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Metabolomics is an expanding field dedicated to elucidating metabolic
disorders by analyzing endogenous small molecules in biological samples.
With the rapid advancement of metabolomics, researchers are investigating
the influence of metabolites on metabolic phenotypes. The emergence of
functional metabolomics provides a methodological framework to address
this issue. This approach focuses on the biological functions of metabolites
and their corresponding enzymes while validating the potential mechanisms
of differential metabolites through in vivo and in vitro experiments. Despite
numerous research findings, a systematic compilation of case studies remains
absent. Therefore, this review systematically summarizes and evaluates
functional metabolomics, covering its historical development, current state,
and future directions, with the aim of fostering its advancement and offering
solutions for further research.
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1 Introduction

Small-molecule metabolites, as substrates, precursors, and metabolic byproducts,
play a crucial role in physiological processes. In 1997, Stephen Oliver et al. introduced
the concept of the metabolome by evaluating yeast gene functions through metabolite
analysis (Oliverp et al., 1998). In 1999, Nicholson et al. from Imperial College London
defined metabonomics as “the quantitative measurement of the dynamic metabolic
response of living systems to stimuli or genetic modifications” (Nicholson et al.,
1999). In 2000, Fiehn et al. defined metabolomics as the static measurement of all
low-molecular-weight metabolites (M < 1,500 Da) in an organism at a specific time
under defined conditions (Fiehn et al., 2000). Presently, metabolomics focuses on
analyzing small molecules across various biological matrices (cells, tissues, fluids, and
plant extracts), forming an integral component of systems biology. Over the past
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2 decades, metabolomics has significantly advanced disease
diagnosis, plant genomics, toxicology, and microbial research.
For instance, in pancreatic cancer, carbohydrate antigen (CA19-9)
serves as a primary diagnostic marker. Mayerle et al. (Mayerle et al.,
2018) identified the characteristics of CA19-9 alongside nine
metabolites, enhancing diagnostic accuracy. Matsumoto et al.
(Matsumoto and Kuhara, 1996) developed an optimized UP-GC-
MS method for neonatal organic aciduria screening, facilitating
the simultaneous analysis of over 200 abnormal metabolites.
This method was introduced in major Chinese cities in 2000
(Jiang et al., 2015). Luo et al. (Luo et al., 2018) identified two
early liver cancer markers: phenylpropionyl tryptophan and
hepatocholic acid, with the latter receiving clinical approval for
bile acid-related diseases. Metabolomics enables early-stage “liquid
biopsy” diagnosis of asymptomatic diseases and provides metabolic
profiles for traditional Chinese medicine syndromes (Li et al.,
2024; Nicholson et al., 2005; Johnson et al., 2016). However,
challenges persist, including the lack of standardized general
databases (Fiehn, 2002).

Traditionally, metabolomics, also referred to as “phenotypic
metabolomics,” “discovery metabolomics,” or “classical
metabolomics,” comprises four essential steps: sample preparation,
data collection, data processing, and biological interpretation.
Oliver Fiehn classified metabolic analysis into four hierarchical
levels: metabolite target analysis, metabolic profiling analysis,
metabolomics, and metabolic fingerprint analysis (Fiehn, 2002).
Over time, metabolomics has evolved into two principal
categories: non-targeted and targeted metabolomics. Non-targeted
metabolomics employs high-resolutionmass spectrometry to obtain
comprehensive metabolite information; however, it is characterized
by data complexity, limited reproducibility, and a narrow linear
range. Conversely, targeted metabolomics focuses on specific
small molecules and pathways, offering higher accuracy at the
expense of reduced coverage. To overcome these limitations, in
2012, Xu Guo-Wang’s research team introduced pseudotargeted
metabolomics, which integrates the strengths of both approaches
by employing a quantitative ion selection algorithm to quantify
all detected metabolites (Xuan et al., 2018). This method was
later adapted for liquid chromatography-mass spectrometry
applications (Chen et al., 2013).

Functional metabolomics, a novel extension of traditional
metabolomics, emphasizes the functional roles of metabolites and
their associated enzymes. It complements phenotypicmetabolomics
by prioritizing in vivo and in vitro experimental validation of
metabolite functions (Yan and Xu, 2018). By integrating genetics,
isotope tracing, and other advanced techniques, Zeneng et al.
(Wang et al., 2019; Wang et al., 2011) and Robert et al. (Koeth et al.,
2013) identified key precursor metabolites of trimethylamine
N-oxide (TMAO) implicated in diabetes and cardiovascular
diseases. Functional metabolomics facilitates a deeper exploration
of metabolite functions and their interactions with genes and
proteins, positioning itself as a key trend in contemporary
metabolomics research.While traditional metabolomics enables the
rapid screening of metabolites and metabolic pathways, functional
metabolomics validates the biological significance of identified
metabolites. Furthermore, variations in smallmolecules offer amore
precise reflection of physiological states compared to genomics,
proteomics, and transcriptomics. Functional metabolomics allows

dynamicmonitoring of biological systems, and throughmulti-omics
integration in systems biology, it provides a holistic understanding
of human structure and function. This approach elucidates the
interplay between endogenous smallmolecules andmacromolecules
(Q et al., 2020), facilitates the identification of early diagnostic
biomarkers, enables disease classification, uncovers novel drug
targets, evaluates therapeutic efficacy, and elucidates disease
mechanisms (Liu et al., 2020) (Figure 1).

In conclusion, this review aims to provide a comprehensive
analysis of the evolution, current state, and future prospects
of functional metabolomics. It highlights the potential of this
field in addressing the limitations of traditional metabolomics
and advancing our understanding of metabolite functions and
their corresponding enzymes. Additionally, this review explores
the applications of functional metabolomics in disease diagnosis
and treatment, as well as its integration with other omics
technologies to achieve a more profound understanding of complex
biological systems.

2 Research strategies in functional
metabolomics

The continuous advancement of analytical methods with high
throughput, sensitivity, quantitative accuracy, and reproducibility is
a fundamental objective of classical metabolomics. Unlike classical
metabolomics, functional metabolomics places greater emphasis on
elucidating the biological functions of endogenous small-molecule
metabolites within the body. The research strategies employed in
functional metabolomics are illustrated in Figure 2 and can be
broadly categorized into three key stages: screening of potential
functional metabolites, validation of functional metabolites, and
identification of regulatory targets.

Functional metabolomics is guided by classical metabolomics,
which screens differential small-molecule metabolites most relevant
to phenotypic variations and provides candidates for subsequent
biological function analysis. However, the number of potential
markers identified ranges from a few to several dozen, necessitating
a strategic selection of key small-molecule metabolites from this
complex dataset. Previous studies have demonstrated that the
identification of crucial small-molecule metabolites primarily
relies on the following strategies (Oliverp et al., 1998): Extreme
change multiple: If the concentration or abundance of one or
more endogenous components undergoes a significant alteration
before and after an intervention, it is highly likely to be a key
metabolite with potential biological functions. Under normal
physiological conditions, the levels of endogenous metabolites
maintain a dynamic equilibrium within a specific range. Once
small molecules exhibiting extreme changes are identified through
discovery metabolomics, they warrant further investigation as
potential functional targets. (Nicholson et al., 1999). Abnormal
statistical effect quantity: In functional metabolomics, advanced
statisticalmethods such as partial least squares discriminant analysis
(PLS-DA) and variable importance in projection (VIP) scores play
a crucial role in identifying biologically significant metabolites.
PLS-DA facilitates data dimensionality reduction, enabling the
differentiation of sample groups based on metabolite profiles (Ji-
ye, 2010). Meanwhile, VIP scores quantify the contribution of
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FIGURE 1
Systems biology characterizes the objective phenotype of the human body. Metabolomics enables dynamic biological system profiling through
multi-omics integration, advancing disease diagnostics, drug discovery, and the elucidation of disease mechanisms.

individual metabolites to this classification, with a threshold of >1.0
commonly employed to prioritize candidates for further validation
(Hayashi and Iwata, 2015). Unlike conventional p-values, VIP scores
address multicollinearity in metabolomics data, making them
indispensable for detecting subtle metabolic changes associated
with specific phenotypes. Statistical rigor is further enhanced
through complementary approaches, including: unsupervised
dimensionality reduction via principal component analysis (PCA)
for detecting global clustering patterns; rigorous differential
abundance testing using Welch’s t-test (for normally distributed
data) or Mann-Whitney U test (for non-parametric data), with false
discovery rate (FDR) correction to control Type I errors in high-
dimensional datasets; comprehensive visualization strategies such
as box plot, volcano plot and hierarchically clustered heatmaps, and
receiver operating characteristic (ROC) curves for assessing key
metabolites performance; and systematic normalization techniques,
including the use of internal standards, probabilistic quotient
normalization, or total ion current alignment to correct technical
variations. For instance, Wang et al. (Wang et al., 2021) utilized
one-way analysis of variance (ANOVA) to identify novel molecular
subgroups and assessed the diagnostic performance of hub ATGs in
40 clinical samples and human primary endometrial stromal cells
(ESCs) using ROC curve analysis. These statistical tools bridge the
gap between discovery and validation, facilitating targeted studies
of metabolites such as TMAO in cardiovascular diseases (Spence,
2023). This integration ensures that statistical findings translate
into actionable biological insights, aligning with the overarching
goal of elucidating metabolite-driven pathways (Fiehn et al., 2000).
Multi-Omics correlation analysis: In the post-genomic era, systems

biology, which integrates multiple omics layers, has significantly
enhanced the screening of key small-molecule metabolites. For a
given phenotype, cross-validation among different omics datasets
offers novel opportunities for identifying functionally relevant
metabolites. By integrating transcriptomic, proteomic (including
post-translational modifications), and microbiome data, correlation
analyses can systematically associate key mRNAs, proteins, and
microbial abundances with metabolite fluctuations. These multi-
omics approaches provide robust frameworks for identifying
functional metabolites, although the selection of appropriate
methodologies must be tailored to specific research contexts.
For instance, Zhao et al. (Zhao et al., 2025) integrated fecal
metabolomics, gut microbiome profiling, and brain transcriptomics
to identify microbial-derived bile acids (e.g., deoxycholic acid)
that modulate neuronal inflammation via the AGEs-RAGE
axis in Alzheimer’s disease, thereby establishing a mechanistic
link between gut metabolites and cognitive decline. Similarly,
Hensley et al. (Hensley et al., 2016)mappedmetabolic heterogeneity
in lung tumors by correlating single-cell RNA-seq data with LC-MS-
based metabolomics, revealing compartment-specific accumulation
of lactate and succinate driven by HIF-1α transcriptional activity.
These studies exemplify how multi-omics integration elucidates
causal relationships across biological layers.

Following the identification of potential functional small
molecules, it is imperative to conduct in vivo and in vitro
experiments to systematically evaluate their biological functions.
Typically, a series of concentration gradients for target metabolites
is established, and these metabolites are administered to model
organisms. The phenotypic indicators associated with the animal

Frontiers in Molecular Biosciences 03 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1542100
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Chen et al. 10.3389/fmolb.2025.1542100

FIGURE 2
Research strategies of functional metabolomics. Functional metabolomics mainly divided into the screening of potential functional metabolites,
verification of functional metabolites, and confirmation of targets of functional metabolites.

model are subsequently assessed to determine the protective
or detrimental effects of small-molecule metabolites on specific
target organs or phenotypic outcomes. Concurrently, in vitro
experiments employing cellular assays, including MTT assays,
enzyme-linked immunosorbent assays (ELISA), fluorescence
microscopy colocalization, immunohistochemistry, and cell
migration/scratch assays, are conducted to evaluate the impact
of key metabolites on effector cells. For instance, Saeedi et al.
(Saeedi et al., 2019a) employed MTT assays to verify the non-
cytotoxicity of novel anti-diabetic compounds in HepG2 cells,
whereas Dwivedi et al. (Dwivedi and Jena, 2020) utilized ELISA
to quantify the suppression of IL-6 and TGF-β by glibenclamide
in NAFLD models, thereby connecting metabolite effects to
inflammatory pathways.These experiments help determine whether
in vivo and in vitro findings are consistent and whether the observed
effects are synergistic.

Based on the biological outcomes obtained,molecular biological
techniques such as quantitative polymerase chain reaction
(qPCR), immunoblotting, molecular docking, molecular dynamics
simulations, and surface plasmon resonance (SPR) are utilized
to further investigate the signaling pathways through which
key metabolites exert protective or detrimental effects. These
analyses continue until the molecular mechanisms underlying their
biological functions are elucidated.

Once the biological functions of small-molecule metabolites
have been established, the next crucial question pertains to their
target proteins and their potential biological effects. Are these
proteins viable therapeutic targets? Subsequent research focuses on
the analysis and evaluation of key target proteins. By administering
corresponding agonists or inhibitors to key target proteins,
functional evaluations can be performed using computational

biology, chemical biology, and molecular biology techniques,
including gene knockdown, overexpression, interference, and
inhibition assays. These approaches enable systematic assessment of
the target protein’s function upon stimulation, ultimately allowing
the determination of its biological activity and relevance to
metabolite-mediated effects.

Previous studies have demonstrated the effectiveness of
untargeted metabolomics in linking gut microbiota-derived
metabolites, such as arachidonic acid, to the progression of
Alzheimer’s disease (Zhao et al., 2025). This association was
validated using mediation models and computational tools, with
false discovery rate (FDR) correction for multiple comparisons
and principal component analysis (PCA) for dimensionality
reduction. These methodologies align with established strategies,
including extreme variation magnitude and statistical significance
in multivariate analyses (e.g., VIP scores). Similarly, targeted
metabolomics and lipidomics have been employed to quantify
serum metabolites, such as triglycerides, in chronic metabolic
diseases, with validation through logistic regression and liquid
chromatography-mass spectrometry (LC-MS) analysis (Zhou et al.,
2024). Both studies underscore the importance of interdisciplinary
validation methods, including statistical modeling and
molecular profiling, in the identification of key functional
metabolites.

Following the identification of candidatemetabolites, systematic
in vivo and in vitro experiments—including dose-response animal
models, cell viability assays (MTT), ELISA, molecular biology
techniques (qPCR, western blotting, and immunohistochemistry),
computational biology methods (molecular docking, molecular
dynamics, and chemical kinetics), and chemical biology approaches
(click chemistry, drug affinity responsive target stability [DARTS],
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and SPR)—are essential for confirming biological effects and
elucidating mechanistic pathways. The functional study of key
metabolic small molecules constitutes a comprehensive and
systematic investigation encompassing screening, validation,
and regulatory analysis. It is essential to strategically
integrate various experimental methodologies, leveraging
their respective strengths while mitigating their limitations.
Moreover, cross-disciplinary collaboration and integration of
multiple fields are indispensable for the comprehensive and
efficient identification of biologically active small-molecule
metabolites.

3 Data acquisition and biological
platform of functional metabolomics

In contrast to traditional metabolomics, functional
metabolomics includes an additional step to determine the
biological effects and molecular mechanisms of metabolites
involved in metabolic pathways. Consequently, functional
metabolomics not only necessitates the establishment of the
detection platform and comprehensive database required by
traditional metabolomics but also requires a verification platform
for functional and mechanistic studies in cellular, animal, and
clinical settings.

3.1 Data acquisition platform

Functional metabolomics employs the same detection
techniques as traditional metabolomics, which are primarily
categorized into three types: gas chromatography-mass
spectrometry (GC-MS), LC-MS, and nuclear magnetic resonance
(NMR). A summary of these three detection techniques is
provided in Table 1. In addition to these methodologies,
Fourier-transform mass spectrometry, capillary electrophoresis-
mass spectrometry, and inductively coupled plasma mass
spectrometry, among others, can also be utilized to analyze complex
metabolites.

GC-MS typically employs mass spectrometers such as triple
quadrupole and ion trap instruments. The triple quadrupole mass
spectrometer is characterized by high sensitivity and selectivity,
with unit mass resolution, enabling multi-reaction monitoring
(MRM) mode (Rontani, 2022). MRM specifically monitors
selected precursor and product ions, effectively minimizing matrix
interference and improving the precision of quantitative analysis. In
contrast, the ion trap mass spectrometer exhibits high sensitivity
and supports multi-stage mass spectrometry (MSn) analysis,
making it ideal for structural elucidation of trace metabolites in
complex matrices. In GC-MS analysis, parameters such as carrier
gas flow rate, column temperature programming, and ionization
energy significantly influence separation efficiency and detection
performance (Hecht et al., 2016). For example, electron ionization
(EI), a widely adopted ionization technique in GC-MS, operates at
an ionization energy of 70 eV, producing stable ion fragments that
facilitate accurate metabolite identification (Tsikas, 2024). GC-MS
is well-suited for analyzing volatile or derivatized metabolites, such
as short-chain fatty acids and sugars, offering high resolution and

sensitivity. The availability of standardized spectral libraries, such
as NIST, facilitates efficient metabolite identification (Fiehn et al.,
2000). However, GC-MS requires time-consuming derivatization
steps (e.g., silanization, methylation), which may introduce
variability. It is not ideal for analyzing macromolecules or thermally
unstable compounds. GC-MS is commonly employed for targeted
analysis of energy metabolism intermediates, such as tricarboxylic
acid (TCA) cycle metabolites (Calderón-Santiago et al., 2013).
For instance, GC-MS combined with isotope tracing techniques
(e.g., 13C-glutamine) enables detailed analysis of metabolic fluxes,
providing insights into metabolic adaptations within the tumor
microenvironment (Hensley et al., 2016).

LC-MS technology commonly utilizes Orbitrap, triple
quadrupole, and ion mobility mass spectrometers (Pitt, 2009).
Orbitrap mass spectrometers are distinguished by their exceptional
resolution and accurate mass measurement capabilities, achieving
resolutions exceeding 100,000. This feature provides substantial
advantages for the precise identification and quantification
of metabolites. The automatic gain control (AGC) function
dynamically adjusts the ion injection time to ensure optimal signal
intensity and resolution. Triple quadrupole mass spectrometers
are widely employed in LC-MS for quantitative analysis through
MRM (Kuzyk et al., 2013). By selecting specific precursor-product
ion pairs and optimizing collision energy, they achieve highly
sensitive and selective detection. Ion mobility mass spectrometers
introduce an additional dimension of separation based on ion
drift time, thereby enhancing the separation efficiency of complex
samples and improving the accuracy of metabolite identification.
In LC-MS analysis, factors such as the composition and gradient
elution program of the mobile phase, the type and specifications
of the chromatographic column, and electrospray ionization (ESI)
conditions (e.g., spray voltage, sheath gas flow rate, auxiliary gas
flow rate, etc.) significantly influence the separation and detection
performance of metabolites (Timms and Cutillas, 2010). LC-MS
integrates the high separation efficiency of liquid chromatography
with the high sensitivity and selectivity of mass spectrometry,
making it particularly suitable for analyzing polar macromolecules,
thermally labile compounds, and complex biological matrices such
as plasma and urine (Fiehn, 2001). Its non-targeted metabolomics
mode allows for comprehensive coverage of a wide range of
metabolites, including lipids, amino acids, and organic acids (Souza
and Patti, 2021). High-resolution mass spectrometry (HRMS)
provides accurate mass measurements, facilitating metabolite
annotation and structural elucidation (Dunn et al., 2011). However,
LC-MS is susceptible to matrix effects, such as ion suppression,
necessitating sophisticated sample preparation techniques like
solid-phase extraction. LC-MS is widely used in functional
validation studies, particularly for dynamic metabolic flux analysis.
For example, when combined with stable isotope labeling, LC-
MS can track real-time intracellular metabolite transformations,
revealing mechanisms of metabolic reprogramming, such as the
Warburg effect observed in cancer cells (Reyes-Oliveras et al.,
2024). Over the past 2 decades, LC-MS technology has undergone
continuous advancements and has become a widely adopted tool in
metabolomics research, showcasing distinct advantages over GC-
MS. LC-MS exhibits extensive coverage, enabling direct analysis of
polar, non-polar, thermally labile, and large molecular metabolites
without derivatization, with a molecular weight range spanning
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TABLE 1 Three major detection technologies of metabolomics.

Technologies Commonly
used
instruments

Applicable
substances

Advantages Disadvantages Optimal
metabolite
classes

Practical
applications

GC/MS GC/Q-MS
GC/TOF-MS
GC/IT-MS-MS

Easy to gasify, stable,
not easy to
decompose, not easy
to react

Resolution,
sensitivity, and
reproducibility are
good; the database is
relatively complete

Complicated sample
preparation and
limited options;
limited sample
options

Volatiles (SCFAs),
organic acids, sugars

GC/MS reveals
metabolic
perturbations in
medullary thyroid
carcinoma
(Jajin et al., 2022)

LC/MS LC/Q-MS
UPLC/Q-MS
LC/Q-TRAP-MS-
MS
UPLC/Q-TOF-MS-
MS

Extensive Good resolution,
sensitivity and
repeatability; many
types of samples are
available

Vulnerable to matrix
effects

Lipids, peptides,
polar metabolites

Global
Metabolomics Using
LC-MS for Clinical
Applications
(Skogvold et al.,
2025)

NMR LC/NMR
LC/SPE-
CRYONMR-MS

Not suitable for
low-abundance
metabolites

Simple pretreatment;
qualitatively
accurate; in-situ
non-destructive
testing

Low sensitivity; not
suitable for
quantification

small molecule
metabolites,
peptides

NMR Spectroscopy
for Metabolomics in
the Living System
(Peng et al., 2024b)

50–2000 Da (Dunn et al., 2011). Furthermore, LC-MS demonstrates
high sensitivity and throughput. Modern high-resolution mass
spectrometers, such asQ-TOF andOrbitrap, are capable of detecting
low-abundance metabolites at the fg level. When coupled with
ultra-high-performance liquid chromatography (UHPLC), these
systems can achieve high-throughput analysis of 5–10 samples
per minute (Zuo et al., 2021). Additionally, LC-MS possesses
a wide dynamic range, with a linear response spanning four
to six orders of magnitude, making it well-suited for analyzing
biological samples with substantial concentration variations
(Patti et al., 2012).

NMR offers non-destructive structural information on
metabolites with high reproducibility and suitability for absolute
quantification. It excels at distinguishing isomers, such as the
α/β forms of glucose, outperforming mass spectrometry in this
regard (Beckonert et al., 2010). However, its lower sensitivity (in
the micromolar range) limits its ability to detect low-abundance
metabolites. Data acquisition times are longer, making it less
suitable for rapid quantification. NMR has unique advantages in
dynamic metabolic tracking. For example, real-time monitoring
of lactate and alanine dynamics in liver perfusion models
can reveal time-dependent regulation of metabolic pathways
(Peng et al., 2024a).

Overall, LC-MS is optimal for non-targeted metabolomics and
dynamic flux analysis, GC-MS excels in targeted analysis of volatile
metabolites, and NMR is indispensable for structural analysis and
dynamic tracking. In functional metabolomics, integrating multiple
techniques (e.g., LC-MS/NMR) leverages their complementary
strengths to provide a comprehensive understanding of metabolite
biological functions (Patti et al., 2012). Future research should
focus on developing standardized workflows to enhance data
comparability and leveraging AI-driven metabolic network
modeling to accelerate the translation from mechanism discovery
to clinical applications.

3.2 Function verification platform

3.2.1 Cell biology platform
Cells constitute the fundamental units of biological activity.

By observing and analyzing cellular responses, the effects of
metabolite alterations on cell morphology, proliferation, migration,
apoptosis, and metabolic activity can be elucidated. Ning et al.
(Ning et al., 2024) investigated the role of melatonin in human
retinal microvascular endothelial cell function in vitro using EdU
incorporation assays, scratch assays, transwell assays, and tube
formation tests. Similarly, Saeedi et al. (Saeedi et al., 2019b)
employed MTT assays to confirm the non-cytotoxic nature of
newly synthesized anti-diabetic compounds, demonstrating their
potential as novel hypoglycemic agents. To elucidate the molecular
mechanisms underlying the use of metformin in multiple myeloma
treatment, Wang et al. (Wang et al., 2018) utilized CCK-8 assays
to assess cell viability and flow cytometry to evaluate cell cycle
distribution and apoptosis.Through thesemethods, they established
that metformin inhibits myeloma cell proliferation by inducing
autophagy and cell cycle arrest.

Recent studies have delineated multipotent cell populations
and explored the relationship between aging, obesity, and fracture
risk using flow cytometry and other technologies (Ambrosi et al.,
2017). Dorrell et al. (Dorrell et al., 2016) identified four subtypes
of human pancreatic islet β-cells using novel markers detected via
flow cytometry. In 2016, the “Human Cell Atlas” (HCA) project
was initiated (Regev et al., 2017) to define all human cell types
based on molecular characteristics, associating gene expression
and other information with classical cellular descriptions, such
as morphology and spatial localization. This initiative aims to
provide a foundational understanding of how cells contribute
to complex organismal structures. A deeper comprehension of
cellular characteristics will facilitate an improved understanding of
molecular mechanisms at the cellular level.

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1542100
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Chen et al. 10.3389/fmolb.2025.1542100

3.2.2 Animal model platform
Appropriate animal models serve as a cornerstone for

mechanistic investigations. Taking diabetes as an example, rats,
mice, zebrafish, and beagles can be selected based on specific
research objectives. Spontaneous models of diabetes are challenging
to obtain; therefore, researchers commonly induce diabetes using
chemical agents, dietary interventions, or a combination of both.
Additionally, surgical procedures or gene knockout techniques
can be employed. In traditional Chinese medicine (TCM)-related
diabetes research, specific TCM prescriptions are administered
to address distinct syndromes, such as qi-yin deficiency or yin
deficiency with excessive heat.

The pathogenesis of type 2 diabetes is complex, and
metabolomic analyses have identified numerous metabolic
differences associated with the disease. However, current modeling
methods fail to fully replicate the human pathological state of type
2 diabetes. Additionally, inconsistencies in modeling approaches,
drug sources, and reagent purity contribute to variability among
experimental models. Therefore, the development of novel
modeling methodologies remains an urgent challenge in functional
metabolomics.

3.3 Mechanism verification platform

3.3.1 Molecular simulation platform
Molecular simulation platforms are widely employed for the

preliminary screening of drugs and the investigation of sites of
action. These technologies can also be utilized for mechanism
elucidation or the simulation of cellular processes. Molecular
simulations use computational models to predict the interactions
between metabolites and biological targets (e.g., proteins, DNA)
(Li et al., 2020). For instance, computer simulations can mimic
cellular processes or drug-target binding, enabling researchers to
prioritize candidates for experimental validation (Qureshi et al.,
2020). This approach is cost-effective and expedites hypothesis
generation. In one study, simulations elucidated the mechanism
by which malaria parasites uptake sugars, guiding subsequent
laboratory experiments to confirm these findings. Such tools serve
as a critical link between computational predictions and empirical
biological insights.

3.3.2 Chemical biology platform
Chemical biology employs labeling techniques (e.g., fluorescent

tags, isotopes) to track metabolites in living systems. For example,
“click chemistry” allows precise tagging of sugars or proteins
without disrupting their function, facilitating the visualization of
metabolite distribution and the identification of binding partners.
These methods are essential for mapping metabolic pathways and
verifying functional roles (Bohara et al., 2024). In 2019, Dong
Jiajia et al. from the Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences, unexpectedly discovered a safe and
efficient fluorosulfonyl azide (FSO2N3) method (Meng et al., 2019).
This method enables azide compounds to undergo cycloaddition
reactions with terminal alkyne compounds without requiring
separation or purification, allowing for direct functional screening.
In 2009, Brett Lomenick et al. (Lomenick et al., 2009) developed
a technique known as DARTS (drug affinity-responsive target

stability) for target identification. This approach does not require
chemical modification of natural products, enabling proteins to
retain their native activity and facilitating the identification of direct
binding targets of natural products.

3.3.3 Physical biology platform
Beyond cell morphology and number, mechanical properties

and microscopic characteristics of cells also exhibit differences in
various physiological and pathological states. With advancements
in biophysics and nanotechnology, biomechanics has emerged
as a new area of exploration (Berthaume and Elton, 2024).
Utilizing atomic force microscopy, researchers have demonstrated
that cancer cells exhibit reduced stiffness compared to normal
cells (Hayashi and Iwata, 2015), which may provide insight into
tumor metastasis mechanisms. Bohara et al. employed atomic force
microscopy to observe a significant reduction in Young’s modulus,
membrane force, membrane tension, and surface adhesion in
smooth muscle cells (SMCs) under high glucose conditions, with
the lowest values observed in type 2 diabetes mellitus (T2DM)-
SMCs (Bohara et al., 2024). Siamantouras et al. (Siamantouras et al.,
2016) quantitatively demonstrated the correlation between cell
elasticity, adhesion, and early morphological/phenotypic changes
in renal tubular injury using atomic force microscopy combined
with the Hertz model. Biophysical tools facilitate the study of
alterations in cellular physical properties (e.g., stiffness, adhesion) in
disease states, providing novel insights into disease progression and
therapeutic strategies.

3.3.4 Molecular biology platform
The investigation of the structure, function, and regulatory

mechanisms of biological macromolecules such as nucleic acids
and proteins is a crucial aspect of functional metabolomics
in elucidating disease mechanisms. Various molecular biology
techniques are widely applied, continuously optimized, and
extensively utilized in the verification phase of omics research.
For instance, when anti-inflammatory activity is identified in
metabolomics data, cytokines such as IL-10, IL-6, and TGF-
β can be detected using specialized kits (Dwivedi and Jena,
2020; Tsuruta et al., 2023), similar to approaches used for other
functional metabolites (Perry et al., 2015). Haejin Yoon et al.
(Yoon et al., 2020) employed multiple techniques, including
immunoprecipitation, western blotting, quantitative RT-PCR, and
MT-RNA analysis, to demonstrate that acetyl-CoA carboxylase 2
(ACC2) undergoes hydroxylation and inhibits fatty acid oxidation
during high energy expenditure. In PHD3-knockout mice, this
hydroxylation process was significantly reduced. The study revealed
that AMPK and PHD3 exert opposing effects on fat regulation and
exercise capacity. Sharon O. Jensen-Cody et al. (Jensen-Co et al.,
2020) demonstrated that FGF21 administration transmits signals
to glutamatergic neurons in the ventromedial hypothalamus to
suppress sugar intake without increasing energy expenditure. This
was elucidated using immunofluorescence, in situ hybridization,
and single-cell RNA sequencing. Molecular biology techniques
(e.g., CRISPR, RNA sequencing) play an essential role in
dissecting how metabolites regulate gene and protein function,
making them indispensable for linking metabolic alterations to
molecular mechanisms.
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4 Scientific practice of functional
metabolomics

4.1 Endocrine, nutritional, and metabolic
diseases

Zeneng et al. (Wang et al., 2019) conducted a randomized
crossover clinical trial involving 113 healthy volunteers. Participants
were randomly assigned to three dietary intervention groups
for a duration of 4 weeks: red meat, white meat, or no meat.
Plasma and urine metabolomics analyses revealed significantly
higher levels of TMAO and its precursors in the red meat group
compared to the other two groups. Upon cessation of red meat
consumption, TMAO levels returned to baseline. Long-term red
meat consumption was found to significantly reduce renal TMAO
excretion. Isotope tracer studies using d6-choline and d3-carnitine
capsules indicated that urinary d6-choline and d6-betaine levels
decreased in the white meat group, while choline-derived d6-TMA
and d6-TMAO showed no significant differences among groups.
These findings suggest that prolonged red meat intake enhances
TMAO production via gut microbiota while reducing renal TMAO
elimination, potentially increasing the risk of cardiovascular disease,
atherosclerosis, and diabetes.

Ruixin Liu et al. (Liu et al., 2017) conducted ametagenome-wide
association study on 257 fecal samples obtained from lean and obese
young Chinese individuals, confirming the presence of gut dysbiosis
in obesity. The study group performed non-targeted metabolomics
profiling of serum from patients with type 2 diabetes (T2D) and
healthy controls, identifying 148 differential metabolites, including
13 amino acids such as glutamate, phenylalanine, and tyrosine.
Targeted metabolomics further validated metabolic disparities
between lean and obese individuals. Co-inertia analysis (CIA) and
canonical correspondence analysis (CCA) linked these amino acids
to alterations in gut microbiota, with glutamate and Bacteroides
thetaiotaomicron exhibiting a strong association. To investigate the
relationship between B. thetaiotaomicron and adiposity, live and
heat-killed B. thetaiotaomicron were administered to mice on high-
fat and normal diets. Results indicated that B. thetaiotaomicron
reduced diet-induced adiposity and influenced serum amino acid
levels. Additionally, fecal and serum samples from 23 obese
individuals were collected 3 months post-sleeve gastrectomy (SG),
revealing that their microbiome and metabolic profiles had become
more similar to those of lean controls. This study underscores the
association between gutmicrobiota at the species level, serum amino
acids, and adiposity, suggesting potential therapeutic interventions
for obesity via gut microbiota modulation.

To identify metabolites associated with T2D, Francois
Brial et al. (Brial et al., 2020) employed a targeted GC-MS approach
to profile 101 serum metabolites in human subjects. The study
identified six metabolites linked to T2D, including 4-cresol, which
had not been previously reported in T2D metabolomics research.
4-Cresol exhibited a negative correlation with T2D and may confer
protective effects against the disease. Chronic administration of 4-
cresol significantly improved glucose homeostasis, enhanced insulin
secretion, reduced adiposity, and increased pancreatic mass. Animal
studies further demonstrated that 4-cresol treatment promoted β-
cell proliferation and pancreatic vascularization, potentially via the
downregulation of DYRK1A and upregulation of SIRT1 expression.

These findings indicate that 4-cresol, identified through targeted
metabolomics, modulates T2D endophenotypes and holds promise
for therapeutic applications.

4.2 Coronary artery disease

Through a preliminary multi-center, non-targeted clinical
metabolomics study of 2,324 clinical serum samples, Lei
Zhang et al. (Zhang et al., 2018) identified Neu5AC as the sole
sialic acid among 36 differential metabolites in the ESI- ion mode.
The research group further identified sixmetabolites associated with
T2D, including 4-cresol, which had not been previously reported in
T2D metabolomics studies. Notably, 4-cresol exhibited a negative
correlation with T2D and may contribute to disease resistance.
Chronic administration of 4-cresol significantly improved glucose
homeostasis, enhanced insulin secretion, reduced adiposity, and
increased pancreatic weight. Animal studies demonstrated that
4-cresol treatment promoted β-cell proliferation and pancreatic
vascularization, potentially through the downregulation of
DYRK1A and upregulation of SIRT1 expression. These findings
suggest that 4-cresol, identified through targeted metabolomics,
plays a regulatory role in T2D endophenotypes and holds potential
therapeutic applications.

Zeneng Wang et al. (Wang et al., 2019) conducted a non-
targeted metabolomics study on 100 plasma samples from patients
with clinical cardiovascular disease and healthy controls. From
an initial pool of 18 different small molecules, three metabolites
with m/z values of 76, 104, and 118 were selected due to
their strong correlation (p = 0.01) with cardiovascular disease.
Further analysis identified these metabolites as TMAO, choline,
and betaine, all of which exhibited a dose-dependent association
with cardiovascular conditions such as peripheral and coronary
artery disease in a large clinical cohort (n = 1,876). In murine
models, dietary choline and TMAO promoted the enlargement
of atherosclerotic plaques, while choline, TMAO, and betaine
upregulated the expression of arteriosclerosis-related macrophages.
A 3-week broad-spectrum antibiotic pretreatment study confirmed
that gut microbiota play an essential role in TMAO production,
macrophage cholesterol accumulation, and foam cell formation.
Integrative genetic analysis revealed a correlation between hepatic
flavin-containing monooxygenase (FMO) gene expression and
both TMAO levels and plasma high-density lipoprotein (HDL),
potentially elucidating atherosclerosis pathogenesis. These findings
establish a mechanistic pathway in which dietary choline or lecithin
is metabolized to trimethylamine (TMA) by gut microbiota and
subsequently converted to TMAO by hepatic FMO, ultimately
contributing to cardiovascular disease progression.

4.3 Tumors

Peng Gao et al. (Gao et al., 2016) performed a non-
targeted metabolomics analysis of glioma specimens and adjacent
control tissues using capillary electrophoresis time-of-flight
mass spectrometry (CE-TOF/MS). The study demonstrated
significantly elevated levels of hypotaurine in glioma tissues
compared to controls. Linear correlation analysis revealed a
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positive relationship between hypotaurine expression and glioma
severity. Molecular docking studies indicated that hypotaurine
competes with α-ketoglutarate for binding to prolyl hydroxylase
2, thereby inhibiting its catalytic activity. This inhibition promotes
the nuclear translocation of the hypoxia-inducible factor-1α
(HIF-1α/β) subunit and upregulates glioma-associated gene
expression. Further investigations demonstrated that taurine,
the oxidation product of hypotaurine, inhibited intracellular
hypotaurine synthesis and consequently suppressed tumor cell
proliferation. In vivo experiments confirmed that dietary taurine
administration slowed tumor growth, suggesting that hypotaurine
exerts tumor-promoting effects.

Ling Tang et al. (Tang et al., 2018) analyzed 69 paired
liver cancer and adjacent tissue specimens using non-targeted
metabolomics based on CE-TOF/MS, followed by quantitative
metabolite analysis via gas chromatography-selected ionmonitoring
mass spectrometry (GC-SIM-MS) and ultra-performance liquid
chromatography-multiple reaction monitoring mass spectrometry
(UPLC-MRM-MS). Thirteen metabolites were associated with liver
cancer, with pathway analysis indicating a positive correlation
between hydroxyproline and liver cancer progression. Clinical
analysis suggested that low levels of alpha-fetoprotein (AFP) and
hydroxyprolinemight serve as potential biomarkers for liver tumors.
In vitro experiments demonstrated that exogenous hydroxyproline
enhanced cell invasion and increased HIF-1α levels under hypoxic
conditions. HIF-1α knockout inhibited cell proliferation. Animal
models showed that subcutaneous injection of hydroxyproline-
treated SMMC-7221 cells in mice significantly increased tumor
volume and HIF-1α expression. Western blot and qRT-PCR
analyses confirmed the upregulation of ALDH18A1 and PRODH
and the downregulation of PRODH2 under hypoxia, supporting
the hypothesis that hydroxyproline promotes liver tumor growth
through HIF-1α regulation.

Arun Sreekumar et al. (Sreekumar et al., 2009) identified
1,126 differential metabolites from 262 clinical prostate cancer
samples (including 42 tissues, 110 urine, and plasma samples)
using high-throughput LC-MS and GC-MS. Metabolic profiling
successfully distinguished benign prostate conditions, localized
prostate cancer, and metastatic disease. Notably, sarcosine levels
were significantly elevated during prostate cancer metastasis, a
finding validated in 89 independent samples. Mechanistic studies
revealed that sarcosine and its regulatory enzymes (GNMT, SARDH,
and DMGDH) may promote tumor progression by enhancing cell
invasion and migration. Androgen treatment of ERG-positive and
ERG-negative cells, combinedwith chromatin immunoprecipitation
sequencing, linked sarcosine pathway activation to the androgen
receptor and ERG genes, which are key mediators in prostate cancer
progression.These findings suggest that components of the sarcosine
pathway may serve as biomarkers and therapeutic targets for
prostate cancer.

4.4 Other diseases

Hui Sun et al. (Sun et al., 2018) identified 22 differential
metabolic markers in serum samples of Yang Huang syndrome
model mice using non-targeted metabolomics. Targeted
metabolomics further determined the concentration range of

these metabolites, revealing a significant increase in endogenous
D-glucuronic acid levels. Subsequent integrative analysis
using Ingenuity Pathway Analysis (IPA) identified UDP-
glucuronosyltransferase 1A1 as a potential disease target. However,
systematic biological regulation experiments on keymetabolites and
regulatory proteins were not conducted.

Using a mouse model of α-naphthyl isothiocyanate-induced
liver injury, Fang Zhongze et al. (Fang et al., 2017) demonstrated
significant increases in LysoPC(18:0) and LysoPC(18:1) levels in
the serum of the model group compared to healthy controls using
UPLC-Q-TOF/MS-based serum metabolomics. Cryopreserved
mouse liver tissues were analyzed for mRNA expression of
Chka and Scd1, which regulate lipid metabolism. The findings
confirmed elevated levels of LysoPC(18:0) and LysoPC(18:1) under
pathological conditions. In vitro luciferase assays demonstrated that
these lysophosphatidylcholines activated NF-κB in a concentration-
dependent manner, which was further verified through Western
blot and cellular experiments. The use of the NF-κB inhibitor
PPARα elucidated the liver injury mechanism involving the
NF-κB/IL-6/STAT3 pathway resulting from lipid metabolism
dysregulation.

YanmeiMa et al. (Ma et al., 2015) identified 32 and 37differential
metabolites in tilapia infected with Streptococcus evansi (LD50
lethal group) and the survival group, respectively, using non-
targeted GC-MS metabolomics at 30°C. Pathway analysis revealed
L-leucine as the most significant metabolite distinguishing the
LD50 and survival groups. To validate its protective effects against
Streptococcus iniae infection, the authors administered exogenous
L-leucine via injection and oral supplementation. Both methods
significantly improved survival rates in a dose-dependent manner,
indicating that L-leucine enhances resistance to bacterial infections.

Pandey et al. (Pa and ndey, 2024) systematically analyzed the
plasma metabolic profiles of patients with sepsis and septic shock
using metabolomics technologies, identifying key metabolites such
as tryptophan degradation products and acylcarnitines associated
with inflammatory storms and mitochondrial dysfunction.
Dynamic monitoring of succinate and lactate accumulation further
demonstrated their strong correlation with the risk of multi-
organ failure in septic shock, providing real-time prognostic
markers for clinical stratification (Pandey, 2024). These findings
provide potential biomarkers and novel therapeutic strategies
for early diagnosis, risk stratification, and targeted metabolic
interventions. Additionally, another study utilized metabolomics
to analyze the serum metabolic profiles of patients with acute
respiratory distress syndrome (ARDS) complicated by acute
kidney injury (AKI), revealing metabolic pathway abnormalities
associated with inflammation and oxidative stress (Singh et al.,
2024). Furthermore, extensive applications in critical care have
demonstrated that mitochondrial dysfunction can be systematically
elucidated via TCA cycle metabolite flux analysis, providing
mechanistic insights into the collapse of energy metabolism during
multi-organ failure (Siddiqui et al., 2020). These insights provide
a foundation for understanding multiple organ failure (MOF)
pathogenesis and developing targeted metabolic therapies.

Currently, studies focusing on functional metabolomics
remain limited. Table 2 summarizes key metabolites identified in
the aforementioned studies.
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5 Limitations

As a frontier field withinmetabolomics, functional metabolomics
offers unique advantages in elucidating the biological functions
of metabolites; however, it still faces several limitations. The
primary limitation is the incompleteness of metabolite databases.
Currently, public databases such asHMDB,METLIN, and LipidMaps
encompass only a fraction of the metabolites present in actual
biological samples,particularlyplantsecondarymetabolites,microbial
metabolites, and novel modified metabolites such as acylated amino
acids (Wishart et al., 2022). This limitation results in a substantial
number of unannotated metabolites, thereby impeding the in-depth
analysisof their functionalmechanisms.Furthermore,standardization
in experimental procedures remains insufficient. Variability in
sample preparation and data analysis across different laboratories
compromises the comparability of research findings (Blaženović et al.,
2019). Additionally, technical challenges persist in functional
metabolomics. While mass spectrometry and NMR spectroscopy
are widely utilized for metabolite detection, both techniques have
inherent limitations in sensitivity and accuracy. Although mass
spectrometry exhibits high sensitivity, it encounters difficulties in
metabolite identification within complex biological matrices, whereas
NMR spectroscopy is constrained by both sensitivity and resolution.
To advance functional metabolomics, it is imperative to address these
limitations by developing more comprehensive metabolite databases,
establishing standardized experimental protocols, and enhancing
detection technologies to improve metabolite identification accuracy
and facilitate in-depth functional investigations.

6 Conclusion and prospect

While traditional metabolomics has identified numerous
phenotype-associated biomarkers, the biological relevance and
functional mechanisms of these metabolites remain inadequately
explored. Functional metabolomics has emerged as a critical
paradigm shift, transitioning from metabolite identification to
mechanistic validation through advanced analytical platforms
and isotope labeling techniques. Future advancements should
focus on four strategic directions (Oliverp et al., 1998): Multi-
omics integration, incorporating genomics, proteomics, and
lipidomics to establish causal relationships between metabolites
and disease pathways (Nicholson et al., 1999); Application of
emerging technologies, including single-cell metabolomics, spatial
metabolomics, and AI-driven metabolic network modeling, to
resolve tissue-specific metabolic heterogeneity (Fiehn et al.,
2000); Personalized medicine initiatives, aimed at identifying
individual-specific metabolic profiles and biomarkers to facilitate
the development of more effective treatment strategies in clinical
practice; and (Mayerle et al., 2018) Clinical translation, utilizing
functional metabolite panels for drug target discovery and
personalized therapeutic interventions. Notably, the convergence
of stable isotope tracing with CRISPR screening platforms holds
the potential to systematically map metabolite-protein interactions.
This evolution from descriptive biomarker discovery tomechanism-
driven research will accelerate precision medicine, particularly in
fields such as neurodegenerative diseases and cancer metabolism.

Additionally, functional metabolomics has experienced
substantial advancements in recent years, largely driven by the
integration of chemistry, biology, and computational science. To
further propel the field, it is essential to foster interdisciplinary
research by promoting collaboration among experimentalists,
clinicians, and data scientists. We advocate for the establishment
of interdisciplinary alliances to facilitate shared platforms for
standardized data exchange and joint training programs aimed
at cultivating hybrid expertise. For example, integrating chemical
isotope labeling with machine learning techniques can significantly
enhance metabolite annotation accuracy, while systems biology
approaches can effectively link metabolic pathways to disease
phenotypes. This synergy will not only drive innovation in
biomarker discovery but also advance therapeutic targeting
strategies.
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