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Introduction: Given the increasing incidence rate of diabetic kidney disease
(DKD), there is an urgent need for methods to diagnose and treat DKD in clinics.

Methods: Serum samples were collected from 56 DKD patients and 32 healthy
controls (HCs) at the First Affiliated Hospital of Ningbo University, and the
metabolic profiles were obtained through untargeted metabolomics using
gas chromatography mass spectrometry. The data were then analyzed using
principal components analysis, orthogonal partial least-squares discriminant
analysis, Pearson correlation analysis, and receiver operating characteristic
(ROC) curve.

Results: It was found that the serummetabolic profiles of the DKD patients were
significantly different from those of the HCs. A total of 68 potential differential
metabolites were identified that were involved in arginine biosynthesis,
ascorbate and aldarate metabolism, and galactose metabolism, among others;
a total of 31 differential metabolites were also identified between early-stage
(EDG) and late-stage (LDG) DKD patients. Additionally, 30 significant metabolic
differences were observed among the EDG, LDG, and HC groups. Based
on Pearson correlation analysis between the abundances of the differential
metabolites and clinical markers (estimated glomerular filtration rate, blood urea
nitrogen, serum creatinine, and urinary albumin/creatinine ratio) and area under
the ROC curve (AUROC) analysis, the AUROC values ofmyoinositol and gluconic
acid were found to be 0.992 and 0.991, respectively, which can be used to
distinguish DKD patients from HCs.

Discussion: These results indicate that myoinositol and gluconic acid could
possibly be used as biomarkers of DKD.
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1 Introduction

Diabetic kidney disease (DKD) is common among 40% of
patients with diabetes and results in the fastest growth of chronic
kidney disease (CKD) along with its associated morbidity and
mortality (Rayego-Mateos et al., 2023; Wu et al., 2022). Globally,
the number of DKD patients is expected to increase proportionally
with an increase in global diabetes prevalence, eventually affecting
approximately 780 million people by 2045 (Limonte et al.,
2022). The pathogenesis of DKD is multifactorial, and its
initiation and progression involve many metabolic, hemodynamic,
inflammatory, and other pathophysiological processes
(Falkevall et al., 2017; Ricciardi and Gnudi, 2021). Clinically,
glomerular hyperfiltration is regarded as the initial stage of DKD;
at this stage, patients typically exhibit no obvious pathological
symptoms. As the glomerular basement membrane thickens
and mesangial hyperplasia progresses, patients begin to develop
albuminuria, signaling the onset of the microalbuminuria stage. As
the disease develops, the presence of tubulointerstitial fibrosis can
lead to further increase in albuminuria, eventually progressing to
macroalbuminuria. In the later stages, when more than 50% of the
glomeruli undergo sclerosis, DKD progresses to its advanced phase
and is often accompanied by complications, such as retinopathy,
atherosclerosis, and microangiopathy (Tuttle et al., 2014; Qi et al.,
2017). At present, the clinical diagnosis of DKD is based on
the level of urinary albumin, which is generally characterized
by persistent albuminuria with a urinary albumin/creatinine
ratio (UACR) exceeding 30 mg/g and accompanied by decreased
renal function (Selby and Taal, 2020); the estimated glomerular
filtration rate (eGFR) and renal biopsy are also usually considered
during such diagnosis (Oshima et al., 2021). Some studies
have reported additional clinical biomarkers that may be useful
for diagnosing DKD, including glomerular biomarkers (e.g.,
cystatin C), tubular biomarkers (e.g., urinary cystatin C, and
kidney injury molecule-1), inflammatory biomarkers (e.g.,
tumor necrotic factor-alpha and transforming growth factor-
beta (TGFβ)), oxidative stress biomarkers (e.g., 8-oxo-7,8-
dihydro-2′-deoxyguanosine and uric acid), emerging biomarkers
(e.g., microRNAs), and certain genetic markers (e.g., aldo-keto
reductase family 1 member A1 gene). However, these biomarkers
have only moderately enhanced the diagnostic capabilities of
the currently available methods. Despite these advancements,
the eGFR and UACR remain the cornerstone biomarkers for
diagnosing and distinguishing DKD subtypes in clinical practice
(Swaminathan et al., 2023; Li et al., 2024). The characteristics
of UACR and eGFR are not unique to DKD, and studies have
shown that inflammation and fat mass can also affect the eGFR.
Kidney biopsies can only be used in certain cases and cannot be
used to detect the early stages of DKD (Doshi and Friedman,
2017; Jung and Yoo, 2022; Clingan et al., 2023). Research has
demonstrated that targeted interventions and effective prevention
during the early stages of DKD can delay progression to renal
failure while enhancing patient outcomes. Therefore, more
sensitive and specific biomarkers are needed to screen and
distinguish DKD patients.

Metabolomics can be applied to the core biological fluids of
clinical nephrology diagnosis and prognosismethods, namely, blood

and urine (Dubin and Rhee, 2020). It involves measurement of
low-weight intermediates and small end products of biochemical
processes in biological fluids using mass spectrometry and proton
nuclear magnetic resonance spectroscopy, which can be used
to identify the biomarkers of DKD and type 2 diabetes (T2D)
(Hocher and Adamski, 2017; Jung and Yoo, 2022; Pereira et al.,
2022). A urine multiomics platform combining metabolomics and
proteomics has been reported previously and used to investigate
the biological changes in the pathogenesis of DKD (Jiang et al.,
2023). In addition, some metabolites in the urine and serum, such
as glucose, lactate, carnosine, leucine, and phenyl acetate, have
also been shown to be associated with cancer-related cachexia
(Yang et al., 2018).

Given the frequent occurrence ofDKD in the general population
(Chen et al., 2023), we intend to use collected clinical serum
samples for metabolomics research on disease development using
gas chromatography mass spectrometry (GC-MS); accordingly, we
performed KEGG pathway analysis, Pearson correlation analysis,
and receiver operating characteristic (ROC) curve analysis on the
data. Additionally, we conducted differential analysis of the early
(EDG) and late (LDG) stages of DKD using metabolomics to
provide valuable insights into potential diagnostic biomarkers while
enhancing our understanding of the underlying pathophysiology.
Thus, two biomarkers were screened based on our findings and are
expected to be beneficial for the clinical diagnosis and treatment of
DKD (Figure 1).

2 Materials and methods

2.1 Sample collection

Serum samples were collected from 56 DKD patients and
32 healthy controls (HCs) at the First Affiliated Hospital of
Ningbo University. The research was conducted in accordance with
the guidelines of both of the Declarations of Helsinki. All study
procedures and protocols were approved by the Clinical Trial Ethics
Committee for Drugs and Medical Devices of the First Affiliated
Hospital of Ningbo University (2021-R144). DKD patients were
selected from patients with T2D; the selection criteria included
age, gender, body mass index (BMI), eGFR, UACR, and other
indicators as well as clinical staging diagnosis results (including
hyperfiltration, microalbuminuria, massive albuminuria, and renal
failure), while excluding interference from other diseases. The
patients were selected on the basis of similarities in age and gender,
and the diagnoses were based on clinical indicators encompassing
all stages of DKD as comprehensively as possible. The HC group
consisted of individuals with normal blood glucose levels and no
history of diabetes or other diseases; they were as closely matched as
possible to the members of the DKD group in terms of age, gender,
and BMI. All samples were collected from the DKD patients and
HCs after 8 h of fasting to minimize any potential interference from
dietary intake. Informed consent was obtained from each patient
or subject after providing a full explanation of the purpose and
nature of all procedures used in the study.The sampleswere collected
and stored in a freezer at −80°C until the start of the experiments
(Bi et al., 2024).
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FIGURE 1
Overall strategy for the discovery of diagnostic and therapeutic biomarkers of diabetic kidney disease (DKD).

2.2 Sample preparation

Aliquots of 50 μL of the serum were precipitated with 200 μL
of methanol (containing 12.5 μg/mL of 1,2-13C myristic acid),
followed by vortex mixing for 3 min before being centrifuged
at 18,894.2g for 10 min at 4°C. The supernatant (100 μL) was
then evaporated in a centrifuge concentrator (45°C, 15 kPa). The
residue was derived by the addition of 30 μL of methoxypyridine
solution (10 mg/mL, 1.5 h at 30°C), followed by trimethylsilyl
derivatization using 30 μL of BSTFA (containing 1% TMS,
0.5 h at 37°C). After cooling to room temperature, the mixture
was centrifuged at 13,000 rpm for 10 min; then, approximately
40 μL of the supernatant was transferred to a sample vial
for analysis. Moreover, 5 µL of each sample was pooled to
obtain a quality control (QC) sample for testing during the
analysis (Yan et al., 2023).

2.3 GC-MS conditions

The samples were analyzed using a GC-MS system
(Trace1310/TSQ8000, Thermo, United States). Separation was
achieved on a TG-5MS capillary column (250 mm × 30 mm
× 0.25 μm, Thermo). The initial oven temperature for gas

chromatography (GC) was set to 60°C for 1 min, followed by
increasing at the rate of 20°C/min to 320°C and holding for 5 min.
The injection volume was 1 μL. The temperature of the inlet and
ion source were set to 250°C and 280°C, respectively. Electron
impact ionization (70 eV) at the examined m/z range of 50–500 was
used (Yang et al., 2022).

2.4 Data analysis

Identification of the metabolomics data was performed using
MS-DIAL 4.9 software and the NIST library (Zhang et al.,
2024a). The raw spectrum files generated by Xcalibur software
were processed for peak extraction, deconvolution, compound
identification, and peak alignment before being exported as .txt
files containing the metabolite information (including metabolite
names, retention times, and m/z). All sample data were uploaded
to MetaboAnalyst 6.0, initially normalized using the median value,
and transformed logarithmically (lg) for further normalization.
The final normalized data were introduced to the SIMCA-P 14.0
software package for multivariate statistical analysis. The variables
were discriminated using principal component analysis (PCA) and
orthogonal partial least-squares discriminant analysis (OPLS-DA)
(Thysell et al., 2012). The significance of each metabolite was
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TABLE 1 Clinical sample information.

Average ± SD Standard reference interval

DKD HC

Gender (F/M) 18/38 15/17 —

Age (years) 63.33 ± 11.43 50.33 ± 2.52 —

Body mass index (BMI; kg/m2) 24.11 ± 3.60 22.74 ± 2.1 —

Hemoglobin A1c (mmol/mol) 119.70 ± 22.97 — 20–42

Estimated glomerular filtration rate (eGFR; mL/min/1.73 m2) 45.36 ± 35.90 — >90

Albumin (g/L) 35.51 ± 5.48 — 40–55

Blood urea nitrogen (BUN; mg/dL) 11.85 ± 6.89 — 7–20

Serum creatinine (μmol/L) 325.29 ± 333.14 — 44–133

Glucose (mmol/L) 7.69 ± 4.41 — 4.4–6.1

Urine creatinine (μmol/L) 8,080.74 ± 9,618.11 — 8,840–17,680

Urinary albumin/creatinine ratio (UACR; mg/g) 1,816.88 ± 2,561.62 — <30

analyzed through the Mann–Whitney–Wilcoxon test along with
false discovery rate (FDR) correction via the Benjamini–Hochberg
method. The differential metabolites were screened on the basis of
variable importance in projection (VIP) > 1.0 obtained from the
OPLS-DA and adjusted p-values (p) of < 0.05. MetaboAnalyst 6.0
was used for the KEGG pathway enrichment analysis, and Pearson
correlation analysis was conducted between the clinical information
and differential metabolites using Origin 2024. Lastly, we used
GraphPad Prism 9.5.0 for the ROC analysis (Xiong et al., 2024;
Zhang et al., 2024b).

3 Results

3.1 Clinical sample information

The baseline characteristics and clinical staging information
of the DKD patients and HCs included in the metabolomics
analysis are presented in Tables 1, 2.These patients were only taking
medications specific to DKD, such as metformin hydrochloride.
DKD is known to be more prevalent in men, and a higher BMI
value not only increases the risk of developing the condition
but also contributes to lower eGFR (Clotet-Freixas et al.,
2024; Russo et al., 2018). Additionally, the prevalence of DKD
increases with age (Iqbal et al., 2024). There were significant
differences in various serum indicators between the DKD patients
and HCs, including eGFR, albumin, serum creatinine (SCr),
and UACR values. These differences were markedly higher for
eGFR and UACR, where the former reflects the normality of
renal function and the latter reflects the amount of urinary
albumin; both of these metrics can indicate the severity of
kidney disease.

TABLE 2 Clinical sample information for different stages of DKD.

Average ± SD

EDG LDG

Gender (F/M) 11/21 7/17

Age (years) 63.69 ± 9.86 61.86 ± 14.64

BMI (kg/m2) 24.52 ± 3.68 23.69 ± 3.39

Hemoglobin A1c (mmol/mol) 128.47 ± 23.49 104.67 ± 15.40

eGFR (mL/min/1.73 m2) 67.05 ± 27.65 8.72 ± 4.86

Albumin (g/L) 36.01 ± 5.95 34.63 ± 4.91

BUN (mg/dL) 9.03 ± 5.46 16.62 ± 6.51

Serum creatinine (μmol/L) 111.25 ± 62.15 692.17 ± 298.97

Glucose (mmol/L) 7.03 ± 4.70 8.84 ± 3.81

Urine creatinine (μmol/L) 6,751.72 ± 3,675.94 10,718.92 ± 15,341.12

UACR (mg/g) 1,139.64 ± 1,952.17 2,990.90 ± 3,164.90

3.2 Serum metabolic differences between
DKD patients and HCs

We performed metabolomics analysis of the serum samples
from the 56 DKD patients and 32 HCs using a GC-MS system
(Supplementary Figure S1), and a total of 147 metabolites were
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FIGURE 2
Comparison of serum metabolomics findings between DKD and healthy controls (HCs) based on gas chromatography mass spectrometry (GC-MS): (A)
scatter plot of DKD patients and HCs in the principal component analysis (PCA) model; (B) scatter plot of DKD patients and HCs in the orthogonal
partial least-squares discriminant analysis (OPLS-DA) model; (C) cross-validation plot; (D) permutation test repeated 200 times.

detected. Multivariate data analysis was further performed to obtain
themetabolic differences betweenDKDpatients andHCs.The score
plot of PCA is shown in Figure 2A; here, the serum samples of
the DKD patients were obviously separated from those of the HCs,
indicating that there were obvious differences in serum metabolism
between the two groups. The clustering of the QC group samples
further indicated that our instrument was relatively stable. The
supervised classificationmodelOPLS-DAwas subsequently used for
further analysis. As shown in Figure 2B, the DKD and HC groups
can be classified into two categories. The high R2Y (cum) = 0.957
and Q2 (cum) = 0.824 values demonstrate the strong explanatory
and predictive capabilities of this model, respectively (Figure 2C).
To prevent overfitting of the original model, permutation tests were
performed with 200 iterations (Figure 2D). The R2 and Q2 values
of the original OPLS-DA model were substantially higher than the
corresponding values of the permuted models, indicating that the
model is not overfitted. The intercepts of R2 and Q2 at 0.667 and
−0.578, respectively, further confirm that the model was reliable and
not overfitted (Huang et al., 2023).

VIP represents the variable weight value of the OPLS-DA
model and indicates the contribution of a variable to the variance
explanation. Based on the OPLS-DA results, the metabolites were
selected based on VIP scores >1 and FDR adjusted p-values
(FDR-p) < 0.05. Thus, a total of 68 differential metabolites were
finally obtained (Table 3; Figure 3A). Among these differential
metabolites, the carbohydrate compounds and their derivatives

include sucrose, arabitol, melezitose, ribose, mucic acid, lactose,
glucose-1-phosphate, glucuronic acid, gluconic acid, maltotriose,
and glucoheptonic acid; additionally, lyxose and fructose are
significantly elevated in DKD. Next, the amino acids and
their derivatives, including glutamate, aspartic acid, L-cysteine,
oxoproline, 5-hydroxytryptophan, glycine, taurine, threonine,
ornithine, trans-3-hydroxy-L-proline, lysine, isoleucine, beta-
alanine, serine, creatine, and kyotorphin, also showed higher
serum levels in DKD patients than HCs. The other differential
metabolites include indole compounds like indole-3-acetamide
and indole-3-acetic acid; purine compounds such as inosine,
hypoxanthine, and xanthine; and vitamin B derivatives like
nicotianamine and myoinositol. Long-chain fatty acids, including
pentadecanoic acid and arachidic acid, as well as uremic toxins
such as guanidinosuccinate, organic acids like 5-hydroxyindole-2-
carboxylic acid, pyrophosphate, and the pyrimidine compound 5-6-
dihydrouracil, were found to be elevated in DKD patients compared
to HCs. In contrast, the phenolic compound 4-vinylphenol was
observed to be higher in the HCs.

KEGG analysis of data in the MetPA database (part of
MetaboAnalyst) revealed the unique metabolic pathways between
theDKDandHCgroups (Figure 3B).Themost influentialmetabolic
pathways had p < 0.05. These include arginine biosynthesis;
glutathione metabolism; glyoxylate and dicarboxylate metabolism;
taurine and hypotaurine metabolism; glycine, serine, and threonine
metabolism; ascorbate and aldarate metabolism; galactose
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TABLE 3 Differential metabolites for comparison between the HCs and DKD patients.

Metabolites Rt/min m/z VIP FDR-p p Fold change Peak area Chemical
formula

CVQC

HC DKD

N-
Oleoyldopamine

6.44 148.04 1.59 6.15E-16 7.78E-18 1.08 7.36 ± 0.30 7.96 ± 0.20 C26H43NO3 0.72%

Gluconic acid 11.44 333.17 1.61 6.15E-16 8.37E-18 1.18 5.31 ± 0.13 6.26 ± 0.48 C6H12O7 0.49%

Urea 6.42 146.92 1.56 1.52E-15 3.10E-17 1.06 8.17 ± 0.28 8.69 ± 0.17 CH4N2O 0.60%

Myoinositol 11.90 305.13 1.60 1.55E-15 4.21E-17 1.12 6.82 ± 0.11 7.64 ± 0.42 C6H12O6 0.22%

2-Deoxytetronic
acid

7.83 233.14 1.61 1.89E-15 6.44E-17 1.11 4.84 ± 0.10 5.38 ± 0.27 C4H8O4 0.43%

Maltotriitol 15.05 361.13 1.42 2.62E-13 1.07E-14 1.18 4.87 ± 0.44 5.76 ± 0.40 C18H34O16 1.89%

Phenylphosphoric
acid

10.48 287.24 1.47 4.63E-13 2.20E-14 1.02 7.07 ± 0.06 7.21 ± 0.07 C6H7O4P 0.92%

Glutamate 9.10 246.14 1.52 9.88E-13 5.38E-14 1.09 6.73 ± 0.20 7.32 ± 0.30 C5H9NO4 1.54%

Aspartic acid 8.45 232.12 1.50 3.34E-12 2.04E-13 1.08 6.40 ± 0.18 6.92 ± 0.28 C4H7NO4 1.05%

Malic acid 8.23 233.13 1.43 5.40E-12 3.67E-13 1.10 5.15 ± 0.11 5.69 ± 0.29 C4H6O5 0.51%

2-3-
Dihydroxypyridine

7.62 240.13 1.31 9.60E-12 7.33E-13 1.02 5.50 ± 0.06 5.63 ± 0.08 C5H5NO2 0.64%

Phenylalanine 6.54 299.64 1.49 9.60E-12 7.83E-13 1.07 6.57 ± 0.17 7.01 ± 0.26 C9H11NO2 1.97%

Maleamic acid 9.17 244.07 1.32 2.73E-11 2.57E-12 1.08 5.35 ± 0.20 5.76 ± 0.24 C4H5NO3 1.98%

L-Gluonic acid
gamma-lactone

9.34 217.10 1.49 2.73E-11 2.94E-12 1.18 4.98 ± 0.08 5.88 ± 0.64 C6H10O6 1.21%

Galactonic acid 10.14 292.16 1.49 2.73E-11 2.96E-12 1.17 4.94 ± 0.13 5.78 ± 0.58 C6H12O7 1.34%

3-Phenyllactic acid 8.96 193.12 1.33 2.73E-11 2.97E-12 1.17 4.33 ± 0.19 5.05 ± 0.49 C9H10O3 2.30%

Kyotorphin 9.72 242.20 1.36 4.14E-11 4.79E-12 1.13 4.25 ± 0.19 4.80 ± 0.38 C15H23N5O4 6.33%

5-Hydroxyindole-
2-carboxylic acid

10.27 231.07 1.45 4.89E-11 5.99E-12 1.19 4.07 ± 0.33 4.86 ± 0.52 C9H7NO3 12.53%

3-
Aminopropionitrile

7.72 239.13 1.43 5.70E-11 7.36E-12 1.07 4.43 ± 0.07 4.76 ± 0.23 C3H6N2 1.81%

Creatine 8.75 329.19 1.48 6.66E-11 9.06E-12 1.12 5.87 ± 0.14 6.60 ± 0.53 C4H9N3O2 0.97%

Threonic acid 8.62 292.15 1.49 1.09E-10 1.57E-11 1.13 5.79 ± 0.15 6.53 ± 0.52 C4H8O5 0.53%

β-
Mannosylglycerate

10.55 217.11 1.31 1.09E-10 1.63E-11 1.14 4.28 ± 0.16 4.87 ± 0.73 C9H16O9 10.75%

Arabitol 9.77 217.12 1.45 2.20E-10 3.44E-11 1.12 5.88 ± 0.15 6.58 ± 0.52 C5H12O5 1.26%

Glucuronic acid 11.08 333.17 1.46 2.35E-10 3.84E-11 1.17 5.57 ± 0.12 6.49 ± 0.69 C6H10O7 0.52%

Ribose 9.68 307.20 1.43 3.50E-10 5.95E-11 1.11 4.46 ± 0.13 4.93 ± 0.34 C5H10O5 0.80%

Mucic acid 11.18 318.18 1.37 5.86E-10 1.04E-10 1.21 4.63 ± 0.30 5.58 ± 0.75 C6H10O8 0.36%

Xanthine 11.56 353.15 1.28 6.67E-10 1.24E-10 1.21 4.07 ± 0.39 4.91 ± 0.57 C5H4N4O2 11.12%

(Continued on the following page)
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TABLE 3 (Continued) Differential metabolites for comparison between the HCs and DKD patients.

Metabolites Rt/min m/z VIP FDR-p p Fold change Peak area Chemical
formula

CVQC

HC DKD

Hypoxanthine 10.43 265.17 1.29 6.67E-10 1.27E-10 1.39 3.88 ± 0.19 5.41 ± 1.04 C5H4N4O 18.85%

Melezitose 15.55 361.21 1.26 9.78E-10 1.93E-10 1.23 4.00 ± 0.41 4.93 ± 0.70 C18H32O16 1.09%

4-Hydroxybenzoic
acid

9.27 223.12 1.39 1.10E-09 2.25E-10 1.17 4.28 ± 0.11 5.00 ± 0.58 C7H6O3 8.11%

Pentadecanoic acid 9.72 242.20 1.29 1.13E-09 2.39E-10 1.14 4.18 ± 0.19 4.76 ± 0.42 C15H30O2 8.11%

Sucrose 14.41 361.19 1.40 1.20E-09 2.62E-10 1.14 5.41 ± 0.21 6.16 ± 0.59 C12H22O11 0.48%

Indole-3-
acetamide

11.33 415.21 1.25 1.62E-09 3.65E-10 1.03 7.09 ± 0.31 7.30 ± 0.32 C10H10N2O 15.66%

Inosine 14.06 217.11 1.20 1.89E-09 4.37E-10 1.21 4.64 ± 0.30 5.63 ± 0.80 C10H12N4O5 2.73%

Pyrophosphate 9.44 451.13 1.30 6.35E-09 1.51E-09 1.08 5.91 ± 0.23 6.41 ± 0.37 C8H20O7P2 5.71%

Glucose-1-
phosphate

13.03 217.10 1.32 7.19E-09 1.76E-09 1.16 5.29 ± 0.32 6.13 ± 0.67 C6H13O9P 1.86%

L-Cysteine 8.71 220.14 1.29 1.61E-08 4.06E-09 1.04 6.22 ± 0.15 6.47 ± 0.18 C3H7NO2S 0.49%

Oxoproline 8.56 156.07 1.32 1.65E-08 4.26E-09 1.06 6.20 ± 0.15 6.55 ± 0.25 C5H7NO3 4.62%

Pipecolinic acid 7.11 156.14 1.24 3.51E-08 9.31E-09 −1.15 5.11 ± 0.28 4.45 ± 0.53 C6H11NO2 7.64%

Arachidic acid 11.48 116.70 1.17 4.86E-08 1.32E-08 1.29 4.32 ± 0.59 5.59 ± 1.11 C20H40O2 6.85%

5-
Hydroxytryptophan

9.45 290.21 1.15 5.37E-08 1.50E-08 1.17 3.88 ± 0.21 4.53 ± 0.55 C11H12N2O3 4.54%

Alloinositol 11.56 318.20 1.32 6.54E-08 1.87E-08 1.12 5.11 ± 0.18 5.70 ± 0.48 C6H12O6 0.15%

Maltotriose 14.15 204.08 1.22 7.34E-08 2.15E-08 1.12 4.30 ± 0.24 4.82 ± 0.46 C18H32O16 7.47%

Vanillylmandelic
acid

10.71 297.16 1.26 7.88E-08 2.36E-08 1.13 4.43 ± 0.33 5.00 ± 0.48 C9H10O5 2.65%

Glucoheptonic
acid

10.11 217.14 1.29 1.29E-07 3.95E-08 1.09 5.18 ± 0.18 5.64 ± 0.41 C7H14O8 1.32%

Lyxose 9.50 217.10 1.13 3.13E-07 9.79E-08 1.10 5.76 ± 0.26 6.31 ± 0.51 C5H10O5 1.09%

Nicotianamine 8.94 186.08 1.15 4.38E-07 1.40E-07 1.10 5.54 ± 0.29 6.09 ± 0.47 C12H21N3O6 0.88%

Fructose 8.64 263.20 1.10 4.45E-07 1.45E-07 1.06 6.03 ± 0.07 6.37 ± 0.35 C6H12O6 2.79%

4-
Methylbenzylalcohol

6.43 189.03 1.17 4.68E-07 1.56E-07 1.06 8.14 ± 0.38 8.61 ± 0.26 C8H10O 0.11%

Glycine 6.91 174.09 1.12 1.04E-06 3.52E-07 1.05 7.24 ± 0.24 7.63 ± 0.32 C2H5NO2 1.47%

2-
Aminoethanethiol

6.31 146.83 1.06 2.15E-06 7.47E-07 1.22 6.00 ± 0.75 7.30 ± 1.32 C2H7NS 17.08%

Citric acid 10.34 273.12 1.09 2.58E-06 9.12E-07 1.03 6.91 ± 0.12 7.15 ± 0.20 C6H8O7 0.70%

4-Vinylphenol 7.23 192.15 1.11 2.75E-06 9.91E-07 −1.02 6.07 ± 0.06 5.97 ± 0.09 C8H8O 2.47%

Taurine 9.53 326.15 1.17 4.04E-06 1.49E-06 1.15 5.00 ± 0.45 5.73 ± 0.56 C2H7NO3S 13.84%

(Continued on the following page)
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TABLE 3 (Continued) Differential metabolites for comparison between the HCs and DKD patients.

Metabolites Rt/min m/z VIP FDR-p p Fold change Peak area Chemical
formula

CVQC

HC DKD

Iminodiacetic acid 8.14 232.13 1.12 4.71E-06 1.76E-06 1.06 6.07 ± 0.17 6.46 ± 0.38 C4H7NO4 2.66%

Guanidinosuccinate 11.46 444.19 1.27 4.80E-06 1.83E-06 1.22 3.58 ± 0.18 4.38 ± 0.81 C5H9N3O4 4.78%

Threonine 7.50 218.13 1.21 5.59E-06 2.17E-06 1.03 7.17 ± 0.16 7.37 ± 0.18 C4H9NO3 0.49%

Ornithine 9.98 174.15 1.16 1.36E-05 5.35E-06 1.07 6.18 ± 0.36 6.59 ± 0.34 C5H12N2O2 1.05%

Glycerol-1-
phosphate

10.01 299.10 1.12 3.51E-05 1.43E-05 1.04 5.72 ± 0.17 5.97 ± 0.25 C3H7O6P
-2 1.23%

Quinic acid 10.61 345.21 1.11 4.55E-05 1.98E-05 1.14 4.55 ± 0.51 5.17 ± 0.74 C7H12O6 0.49%

Trans-3-hydroxy-
L-proline

10.09 274.13 1.11 4.70E-05 2.08E-05 1.09 5.18 ± 0.18 5.67 ± 0.56 C5H9NO3 2.31%

Indole-3-acetic
acid

11.33 202.16 1.06 6.64E-05 2.98E-05 1.07 4.94 ± 0.27 5.27 ± 0.36 C10H9NO2 1.87%

Lysine 10.90 317.25 1.14 1.34E-04 6.19E-05 1.03 6.71 ± 0.15 6.94 ± 0.28 C6H14N2O2 4.38%

Isoleucine 6.77 218.10 1.06 2.21E-04 1.07E-04 1.03 6.67 ± 0.16 6.84 ± 0.19 C6H13NO2 0.57%

β-Alanine 6.46 146.05 1.02 6.65E-04 3.26E-04 1.06 5.52 ± 0.55 5.84 ± 0.31 C3H7NO2 5.00%

Lactose 14.70 204.11 1.04 9.49E-04 4.78E-04 1.07 5.01 ± 0.17 5.36 ± 0.49 C12H22O11 2.75%

Serine 7.30 204.12 1.13 1.31E-03 6.93E-04 1.02 7.37 ± 0.18 7.53 ± 0.20 C3H7NO3 0.49%

5-6-Dihydrouracil 3.96 171.04 1.02 5.59E-03 3.27E-03 1.03 8.09 ± 0.18 8.37 ± 0.48 C4H6N2O2 9.09%

Fold change: DKD/HC when DKD > HC; -HC/DKD when HC > DKD.

metabolism; arginine and proline metabolism; pantothenate and
CoA biosynthesis; valine, leucine, and isoleucine biosynthesis;
alanine, aspartate, and glutamate metabolism; and histidine
metabolism. Among these, the metabolic pathways for arginine
biosynthesis, taurine and hypotaurine metabolism, ascorbate and
aldarate metabolism, as well as valine, leucine, and isoleucine
biosynthesis were overexpressed. These pathways may thus
be useful for studying the prevention, development, and
treatment of DKD.

3.3 Serum metabolite profiling of the
different stages of DKD

The score scatterplots of the PCA models show clear
differentiation among the EDG, LDG, and HC groups (Figure 4A).
Furthermore, OPLS-DA was used to differentiate the EDG and
LDG patients (Figure 4B). The high R2Y (cum) = 0.975 and Q2

(cum) = 0.767 values demonstrate the strong explanatory and
predictive capabilities of this model (Figure 4C). The results of
cross-validation and 200 iterations of the permutation experiment
(R2 = 0.865, Q2 = −0.55) indicate that the models were not
overfitted (Figure 4D). Based on the OPLS-DA results, a total
of 31 differential metabolites were screened (Table 4; Figure 5A).

Among these, there were 30 overlapping differential metabolites
between the HC and DKD groups (Figure 5B). Regarding these
differential metabolites, carbohydrate compounds and derivatives,
such as sucrose, arabitol, melezitose, ribose, mucic acid, lactose,
glucose-1-phosphate, glucuronic acid, glucoheptonic acid, and
gluconic acid, were elevated in the LDG patients. Additionally,
the amino acids and their derivatives, including beta-alanine
and creatine, showed significantly higher levels in the LDG
patients. Other metabolites with higher levels in the LDG patients
included indole-3-acetic acid (a derivative of indole), the vitamin B
compound myoinositol, and the uremic toxin guanidinosuccinate.
Elevated levels of the organic acid 5-hydroxyindole-2-carboxylic
acid, pyrophosphate, the pyrimidine 5-6-dihydrouracil, and the
aromatic compound vanillylmandelic acid were also observed
in the LDG patients compared to the other two groups. We
used Pearson correlation analysis to demonstrate the correlations
between the 30 differential metabolites and clinical indicators
from the blood tests of the patients (Figure 5C); the results
indicated that 13 metabolites were significantly correlated with
the four indicators (eGFR, blood urea nitrogen (BUN), SCr, and
UACR): alloinositol, myoinositol, gluconic acid, glucuronic acid,
galactonic acid, 3-phenyllactic acid, arabitol, mucic acid, ribose,
glucoheptonic acid, guanidinosuccinate, indole-3-acetic acid, and
5,6-dihydrouracil.
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FIGURE 3
(A) Heatmap of the differential metabolites between DKD patients and HCs. (B) Metabolic pathways associated with the differential metabolites.

3.4 Diagnostic performances of the
metabolites

To further assess the potential predictive powers of the
identified biomarkers for DKD, an ROC analysis was conducted
on the differential metabolites. Based on the results of the
correlation analysis, 13 differential metabolites were selected as
having correlations with all four clinical indicators. The ROC
results showed that the area under the ROC curve (AUROC)
values of these 13 metabolites were almost always high (above
0.85), indicating a high level of predictive ability. The ROC curves
based on the OPLS-DA and Pearson correlation analysis were
used to search for potential biomarkers for the diagnosis of
DKD. Among the metabolites, myoinositol and gluconic acid had
high sensitivity (>90%), specificity (>90%), and AUROC (>0.990)
values, indicating that they exhibited stronger predictive abilities
than the others; further, these predictions were accurate and
sensitive, making them potential biomarkers for the diagnosis of
DKD (Figures 6A–L).

Based on the heatmap results, both potential biomarkers were
upregulated in the patients’ bodies. Further analysis was then
conducted to examine the trends in the levels of these biomarkers
in the EDG and LDG patients relative to the HCs. Compared to
the HCs, the serum myoinositol levels were significantly elevated
in the EDG patients (p < 0.05), while both myoinositol and
gluconic acid levels were significantly higher in the LDG patients
(p < 0.001) (Figures 6M, N).These findings suggest that myoinositol
and gluconic acid levels increase and accumulate progressively as
DKD advances.

4 Discussion

Early detection, diagnosis, and treatment of DKD, which is
the most common microvascular complication of diabetes, remains
a challenge to clinicians. It is well known that multisystem
metabolism is altered in DKD (Pereira, et al., 2022). We reveal
the serum metabolic profiles of DKD patients based on untargeted
metabolomics and are committed to finding a suitable diagnostic
method. Additionally, we identified two serummetabolites, namely,
myoinositol and gluconic acid, which could serve as biomarkers
of DKD. Previous studies have demonstrated that urinary inositol
levels are associated with the eGFR and urine protein-to-creatinine
ratio (UPCR), both of which are predictive of end-stage renal
disease (ESRD) (Kwon et al., 2023). These findings align with our
observations from the serum samples. Additionally, gluconic acid
has been linked to the progression of CKD, further supporting the
results of our study (Hong et al., 2024).

Myoinositol is a racemic compound of inositol and is considered
to be a part of the vitamin B group (Croze and Soulage, 2013). It is
involved in the serummetabolic pathways of ascorbate and aldarate
metabolism as well as galactose metabolism. Ascorbate and aldarate
metabolism is known to protect cells from oxidative damage; it also
has a close relationship with the glucuronate pathway (Liang and
Song, 2024; Peng et al., 2023). Galactose metabolism is an important
carbohydrate metabolic pathway that is also known to be associated
with cellular oxidative stress (Conte et al., 2021). Oxidative stress
has been suggested as one of the possible pathogeneses of DKD,
indicating that these two metabolic pathways may be related to the
occurrence of DKD.
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FIGURE 4
Comparison of serum metabolomics between early-stage (EDG) and late-stage (LDG) patients based on GC-MS: (A) scatter plot of EDG and LDG
patients based on PCA; (B) scatter plot of EDG and LDG patients based on OPLS-DA; (C) cross-validation plot; (D) permutation test repeated 200 times.

Most of the myoinositol in the body is synthesized in the
kidneys, and the kidneys are the sole organs for myoinositol
catabolism bymyoinositol oxygenase; thus, the regulation of inositol
cannot be separated from the kidneys (Kwon et al., 2023). The
level of myoinositol in urine is considered to be closely related to
insulin resistance. Moreover, depletion of myoinositol is believed to
be related to the hemodynamic disorder of the kidneys in diabetes
and even the direct cause of glomerulosclerosis and proteinuria
(Bizzarri et al., 2017;Glass andOlefsky, 2012). Based on our findings,
the serum myoinositol levels in DKD patients are higher than those
in the HCs, and the AUROC of 0.992 reflects the accuracy of serum
myoinositol level as a critical factor in the diagnosis of DKD. Based
on the importance of the kidneys in the regulation of myoinositol as
well as the results of the serum myoinositol levels observed across
studies, myoinositol can be positively considered as a diagnostic
biomarker of DKD.

Gluconic acid, also known as dextrogluconic acid, is an
intermediate in the oxidative degradation of glucose in the
body through the pentose phosphate pathway and is one of the
oxidative stress markers. Gluconic acid has been associated with
hyperglycemia and cytotoxic brain injury linked to oxidative stress
(Ament et al., 2021; Fu et al., 2019). Gluconic acid is also associated
with deterioration of renal function in patients with end-stage CKD,
where it may be linked with the extent of kidney impairment, and

oxidative stress leading to elevated plasma levels in patients with
acute kidney injury (Cui et al., 2021). The significantly elevated
gluconic acid levels observed in DKD patients in this study indicate
obvious oxidative damage.

Glucuronic acid metabolism plays a critical role in cellular
detoxification, extracellular matrix remodeling, and cell adhesion
and migration. UDP-glucose 6-dehydrogenase (UGDH)-mediated
production of UDP-glucuronic acid stabilizes TGFβR1 mRNA by
promoting its binding to polypyrimidine tract-binding protein
3, thereby contributing to the activation of the TGFβ/SMAD
signaling pathway. Inhibition of either UGDH or TGFβR1 is known
to impair the metastasis of hepatocellular carcinoma metastasis
(Gao et al., 2022). Both mucic acid and galactonic acid are involved
in galactose metabolism, which has been strongly associated with
diabetic nephropathy, consistent with our findings (Han et al.,
2023). Additionally, increased urinary excretion of arabitol has
been observed in children with CKD, which is also aligned with
our observations with blood (Vanlede et al., 2015). Ribose reacts
with hemoglobin to form glycosylated hemoglobin and enhance
the glycosylation of serum protein, leading to the formation
of advanced glycation end products (AGEs) that contribute to
chronic diabetes complications, such as DKD (Tai et al., 2024).
Guanidinosuccinate is a uremic toxin that inhibits renal platelets to
disrupt hemostasis and promote inflammatory responses that are

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1541440
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Bian et al. 10.3389/fmolb.2025.1541440

TABLE 4 Differential metabolites for comparisons between the LDG and EDG patients.

Metabolites Rt/min m/z VIP FDR-p p Fold change Peak area Chemical
formula

CVQC

EDG LDG

L-Gluonic acid
gamma-lactone

9.34 217.1 1.95 3.99E-15 2.72E-17 1.21 5.45 ± 0.30 6.61 ± 0.33 C6H10O6 1.21%

Threonic acid 8.62 292.15 1.89 6.23E-13 8.67E-15 1.14 6.20 ± 0.31 7.09 ± 0.22 C4H8O5 0.53%

Creatine 8.75 329.19 1.89 6.23E-13 1.27E-14 1.14 6.27 ± 0.31 7.17 ± 0.25 C4H9N3O2 0.97%

5-Hydroxyindole-
2-carboxylic acid

10.27 231.07 1.85 1.02E-12 2.79E-14 1.20 4.53 ± 0.32 5.42 ± 0.21 C9H7NO3 12.53%

Galactonic acid 10.14 292.16 1.88 1.99E-12 6.76E-14 1.18 5.41 ± 0.34 6.39 ± 0.31 C6H12O7 1.34%

Myoinositol 11.9 305.13 1.82 8.30E-11 3.68E-12 1.09 7.38 ± 0.26 8.08 ± 0.26 C6H12O6 0.22%

Gluconic acid 11.44 333.17 1.8 8.30E-11 3.95E-12 1.13 5.97 ± 0.31 6.75 ± 0.28 C6H12O7 0.49%

Glucuronic acid 11.08 333.17 1.77 2.88E-10 1.57E-11 1.18 6.08 ± 0.46 7.18 ± 0.39 C6H10O7 0.52%

4-Hydroxybenzoic
acid

9.27 223.12 1.74 3.76E-10 2.34E-11 1.20 4.66 ± 0.25 5.57 ± 0.51 C7H6O3 8.11%

Vanillylmandelic
acid

10.71 297.16 1.7 3.76E-10 2.55E-11 1.16 4.72 ± 0.26 5.49 ± 0.38 C9H10O5 2.65%

Sucrose 14.41 361.19 1.72 5.08E-10 3.80E-11 1.16 5.81 ± 0.37 6.74 ± 0.40 C12H22O11 0.48%

2-Deoxytetronic
acid

7.83 233.14 1.75 5.37E-10 4.38E-11 1.08 5.22 ± 0.20 5.65 ± 0.13 C4H8O4 0.43%

Arabitol 9.77 217.12 1.73 6.45E-09 5.70E-10 1.13 6.28 ± 0.41 7.07 ± 0.23 C5H12O5 1.26%

Indole-3-acetic
acid

11.33 202.16 1.63 6.67E-09 6.36E-10 1.11 5.07 ± 0.26 5.61 ± 0.22 C10H9NO2 1.87%

Melezitose 15.55 361.21 1.58 1.84E-08 1.88E-09 1.23 4.54 ± 0.36 5.58 ± 0.66 C18H32O16 1.09%

Ribose 9.68 307.2 1.65 2.29E-08 2.49E-09 1.11 4.74 ± 0.26 5.24 ± 0.18 C5H10O5 0.80%

3-
Aminopropionitrile

7.72 239.13 1.62 2.84E-08 3.28E-09 1.07 4.63 ± 0.12 4.97 ± 0.22 C3H6N2 1.81%

Guanidinosuccinate 11.46 444.19 1.59 1.62E-07 1.98E-08 1.29 3.96 ± 0.67 5.11 ± 0.44 C5H9N3O4 4.78%

Quinic acid 10.61 345.21 1.56 8.45E-07 1.09E-07 1.21 4.80 ± 0.53 5.81 ± 0.61 C7H12O6 0.49%

Mucic acid 11.18 318.18 1.47 9.39E-07 1.28E-07 1.19 5.20 ± 0.49 6.21 ± 0.67 C6H10O8 0.36%

Alloinositol 11.56 318.2 1.52 1.87E-06 2.68E-07 1.12 5.46 ± 0.38 6.10 ± 0.35 C6H12O6 0.15%

Lactose 14.7 204.11 1.45 1.97E-06 2.95E-07 1.13 5.12 ± 0.30 5.77 ± 0.49 C12H22O11 2.75%

Glucoheptonic
acid

10.11 217.14 1.48 2.73E-06 4.27E-07 1.10 5.44 ± 0.35 5.98 ± 0.26 C7H14O8 1.32%

3-Phenyllactic acid 8.96 193.12 1.39 6.36E-06 1.04E-06 1.13 4.82 ± 0.37 5.45 ± 0.43 C9H10O3 2.30%

Glucose-1-
phosphate

13.03 217.1 1.42 1.05E-05 1.78E-06 1.14 5.82 ± 0.43 6.66 ± 0.67 C6H13O9P 1.86%

Digalacturonic
acid

13.7 217.11 1.22 1.24E-04 2.20E-05 1.14 4.59 ± 0.31 5.23 ± 0.68 C12H18O13 1.80%

(Continued on the following page)
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TABLE 4 (Continued) Differential metabolites for comparisons between the LDG and EDG patients.

Metabolites Rt/min m/z VIP FDR-p p Fold change Peak area Chemical
formula

CVQC

EDG LDG

5-6-Dihydrouracil 3.96 171.04 1.33 2.30E-04 4.22E-05 1.06 8.17 ± 0.49 8.70 ± 0.21 C4H6N2O2 9.09%

β-Alanine 6.46 146.05 1.23 2.64E-04 5.03E-05 1.05 5.73 ± 0.24 6.02 ± 0.32 C3H7NO2 5.00%

Pyrophosphate 9.44 451.13 1.26 2.93E-04 5.79E-05 1.07 6.26 ± 0.32 6.67 ± 0.32 C8H20O7P2 5.71%

Pipecolinic acid 7.11 156.14 1.12 4.60E-04 9.39E-05 −1.14 4.66 ± 0.52 4.10 ± 0.33 C6H11NO2 7.64%

Maltotriitol 15.05 361.13 1.13 1.49E-03 3.75E-04 1.07 5.62 ± 0.38 6.01 ± 0.30 C18H34O16 1.89%

Fold change: LDG/EDG when LDG > EDG; -EDG/LDG when EDG > LDG.

FIGURE 5
(A) Heatmap of the differential metabolites between EDG and LDG patients. (B) Venn diagram to determine the common differential metabolites
between DKD vs. HC groups and EDG vs. LDG patients. (C) Map of the correlation coefficients between the metabolites and four clinical parameters
(∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

linked to microinflammation and activation of white blood cells.
These differential metabolites are implicated in kidney diseases and
diabetes-related nephropathy, and we hypothesize that they may
also play similar roles in the pathogenesis of diabetic nephropathy
(Cohen, 2007; Jubelirer, 1985).

Thus, using serum untargeted metabolomics approaches, we
found that myoinositol and gluconic acid may provide precise
measures for the diagnosis of DKD. Furthermore, elevated levels
of these two metabolites may cause oxidative damage and lead
to the occurrence of DKD. However, given that the levels of
myoinositol and gluconic acid in the human body are often
influenced by external factors, such as diet, these potential
biomarkers may need to be measured during fasting in future

studies to minimize such interference (Kijpaisalratana et al., 2023;
Caputo et al., 2020).

5 Limitations

When interpreting the results of this study, one important
limitation should be considered: the limited sample size in this
study may impact the results to some extent. This study primarily
focuses on differences in the metabolic profiles and development
of diagnostic models; hence, it does not include validation of
the biomarkers or further experimental investigations. To address
these limitations, we are currently expanding the sample collection
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FIGURE 6
Receiver operating characteristics (ROC) curves of the diagnostic metabolites: (A) myoinositol, (B) gluconic acid, (C) glucuronic acid, (D) galactonic
acid, (E) 3-phenyllactic acid, (F) arabitol, (G) mucic acid, (H) ribose, (I) glucoheptonic acid, (J) guanidinosuccinate, (K) indole-3-acetic acid, and (L)
5-6-dihydrouracil. (M) Peak area under the ROC curve (AUROC) values for myoinositol between the HC, EDG, and LDG groups. (N) Peak AUROC values
for gluconic acid between the HC, EDG, and LDG groups (∗p < 0.05; ∗∗∗∗p < 0.0001).

process with the goal of validating our findings. Our future
research efforts will include proteomics, transcriptomics, and other
approaches to enhance the accuracy and comprehensiveness of
the findings.

6 Conclusion

An untargeted metabolomics approach based on GC-MS was
successfully used to distinguish DKD patients from HCs in this
study. Accordingly, a total of 68 distinguishable metabolites were
identified, which are involved in arginine biosynthesis, ascorbate
and aldarate metabolism, and galactose metabolism, among others.
Metabolomics was also used to successfully distinguish between
EDG and LDG patients as well as identify 31 distinguishable
metabolites.We found a total of 30 differential metabolites involving
theHC, EDG, and LDGgroups simultaneously. To select biomarkers
indicative of DKD, we used correlation analysis on four metrics
(eGFR, BUN, SCr, and UACR) to identify 13 highly discriminative
metabolites from among the 30 metabolites. ROC analysis was
then used to demonstrate that the diagnostic performances of
myoinositol and gluconic acid were greater than those of the other

metabolites, with AUROC values of 0.992 and 0.991, respectively.
Furthermore, these two metabolites are known to participate
in the metabolic processes of DKD. Our work thus indicates
a feasible diagnostic approach for detecting critical metabolites
involved in DKD.
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