even less likely;
AAA mutations abolish LC8 binding. ForHi, this observation could
be plausible; the other five amino acids are stabilizing for LC8
binding in any strong binder, and if either the quality of a TQT or the
deleterious effect of AAA is underestimated, such an effect could be
observed. For this, Hn/Hs is –8 dB and Hi/Hs is 6 dB, for evidence.

E4: The scores of the full, heterogeneous dataset do not correlate
with the binding affinities for each; however, the scores of several of
the homogeneous subsets do correlate with affinities. InHs, the first
part of this piece of evidence is very likely, but combined with the
second part of the statement, it becomes very unlikely. As shown in
Figure 6A, all datasets should be random, but with high confidence,
in the context ofHs because pLDDT should vary randomly, with no
association to affinity. For Hn, the opposite holds true, where the
homogeneous datasets would be expected to correlate, but the full
dataset would be expected to correlate in the same way, as is shown
in Figure 6B. For Hi, it is very likely for both things to co-occur.
An inaccurate energy function will successfully exhibit correlations
with affinities in datasets consisting of clientswith similar properties;
however, when several of these datasets are overlaid, their dissimilar
correlations will obscure one another (Figure 4). Hn/Hs is −2 dB,
and Hi/Hs is 22 dB.

E5: There is no correlation between success rates (using
thresholds that minimize the false-negative rate) and affinities in
the full dataset; however, correlations are found for some of the
homogeneous subsets.E5 is partly redundantwithE4 and, therefore,
does not change the likelihood of E4 in either Hs or Hn. However,
the nature of the success rate calculation adds more potency to
E5 in the context of Hi. Taking a prediction set as a proxy of a
solution at equilibrium containing 50 copies of the client peptide (or
50 pairs of client peptides in the 2-client version) and a successful
prediction as “bound,” success rate = bound/50. Due to the small
number of “molecules” and the significant probability that either
“#bound” or “#unbound” could be 0, we cannot calculate a pseudo-
Kd (#unbound2/#bound). However, it is important to note that in
the range where solutions are valid, the success rate approximates a
linear relationship with ln (pseudo-Kd), especially for success rates
between 0.1 and 0.8. For context, ln(Kd) correlates linearly with ΔG.
By extension, a relationship between the success rate and binding
affinities approximates a relationship between pseudo-ΔG and ΔG.
Thus, in the context of Hi, a relationship of this sort is very likely
for homogeneous sub-datasets but not for heterogeneous datasets
due to inconsistencies between the natural energy function and
AlphaFold’s energy function in different settings. Therefore, in E5,
the redundancy of information from E4 dictates that Hn/Hs is
0 dB. However, the added layers make Hi/Hs an extra 18 dB for
E5, in addition to that of E4, while still avoiding double counting
redundant information.
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FIGURE 5
Qualitative Bayesian scale and summary plot of the logs of the ratios of likelihoods for each of the nine listed pieces of evidence for each discussed
pairwise comparison. The X-axis is measured in decibels (dB).

FIGURE 6
Plots of synthetic data representing the expectation for correlations of binding affinities and AlphaFold scores in the context of (A) Hs and (B) Hn.

E6: For TQT, length = 16 and TQT, length = 14 sub-datasets,
affinities correlate well with individual scores. However, when
considering the success rate, TQT, length = 16 has no correlation,
while TQT, length = 14 remains strongly correlated. In the context
ofHs, this is plausible because confidence in the local structure could
be expected to increase unilaterally with increased context, with no
regard for the relative binding stability. InHn, E6 is unlikely because
energy differences between two lengths should correlate. In Hi, this
is again likely because AlphaFold’s energy adjustment between these
lengths could reasonably deviate from the reality of the experimental
affinities. Hn/Hs is −7 dB, and Hi/Hs is 7 dB for E6.

E7: Several heterogeneous sub-datasets display reasonable R2

values but possess no relationship by AMI. This comes from one of
the two phenomena: (1) the data resemble a transformed 1/x plot,
where the leftmost points are mostly horizontal and the later points
follow an approximately vertical trend, or (2) there is a high density
of values with strong affinity with favorable prediction scores, but

little to no trend beyond this dense region. In the context of Hs, E7
is quite likely because strong binders are scored well, but outside this
subset, there is no correlation. In the context ofHn, this observation
is very unlikely because the values should correlate across the whole
range. In the context of Hi, E7 is likely because the remaining
heterogeneity in the datasets results in multiple overlaid distinct
relationships. Hn/Hs for E7 is −17 dB, and Hi/Hs is −4 dB.

E8: Correlations between affinity and AlphaFold prediction
are better in nearly all datasets for 1-client predictions than
for 2-client predictions. This piece of evidence is nonredundant
with E2 because it goes beyond general observations, establishing
a direct connection to affinities. In Hs, this is unlikely only
because there should be no significant correlation. For Hn and
Hi, the logic from E2 holds: the 1-client prediction is more
representative of an affinity calculated from an experiment in which
the first binding event is rate-limiting. Hn/Hs and Hi/Hs are both
10 dB for E8.
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E9: The “best” binning strategy is not consistent across sub-
datasets. For example, binning affinity into [0, 0.316, 3.16, 31.6, 100]
and scores into six quantiles yields AMI >0.4 for the majority of the
1-client average scores for the TQT, length = 14 but not for any of
the 2-client best scores and is generally not correlative for the TQT,
length = 12 dataset. In contrast, binning affinity into [0, 1, 10, 100]
and the scores into six quantiles does the opposite, resulting in AMI
> 0.4 for the majority of the TQT, length = 12 2-client best scores,
but not for any of its 1-client averages scores and generally does not
relate for the TQT, length = 14 datasets. InHs, E9 is unlikely because
there should not be high AMI values as observed here, but if they
were, it would be reasonable for them to be inconsistent. InHn, this
is likely. Correlations are expected, and deviations like this could be
caused by random error or by a selection bias between the two sub-
datasets. In Hi, E9 is very likely because correlations are expected
within homogeneous datasets, but because of the inaccurate energy
function, they are expected to differ between different homogeneous
datasets. Hn/Hs is 12 dB for E9, while Hi/Hs is 18 dB.

Taken altogether,Hn/Hs totals −3 dB, whileHi/Hs totals 86 dB.
According to our analysis, Hs and Hn are approximately equally
likely, but Hi is much more likely true than the other two. If we
were to include a prior likelihood that favors Hs, to account for
the expectation that AlphaFold should not be able to learn any
energy function (−30 dB forHi/Hs,) and especially not the function
at work in nature (−45 dB for Hn/Hs), then Hn/Hs totals −48 dB,
while Hi/Hs is 56 dB. This still strongly indicates Hi as the most
likely true hypothesis of the three. In summary, mostly due to
evidence statements E4, E5, and E9, we conclude that it is highly
likely that AlphaFold has learned and uses an energy function in
making its predictions which aligns with the true energy landscape
at energy minima but is inaccurate elsewhere. Nonetheless, it
is important to remember that there are many places where an
inaccurate description of reality is useful for making predictions
about reality. For instance, for many years, LC8-binding data have
been simplistically analyzed using a model that assumes that both
binding events are identical. Despite being an inaccurate picture of
reality, this has still enabled years of useful research that resulted in
useful lessons.

What does this mean for the field? AlphaFold possessing
knowledge of an energy function is an exciting prospect: we have
a tool for predicting both novel structures and their energetics and
for predicting binding interactions. However, capitalizing on this
prospect and applying it to another system will require a similar
effort to the work done here in assessing predictions of binders
and nonbinders because the energy function deviates from the
natural function. Comparison of experimental data with AlphaFold
scores from consistent, homogeneous datasets can be used as a
Rosetta Stone to enable the translation of AlphaFold predictions into
insights about the natural world. Caution is advised: evaluating the
homogeneity of a dataset should be straightforward based on the
strength of the correlations, but determining whether a predicted
protein meets the characteristics defined by the homogeneous
dataset may be more difficult. Additionally, it is likely that each
time AlphaFold is trained again, it will converge on a new energy
function, so each new iteration will require its own translation.
Depending on the application, continuing to use older versions may
be a reasonable strategy to circumvent this issue.

For LC8 interaction predictions, we need to expand the selection
of known LC8-binding affinities so thatmore homogeneous datasets
can be calibrated. LC8-binding sites that are not anchored by TQT
(or a close variant) are not common, but there is a broad landscape of
variety outside this motif. Additionally, motifs that are not anchored
by TQT tend to have weaker affinities. These two factors together
make such binding sites difficult to locate and characterize.However,
as we expand the range of known, characterized binders, more
homogeneous datasets can be assembled, and more correlations can
be drawn to AlphaFold scores for predicting more binding sites and
affinities.

Prediction of new binding sites

The logical next step for our work was to take the lessons
learned about AlphaFold’s ability to predict the binding sites for
LC8 and apply them to predict previously unknown LC8-binding
motifs in a selection of proteins. For this reason, we assembled
a list of 24 proteins that match one of the following few criteria:
(1) the presence of LC8 binding has been reported, but not the
location of binding, (2) proteins that are known to bind LC8
but are not predicted by LC8Pred, or (3) LC8Pred predicts more
binding sites than have been characterized experimentally. A list
of these proteins and our impetus for predicting each can be
found in the Supplementary Presentation 1.

We took these proteins’ full sequences and parsed them into 16
amino acid long segments to predict LC8 binding in AlphaFold. The
resulting scores were compared with both the exclusive (low false
positive) threshold and the inclusive (low false negative) threshold
to generate lists of predicted binding sites. The exclusive threshold
resulted in 247 predicted binding sites among the 24 proteins,
while the inclusive threshold yielded 776 predicted binding sites.
To narrow these predictions, we utilized the affinity correlations
to calculate rough binding affinity predictions for each predicted
binding site and used this to filter the predictions. If a binding affinity
is 100 μM, it is not worth considering. Because the list of sequences
with known binding affinities contains only one affinity greater than
40 μM, we disregarded predictions with predicted affinities greater
than 40 µM to avoid extrapolating. For predicted binders with TQT
anchors, the TQT, length = 16 (TQT = 16) 1-client best dimer
PAE correlation was used, which has an RMSE value of 3.7 and is
statistically significant according to Bonferroni (Miller, 1991) and
Benjamini–Hochberg (Haynes et al., 2013) corrections to calculated
p-values. For predicted binders, any other anchor, not TQT, length
= 16 (!TQT = 16) 1-client average P- > L PAE correlation was used,
which is significant according to the Benjamini–Hochberg p-value
correction and has an RMSE value of 11.24 (tables of all p-values
and RMSEs can be found in the Supplementary Presentation 2).
Affinity filtering reduced the number of predicted binding sites to
133 for the exclusive threshold and to 213 for the inclusive threshold.
Because the sequences used to develop the cut-offs were all from
disordered regions andLC8only binds to disordered regions, we also
removed predicted sites within structured domains. The assignment
of structured domains was taken from the AlphaFold Database
(Jumper et al., 2021; Varadi et al., 2022).

Figure 7 shows this analysis for gephyrin, a microtubule-
associated protein that binds LC8 with an EDKGVQCE motif
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FIGURE 7
Sequence map of structured domains (cyan) and predicted binding sites (orange) on Gphn from LC8Pred and AlphaFold results as interpreted by each
of the four score thresholds.

anchored at residue 224 (García-Mayoral et al., 2011). As shown,
both AlphaFold and LC8Pred find this binding site and another
anchored at 267, ISRGVQVL. Both methods find a third binding
site, but at this point, the predictions are slightly different: AlphaFold
finds a site anchored at residue 238 by VAS, which LC8Pred cannot
find because of the alanine at position 0, whereas LC8Pred finds
a site with a strong V&P score, but weak AA score anchored at
residue 276 by an SLS triad. Figures for all 24 other predicted
proteins are available in the Supplementary Presentation 1. Lists
of each method’s predicted binding sites for each protein are
provided in the Supplementary Datasheets 4–7.

Figure 8 contains four more proteins, which were predicted by
both LC8Pred andAlphaFold: PAC11, KIBRA,CIZ1, and ewg.These
proteins were chosen to highlight different types of relationships
between LC8Pred and AlphaFold predictions. In the case of PAC11,
both predictions find the two binding sites that have been reported
experimentally, which is an encouraging proof of concept for both
methods. LC8Pred finds another site, but it overlaps with one
of the known sites, so cannot bind. It must be noted that with
our method, AlphaFold cannot predict overlapping binding sites
because we only evaluate the scores of the best structure in each
prediction. On KIBRA, both methods again accurately identify the
two binding sites that have been shown experimentally, anchored
at residues 283 and 892, but they each also identify new binding
sites. Both methods predict a binding site anchored with a VMA
triad at residue 802. AlphaFold scores provide a rough estimate of
the affinity at 15 µM for this motif. AlphaFold predicts four more
binding sites using the inclusive threshold: KVACVSAA anchored
at 619, GRSSTQTL anchored at 836 (which LC8Pred assigns poor
values to), SDSDSSTL anchored at 950 (predicted to bind with
2 µM affinity), and RSERLIRT at residue 985 (if confirmed, the
first and fourth would represent unique motifs). Determining
whether these sites bind will require testing their binding
experimentally.

Cip1-interacting zinc finger protein (CIZ1) is an interesting case
and is reminiscent of ASCIZ with its many predicted binding sites
with various linker lengths between them and the presence of a zinc
finger. Many of the same sites are predicted by both methods. The
binding sites at residues 201, 294, 323, 348, and 430 are canonical
binding sites with affinity estimates ranging from 1 to 20 µM. The

binding site at 512 is also anchored by common triads, and LC8Pred
detects it but scores it poorly, which is in line with AlphaFold
estimates of affinity being on the weaker side at approximately
30 µM. However, the predicted binding site anchored at residue
361 is LQQKQVQP, another motif that deviates from the canonical
LC8-binding motif and would be interesting to investigate further.

Ewg is one of the few examples in which LC8Pred predicts more
binding sites than AlphaFold, highlighting the type of binders that
AlphaFold may tend to miss. The LC8Pred predicted binding sites
at 378, 411, and 598 have very strong V&P scores. This is further
indication that AlphaFold fails to account for the information coded
into the V&P matrix. The binding sites at 490 and 544 that are
detected by both methods achieve low V&P scores but strong AA
scores from LC8Pred, which further substantiates our observation.
The additional AlphaFold predicted sites are an IQV- and a VQV-
anchored motif.

Finally, there are proteins for which the LC8 binding site
is experimentally determined, but LC8Pred cannot predict it,
including pilA (Kausar et al., 2013), GCOM1 (García-Mayoral et al.,
2011), PAK1 (Lightcap et al., 2008), TRPS1 (Kaiser et al., 2003),
and MARK3 (Navarro‐Lérida et al., 2004). AlphaFold identifies
the known binding site in all of these except MARK3. This is
encouraging because it validates the aim of this paper to find a
method that complements LC8Pred and enables the identification
of elusive binding sites.

Discussion

The collective information of protein folding and interactions
represented by the algorithm AlphaFold complement LC8Pred and
expanded the range of predicted binding sites. Our findings provide
evidence that AlphaFold has learned an energy function capable of
estimating trends in binding affinities for predicted binding sites.
Our work emphasizes that for AlphaFold, this kind of analysis needs
to be performed piecewise—broad, high-level views introduce data
heterogeneity, obscuring the underlying patterns. We interrogate
only one protein and its binding to a range of partners. Interestingly,
this dichotomy in the scale of prediction is also present in the
AlphaFold analysis: while some have utilized the confidence score
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FIGURE 8
Sequence maps of the four predicted proteins PAC11, KIBRA, CIZ1, and Ewg. Structured domains (cyan) and predicted LC8-binding motifs (orange) are
shown. For each protein, the LC8Pred predictions and one of the AlphaFold thresholds are included.

FIGURE 9
Flowchart for hypothesis design based on AlphaFold and LC8Pred results in combination. Routes ending in red likely do not bind. Routes ending in cyan
in the top half will then pass through the lower half. The route ending in orange has not been observed; these scores would warrant consideration.
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to inform their conclusions (Bret et al., 2024) or warned against
using PAE values as a benchmark (Lee et al., 2024), we found that
the narrower metrics like PAE and pLDDT were invaluable for
prediction, while the broader metric of confidence score proved
less useful.

Generalizability of the method

The approach we have developed should be generalizable to
a host of different systems, including other hub proteins that
have a broad range of partners, binders of SLiMs, or partners of
IDPs. Research groups that require less stringent predictors could
adapt this method with fewer data points than we used. However,
the inclusion of non-binding examples is necessary for assessing
the effectiveness of any predictive method. Reliance upon affinity
correlations to obtain predicted non-binders is not strong enough
given the types of fits and associated errors that we observed. It is
important to apply the designed method in the context in which it
was developed. In our case, all binding and nonbinding sequences
are IDRs in the context of the full protein, so when predicting
new binding sites, any predictions made in structured regions were
deemed unreliable as such sequences were not represented in our
training data.

A system-specific set of scores should be ascertained and
investigated for how well they represent the system: scores of
residues at or near the binding site are logical inclusions, but if
other regions of the proteins are important for the interaction,
domain knowledge should take precedence over attempts to best
mimic our metrics. For PAE values, despite the instinct that errors
should be similar from both directions, insight and differentiability
can be gained by considering both directions independently.
Importantly, there should be no expectation that thresholds will be
at similar values for similar types of metrics; we have six different
types of PAE values, and each of them behaves differently from
one another based on the environment being investigated. The
condensed structure of an LC8 dimer with one partner bound
likely contributes to the threshold values being lower than they
would be in a more elongated system. Readers should be aware
that the most computationally intensive part of the process was
in running AlphaFold on “unknown” binding regions to predict
new LC8-binding sites because of the number of predictions
that had to be made to adequately traverse a whole protein in
16-amino-acid-long segments. One could potentially investigate
smaller sections of a protein if there is a justification to narrow the
search: perhaps, a binding event will only occur at a disordered
part of the sequence, in this case any structured parts of the
protein can be ignored.

Assessment of the binding status

Excitingly, we were able to achieve better-quality predictions of
the binding status than expected based on recent work (Bret et al.,
2024; Omidi et al., 2024; Lee et al., 2024; Chakravarty et al., 2024)
which achieved lower AlphaFold prediction success rates than we
achieved. However, as with all methods, there were inaccurate
predictions for both binders and nonbinders. Supplementary Data

Sheets 8-11 contains four tables listing false-positive and false-
negative predictions for both inclusive and exclusive thresholds.
The list of false positives for the exclusive threshold (false-positive
rate = 5.5%) contains 17 predictions; of these, three are AAA
mutants and 11 are from nonbinders used to train LC8Pred. For
the inclusive threshold (false-positive rate = 27.9%), 86 sequences
are falsely predicted, and the counts associated with each group
are 43 and 25, respectively. This analysis is consistent with our
finding that AlphaFold is likely to have learned an inaccurate
energy function because the false-positive predictions mostly
consist of sequences similar to LC8-binding sites, whether by
retaining 5/8 residues of a known binder or sporting a common
anchoring sequence.

On the other hand, the inclusive threshold produces 12 false-
negative predictions, 7 of which are sequences from proteins
sporting multiple LC8-binding sites. This indicates that the
multivalent context overcomes unfavorability. Furthermore, six
of the seven are from Drosophila ASCIZ. This is perhaps not
unexpected, given that the heterogeneous nature of ASCIZ
complexation with LC8 necessitates that it sports multiple weak
binding sites. Some false negatives arise from sequence scans, and
the binding site appears in two adjacent overlapping sections of the
scan—one correctly predicted, the other not. These observations
indicate that it is likely important to consider more context when
making these predictions, whether from additional residues or from
multivalent effects.

Comparing our method with AlphaFold
and LC8Pred

LC8Pred and AlphaFold perform similarly overall. Two distinct
thresholds were also considered for LC8Pred, one reaching a 25%
false-negative rate with a coupled 12% false-positive rate and the
other having a 0% false-positive rate and a 43% false-negative
rate. The accuracy of the less stringent threshold was 78%. For
the methods reported in this study, the exclusive threshold has an
accuracy of 86.7%, and the inclusive threshold has an accuracy
of 79.1%. However, what is missing from this analysis is the
fact that these two methods truly complement one another. The
V&P matrix is an important feature of LC8Pred, and although
the magnitude of these scores is smaller than the other half of
the prediction, it could be said to be the more predictive of the
two. Despite the importance of this metric, AlphaFold predictions
tend to miss the binding sequences that are strongly indicated
by V&P. Conversely because LC8Pred is built on the amino acid
prevalence of known binders, it is limited to finding new binders
that look like old ones.

Consequences of the AlphaFold energy
function

Before us, Roney and Ovchinnikov (2022), Herzberg and Moult
(2023), and Ahdritz et al. (2024) all approached this problem
through different lenses, but arrived at the same conclusion
that AlphaFold learned an energy function during training.
However, while Duignan (2024) proposed the theory, to our
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knowledge, our work is the first thorough assessment of the
evidence concluding that AlphaFold learned an inaccurate energy
function. Although not the initial impetus for this work, this finding
reveals interesting consequences that must be considered when
investigating AlphaFold’s utility for any type of analysis. Primarily,
this results in situations where the analysis of large heterogeneous
datasets is likely to lead to the conclusions of AlphaFold ineptitude.
In these situations, the best practice would be to sort the full
dataset into smaller homogeneous datasets, for example, split
different classes of fold switching into smaller groups that can be
considered independently, or separately analyze multiple smaller,
internally consistent classes of pairwise amino acid mutations and
use the defined subsets to find correlations in the system being
investigated.

Predicted binding sites

Many papers report interactions with LC8 without finding
an interaction motif. Here, we predict likely binding sites for
24 proteins, including TRPS1 (Kaiser et al., 2003), CITFA
(Kirkhamet al., 2016), TbLAP (Zhang, 2019), and pilA (Kausar et al.,
2013) (figures and tables of predictions can be found in the
Supplementary Presentation 1 and Supplementary Data Sheets
4–7). Several of the predicted binding sites appear to defy the
consensus sequence of canonical LC8 binding. However, this is
expected and useful because there are several proteins reported to
bind LC8 for which no binding site has been found, suggesting that
an unknown recognition motif is present (Di Bartolomeo et al.,
2010; Den Hollander and Kumar, 2006; Nakano et al., 2010;
Rayala et al., 2005; Emi et al., 2005). Thus, these predictions
supply a host of new sequences to test for LC8 binding to uncover
these unknown binding modes. However, we are not beguiled by
these predictions. We anticipate that many will not bind. We do,
however, stress that even “failed” predictions contribute significantly
to the field because there are not enough characterized non-
binders in the literature for use in building prediction algorithms
that are robust against false-positive predictions. All results are
useful to increase the knowledge of the bond between AlphaFold
scores and binding affinities, which enables iterative improvement
of predictions.

Our comparison of the results achieved by LC8Pred and
AlphaFold suggests a scheme for using these predictions to
generate hypotheses and guide experiments, as illustrated by the
flowchart in Figure 9. After running LC8Pred and AlphaFold
predictions (the most computationally intensive step), the
thresholding methods should be applied to the AlphaFold results,
and the predicted binding sites should be compared. Following this
scheme should result in high-quality hypotheses. The second half
of the flowchart provides an important set of steps beyond LC8-
binding predictions: LC8-binding sites should be evolutionarily
conserved and should not be located in structured regions of the
full protein. Candidates that pass this second layer of winnowing
should then be prioritized based on comparison to known binding
sequences, functional overlap with LC8 and its partners, and
the broader significance of the protein. This prioritized list can
then be experimentally tested to identify new binders or to
expand the dataset of nonbinders for training a successor to

the LC8Pred model and refining the AlphaFold thresholds with
additional data.

Conclusion

In this work, we show that AlphaFold can accurately predict
whether a protein binds LC8, with high success. The scores
resulting from these predictions correlatewith experimental binding
affinities. Using Bayesian inference, we discuss evidence that
AlphaFold has learned an energy function during training, although
it is unlikely that this energy function resembles the natural
energy function, except near minima, consistent with what has
been proposed (Duignan, 2024). This work emphasizes the need
to use homogeneous datasets for assessing AlphaFold’s ability to
make energetic predictions. Heterogeneous datasets appear random
because the resulting correlations are composed of several dissonant
correlations. We then apply our findings to predict binding sites
in 24 proteins known to bind to LC8. These predictions offer a
path forward in identifying LC8-binding sites that deviate from
the canonical binding motif, addressing a long-standing challenge
in the field. Characterizing these predicted sites will be useful
in designing and training less computationally expensive binding
prediction algorithms.
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