
TYPE Review
PUBLISHED 08 April 2025
DOI 10.3389/fmolb.2025.1542267

OPEN ACCESS

EDITED BY

Julien Roche,
Iowa State University, United States

REVIEWED BY

Padhmanand Sudhakar,
Kumaraguru College of Technology, India
Kalyani Dhusia,
University of Arkansas for Medical Sciences,
United States

*CORRESPONDENCE

Sankar Basu,
sankarchandra.basu@asutoshcollege.in

RECEIVED 09 December 2024
ACCEPTED 17 March 2025
PUBLISHED 08 April 2025

CITATION

Sil S, Datta I and Basu S (2025) Use of
AI-methods over MD simulations in the
sampling of conformational ensembles in
IDPs.
Front. Mol. Biosci. 12:1542267.
doi: 10.3389/fmolb.2025.1542267

COPYRIGHT

© 2025 Sil, Datta and Basu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Use of AI-methods over MD
simulations in the sampling of
conformational ensembles in
IDPs

Souradeep Sil1, Ishita Datta2 and Sankar Basu � 3*
1Department of Genetics, Osmania University, Hyderabad, India, 2Department of Genetics and Plant
Breeding, Banaras Hindu University, Varanasi, India, 3Department of Microbiology, Asutosh College
(Affiliated with University of Calcutta), Kolkata, India

Intrinsically Disordered Proteins (IDPs) challenge traditional structure-function
paradigms by existing as dynamic ensembles rather than stable tertiary
structures. Capturing these ensembles is critical to understanding their
biological roles, yet Molecular Dynamics (MD) simulations, though accurate
and widely used, are computationally expensive and struggle to sample rare,
transient states. Artificial intelligence (AI) offers a transformative alternative, with
deep learning (DL) enabling efficient and scalable conformational sampling.
They leverage large-scale datasets to learn complex, non-linear, sequence-to-
structure relationships, allowing for the modeling of conformational ensembles
in IDPs without the constraints of traditional physics-based approaches. Such
DL approaches have been shown to outperform MD in generating diverse
ensembles with comparable accuracy. Most models rely primarily on simulated
data for training and experimental data serves a critical role in validation,
aligning the generated conformational ensembles with observable physical and
biochemical properties. However, challenges remain, including dependence
on data quality, limited interpretability, and scalability for larger proteins.
Hybrid approaches combining AI and MD can bridge the gaps by integrating
statistical learning with thermodynamic feasibility. Future directions include
incorporating physics-based constraints and learning experimental observables
into DL frameworks to refine predictions and enhance applicability. AI-driven
methods hold significant promise in IDP research, offering novel insights into
protein dynamics and therapeutic targeting while overcoming the limitations of
traditional MD simulations.
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1 Introduction

Intrinsically disordered proteins and protein regions (IDPs, IDPRs)1 challenge the
classical structure-function paradigm of proteins, which posits that a protein’s specific
biological function is inherently linked to its unique, stable three-dimensional (3D)

1 In the context of this review, IDPs refer to both completely and partially disordered proteins

(IDPs, IDPRs).
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structure (Trivedi and Nagarajaram, 2022). This paradigm, deeply
rooted in Anfinsen’s thermodynamic hypothesis, has served as
a foundational principle of structural biology (Dishman and
Volkman, 2018).However, IDPs defy this classical view by existing as
highly dynamic ensembles of interconverting conformations rather
than adopting a single, stable structural state under physiological
conditions (Kulkarni et al., 2022). The intrinsic disorder observed in
IDPs is a consequence of their distinctive amino acid compositions.
These proteins are typically enriched in polar and charged
residues—such as serine, glutamine, and lysine—and are depleted
in hydrophobic residues, which are essential for forming the
stable hydrophobic cores characteristic of folded proteins (Uversky,
2013). The absence of such hydrophobic cores prevents the
stabilization of a defined 3D structure, resulting in an ensemble of
flexible, unstructured conformations (Orosz and Ovádi, 2011). This
structural plasticity allows IDPs to explore a wide conformational
landscape, which, in turn, enables functional versatility and
adaptability. The dynamic nature of IDPs is central to their
functional repertoire, particularly in cellular processes requiring
molecular flexibility and promiscuous interactions (Aftab et al.,
2024). IDPs mediate interactions with multiple molecular partners
through mechanisms such as conformational selection and induced
fit, enabling high specificity despite their structural heterogeneity
(Arai et al., 2024). This adaptability is often modulated by
post-translational modifications (PTMs), which act as molecular
switches that fine-tune their interactions and activity (Bah and
Forman-Kay, 2016). IDPs frequently serve as hubs or scaffolds
in signal transduction pathways, where they coordinate the
assembly and function of multi-protein complexes (Wright and
Dyson, 2015). Their structural flexibility facilitates the simultaneous
or sequential binding of diverse signaling molecules, ensuring
efficient signal propagation and integration (Su et al., 2024).
This ability to accommodate multiple partners is critical for
forming dynamic, reversible interactions that are responsive
to cellular stimuli (Kulkarni et al., 2021). In transcriptional
regulation, IDPs play pivotal roles by modulating transcription
factors and assembling transcriptional complexes (Tsafou et al.,
2018). Their structural flexibility enables interactions with diverse
DNAsequences and protein partners, facilitating dynamic responses
to developmental and environmental cues (Bugge et al., 2020;
Salladini et al., 2020). Disordered regions are frequently enriched
in host-pathogen protein-protein interactions (PPIs), providing
the necessary structural plasticity for dynamic and promiscuous
binding (Aftab et al., 2024). Notably, studies analyzing molecular
mimicry in host-microbe interactions report that around 78% of
bacterialmimicry proteins and 73%of viralmimicry proteins exhibit
moderate to high levels of intrinsic disorder, facilitating their roles in
immune evasion and host adaptation. Furthermore, 45% of bacterial
and 31% of viral mimitopes (small peptide mimics) also fall into the
intrinsically disordered category (Garg et al., 2022).

However, the intrinsic flexibility presents significant challenges
for traditional methods of structure determination, particularly
in accurately sampling the diverse conformational landscapes of
these proteins (Roca-Martinez et al., 2022). Conventional structural
biology techniques, such as X-ray crystallography and cryo-electron
microscopy, rely on the ability to capture proteins in a single, well-
defined conformation to generate high-resolution structural data
(Evans et al., 2023). The dynamic and heterogeneous nature of IDPs

precludes the formation of the ordered crystals required for X-
ray diffraction studies, as their lack of a stable tertiary structure
prevents them from adopting the uniform conformations necessary
for crystal lattice formation (Smyth and Martin, 2000). Moreover,
techniques like nuclear magnetic resonance (NMR) spectroscopy
and small-angle X-ray scattering (SAXS), while more suitable for
studying dynamic systems, face limitations when applied to IDPs.
NMR spectroscopy can provide information on the ensemble-
averaged properties of IDPs, but the rapid interconversion between
conformations leads to broad and overlapping signals, complicating
spectral interpretation and making it difficult to resolve individual
conformational states (Maiti et al., 2024). Similarly, SAXS yields
low-resolution data that represent an average overall conformation
present in solution, which can obscure transient or low-population
states that may be functionally relevant (Brosey and Tainer, 2019).

A notable example of MD-based conformational ensemble
exploration is the study of ArkA, a proline-rich IDP from yeast actin
patch kinase Ark1p, which regulates actin cytoskeleton assembly.
Using Gaussian accelerated MD (GaMD) (Wang et al., 2021),
researchers captured proline isomerization events, revealing that all
five prolines in Ark1p significantly sample the cis conformation.
This led to a more compact ensemble with reduced polyproline
II (PPII) helix content, aligning better with in-vitro circular
dichroism (CD) data. Biologically, proline isomerization may act
as a switch, regulating ArkA’s binding to the SH3 domain of
Actin Binding Protein 1 (Abp1p). Since SH3 domains prefer PPII
helices, the cis state may slow or modulate binding, affecting
signal transduction and actin dynamics, highlighting a broader IDP
regulatory mechanism, where conformational switching influences
protein interactions (Alcantara et al., 2021).

Traditional MD simulations, while valuable for exploring
protein dynamics, are often insufficient on their own to fully capture
the conformational landscapes of IDPs due to practical limitations
in sampling efficiency and force field accuracy (Zhu et al., 2024a).
Beyond these limitations, the sheer scale of the conformational
space accessible to IDPs poses another challenge. As a result,
there has been a burgeoning interest in leveraging AI-based
methodologies to efficiently sample the conformational space
in IDPs (Gupta et al., 2022). The advent of a data-rich era in
molecular and structural biology, fueled by the exponential growth
of high-throughput experimental techniques and computational
simulations (Velankar et al., 2021), has provided unprecedented
opportunities for the development of data-driven approaches to
tackle longstanding challenges in the study of protein structural
dynamics (Mura et al., 2018). In this data-rich landscape, DL
approaches have demonstrated significant potential in modeling
complex biological systems due to their ability to learn intricate,
non-linear relationships from large datasets without explicit
programming of physical laws (Patel and Tewari, 2022).

In this review, we summarize recent advancements in the
application of DL methods to model the conformational ensembles
in IDPs (Erdős and Dosztányi, 2024). By examining various
DL architectures employed for the purpose, we highlight their
potential in capturing the structural dynamics of IDPs that are
crucial for understanding their multifaceted biological functions
and roles in diseases (Brotzakis et al., 2023; Ruzmetov et al.,
2024). Additionally, we explore the integration of experimental
data with computational models, emphasizing how interdisciplinary
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efforts are enhancing our ability to characterize IDP behavior
(Zhang O. et al., 2023; Liu et al., 2024b). Furthermore, we also
discuss the challenges faced by these generative models in the
context of conformational sampling in IDPs and how incorporating
physics-based constraints can help in overcoming the energy
landscape in IDPs (Guan et al., 2024; Jing et al., 2024).

2 Limitations and latest advents of
molecular dynamic simulations in
sampling conformational ensembles
in IDPs

MD simulations have been a fundamental tool in computational
structural biology for decades, allowing researchers to explore the
atomic-level motions of proteins and other biomolecules over time.
In the context of globular proteins, MD simulations can provide
detailed insights into the structural dynamics and conformational
changes, often pertaining to their function (Hollingsworth and
Dror, 2018). However, when applied to IDPs, MD faces several
inherent limitations. One of the primary challenges is the sheer size
and complexity of the conformational space that IDPs can explore
(Bhattacharya and Lin, 2019). IDPs, by definition, do not adopt
a single, well-defined structure; instead, they exist as an ensemble
of nonconvertible conformations (Bandyopadhyay and Basu, 2020;
Kulkarni et al., 2022). Capturing this diversity requires simulations
that span long timescales—often microseconds (μs) to milliseconds
(ms) — to adequately sample the full range of possible states.
Furthermore, MD simulations often start production runs with
different random seeds when assigning initial velocities to atoms,
typically using aMaxwell-Boltzmann distribution, to ensure that the
results are not biased by specific initial conditions (Roy et al., 2014;
Roy et al., 2015). Such simulations are computationally intensive,
requiring significant computational resources and time, which limits
the practicality of MD for large-scale studies of IDPs (Shrestha et al.,
2021). Moreover, even with extensive simulation times, MD may
fail to sample rare conformations that are biologically relevant
but occur only transiently. These rare states can be crucial for
the functional role of IDPs in processes such as protein-protein
interactions or the formation of transient complexes (Han et al.,
2017; Roy et al., 2022).The inherent bias ofMD simulations towards
sampling states near the initial conditions further complicates
the accurate representation of the full conformational ensemble
(Sullivan and Weinzierl, 2020). To overcome these challenges,
researchers have developed specialized MD techniques tailored
to IDPs. Coarse-grained (CG) models, for instance, reduce the
level of detail by grouping atoms into larger moieties, thereby
lowering computational costs and enabling the simulation of longer
timescales, which are critical for capturing the full range of IDP
conformations (Hu et al., 2024). Additionally, enhanced sampling
methods, such as replica exchangeMD (REMD) andmetadynamics,
are designed to overcome the sampling bias of traditional MD by
facilitating the exploration of the entire energy landscape (Han et al.,
2017). These methods are particularly effective in identifying and
characterizing rare conformational states that play key roles in the
biological functions of IDPs (Gong et al., 2021).

A significant obstacle in MD simulations arises from the
lack of a precise energy function to guide these methods,

particularly in the context of IDPs. Traditional force fields, which
are often optimized for globular proteins, may not adequately
capture the unique dynamic properties of IDPs, leading to biased
sampling and incomplete exploration of conformational space
(Schlick et al., 2021). Traditional force fields, primarily developed
and optimized for globular proteins, such as AMBER, CHARMM,
GROMOS, and OPLS - all of which have an inherent bias
towards well-defined secondary and tertiary structures (Guvench
and MacKerell, 2008). To overcome this bias, researchers have
developed IDP-specific force fields that are better suited to
model the unique dynamic properties of disordered proteins
(Mu et al., 2021). These force fields, such as CHARMM36 m
(Huang et al., 2017), ff14IDPSFF (Song et al., 2017), a99SB-
disp (Robustelli et al., 2018), ESFF1 (Song et al., 2020), among
others, have been designed with modified parameters (assigning
appropriate weightages to the terms) to better account for the lack
of stable secondary structures replaced by the malleable, fluid-
like nature of IDPs. For example, IDP-specific force fields may
reduce the bias towards forming helices and sheets, allowing the
simulations to more accurately reflect the true conformational
flexibility of IDPs (Song et al., 2020). AWSEM-IDP and MOFF
are some CG force fields that were developed for IDP-specific
simulation applications (Wu et al., 2018; Latham and Zhang,
2019). Additionally, the choice of solvent model can be just as
important as the choice of force field (Fischer et al., 2024).
Explicit solvent models like TIP4P/2005 or SPC/E are often
preferred because they provide a more accurate representation
of water’s dielectric properties and hydrogen-bonding capabilities,
which are essential for capturing the highly dynamic and flexible
nature of IDPs (Mu et al., 2021). Implicit solvent models, like
ABSINTH (Choi and Pappu, 2019), use additional potentials
rather than simulated models of water molecules to describe
the influence of solvent (Mu et al., 2021; Janson et al., 2023).
Addressing post-translational modifications (PTMs) are crucial
in conformational sampling of IDPs because they can induce
localized changes in charge distribution, hydrophobicity, and steric
hindrance, which significantly alter the conformational landscape.
These modifications can shift the equilibrium between different
conformational states, wherein changes in surface properties
modulate binding affinities with molecular partners. They can
further create or disrupt transient structural motifs, thereby directly
influencing the functional dynamics of IDPs in cellular processes.
While several force fields, such as AMBER and CHARMM, have
incorporated parameters for common PTMs like phosphorylation
and glycosylation, these modifications are not yet fully optimized
for IDPs (Mu et al., 2021). Also, MD simulations struggle to
effectively integrate experimental data, such as distance restraints or
chemical shifts from NMR, global structural features from SAXS,
and volumetric density constraints from Cryo-EM to bias the
conformational sampling towards experimental profiles. Without
the ability to dynamically adjust simulation parameters based on
real-time data, the generated ensembles may miss critical structural
dynamics and functional states, leading to models that do not
accurately reflect the biological reality of IDPs (Wang et al., 2019;
Vani et al., 2023;Wang T. et al., 2024). As a result, whileMD remains
a valuable tool for studying specific aspects of IDP dynamics,
its limitations underscore the need for alternative approaches
like DL that can more effectively and efficiently sample the vast
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conformational landscapes of IDPs within feasible computational
timescales (Yang et al., 2023).

3 The emergence of deep learning
methods in protein structure
prediction

Deep Learning (DL) is a special kind of machine learning
(ML) that utilizes artificial neural networks with multiple layers,
often referred to as deep neural networks, to autonomously learn
hierarchical representations from complex and large-scale datasets.
In recent years, DL has emerged as a preferred tool in computational
biology, particularly in the field of protein structure prediction
(Pakhrin et al., 2021). Unlike traditional methods that rely heavily
on physical principles or manual engineering of input feature
vectors, DL models can automatically learn complex patterns and
representations from large datasets (Ahmed et al., 2023).The success
of DL in predicting the structures of well-folded proteins has
been exemplified by groundbreaking projects such as AlphaFold
(Ruff and Pappu, 2021) and RoseTTA fold (Baek et al., 2021),
which demonstrated the potential of these models to achieve near-
experimental accuracy in protein structure prediction (Elofsson,
2023). This success has naturally led to interest in applying similar
techniques to the more challenging problem of predicting the
conformational ensembles of IDPs.

DL models excel in capturing the intricate relationships
between amino acid sequences and their corresponding structural
features (Kumar and Srivastava, 2024). These models, particularly
those based on convolutional neural networks (CNNs), Recurrent
Neural Networks (RNNs), and transformers, can process vast
amounts of sequence and structural data, learning to predict
not just a single static structure but an entire range of possible
conformations (Ferruz et al., 2023). Recent work has emphasized the
importance of quantifying ensemble diversity in generative models
to ensure comprehensive conformational sampling, aligning with
the heterogeneous nature of IDP ensembles (Chinnam et al., 2023;
Wu et al., 2018; Ortega et al., 2022). CNNs and RNNs laid the
initial groundwork for sequence-based predictions by leveraging
local sequence motifs (in CNNs) and short-to medium-range
dependencies (in RNNs). CNNs apply sliding filters (kernels) across
the sequence to detect local motifs, leveraging multiple stacked
layers to progressively extract higher-level features (Alzubaidi et al.,
2021). RNNs process sequences one element at a time, updating a
hidden state that carries information forward; variants like Long
Short-Term Memory (LSTM) or Gated Recurrent Units (GRU)
are often employed to mitigate vanishing or exploding gradients.
However, their capacity to represent long-range interactions and
highly flexible structures is limited, making them less optimal
for the extensive conformational ensembles characteristic of IDPs
(Mienye et al., 2024). Transformers, a type of DL model originally
developed for natural language processing, utilize self-attention
mechanisms to weigh the relationships between all elements in a
sequence simultaneously, making them particularly powerful for
capturing complex dependencies across long protein sequences
(Vaswani et al., 2017; Chandra et al., 2023). This ability is
particularly advantageous for IDPs, whose structural flexibility
results in a wide array of potential conformational states. By

leveraging large-scale datasets, such as those available from the
Protein Data Bank (PDB) or specialized IDP databases like DisProt
(Sickmeier et al., 2007), MobiDB (Piovesan et al., 2021), FuzDB
(Hatos et al., 2022), and IDEAL (Fukuchi et al., 2012), DL models
can be trained to recognize the diverse conformational patterns
characteristic of IDPs. The Protein Ensemble Database (PED)
is a primary resource deposit for structural ensembles of IDPs
used to train DL models (Ghafouri et al., 2024). This data-driven
approach allows DL to sample the conformational landscape of
IDPs more comprehensively and efficiently than traditional MD
simulations, making it a preferred method in modern structural
biology research (Zhu et al., 2024a).

4 Deep learning models employed in
the conformational sampling of IDPs

To effectively sample the conformational ensembles of IDPs,
DL models employ a variety of sophisticated techniques designed
to model the high-dimensional and complex nature of IDP
conformations. These models range from transformer-based
architectures like AlphaFold (pipelines using AlphaFold and its
extensions) (Brotzakis et al., 2023; Ghafouri et al., 2024) and
variants (Chennakesavalu and Rotskoff, 2024), which leverage
sequence-structure dependencies, to generative models such as
variational autoencoders (VAEs) (Zhu et al., 2023), generative
adversarial networks (GANs) (Janson et al., 2023), and diffusion
probabilistic models (Janson and Feig, 2024; Zhu et al., 2024b),
each uniquely suited to the conformational sampling challenges
of IDPs. By utilizing vast data-driven frameworks, these DL
approaches enable efficient and comprehensive exploration of IDP
conformational space, often functioning independently of, or in
conjunction with, traditional MD simulations. Additionally, certain
DL models integrate energy-based principles (Patel and Tewari,
2022; Aranganathan et al., 2024), notably through Boltzmann
Generators (BGs) (Patel and Tewari, 2022), to navigate free energy
landscapes, reflecting the thermodynamic properties inherent
to IDPs. While ensemble learning techniques such as boosting,
bagging, and stacking have beenwidely used in variousMLdomains,
their direct application to IDP conformational ensemble generation
remains unexplored albeit promising, for example, incorporating
multiplemodels with physics-based learning and structural features.
Most existing machine learning models in IDP research focus
on disorder prediction rather than leveraging multiple classifiers
to enhance conformational ensemble sampling (Eickholt and
Cheng, 2013; Jones and Cozzetto, 2015).

4.1 Generative adversarial networks

GANs were one of the first DL-based methods to be used
to generate the conformational ensemble of IDPs (Erdős and
Dosztányi, 2024). GANs employ a generator-discriminator
architecture, where the generator synthesizes novel protein
conformations by transforming random noise or latent variables
into structural representations, while the discriminator evaluates
their plausibility by comparing them against real data, such as
contact maps or inter-residue distance distributions derived from
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experiments or simulations (Gui et al., 2020). The adversarial
training process ensures iterative refinement, with the generator
learning to produce increasingly realistic ensembles and the
discriminator improving its ability to distinguish physically plausible
conformations (Zheng et al., 2023).

By training on CG and all-atom MD simulations of IDPs with
lengths from 20 to 200 residues, idpGAN learns the underlying
distribution of protein conformations specific to different sequences.
This approach allows idpGAN to generate accurate and diverse
ensembles in a fraction of the computational time required
by traditional MD simulations. The efficacy of idpGAN is
benchmarked against MD-generated ensembles, demonstrating
its ability to produce accurate conformational distributions while
achieving orders of magnitude faster sampling. Evaluations against
reference MD data reveal that idpGAN-generated ensembles
accurately reproduce key structural properties, including residue
contact maps, radius of gyration (Rg) distributions, and energy
landscapes. Moreover, idpGAN exhibits transferability to an
extent, generating ensembles for sequences outside its training
set highlighting generalizability. One of the notable advantages
of idpGAN is its ability to circumvent the kinetic barriers that
constrain MD simulations. Because generative models directly
learn the equilibrium distribution of conformational states, they
are not bound by timescale limitations inherent to physics-
based sampling methods. However, while idpGAN effectively
models static conformational distributions, it does not retain
temporal information or transition pathways between states. Future
developments could integrate energy-based constraints to improve
structural realism by ensuring that generated conformations
align with biophysically valid energy landscapes. Additionally,
hybridizing generative adversarial learning with reinforcement
learning (RL) techniques, a ML framework where an agent learns
optimal decision-making by interacting with an environment and
receiving feedback through rewards, could introduce trajectory-
conscious sampling, where RL rewards transition pathways that
align with experimentally inferred kinetic data (Janson et al., 2023).

4.2 Variational autoencoders

Another of the most promising approaches for generating
IDP conformational ensembles is the application of Variational
Autoencoders (VAEs) (Liu et al., 2023), which offer a robust
framework for learning the underlying statistical distribution
of protein conformations from training data (Janson et al.,
2023; Zhu et al., 2023). Designed as an extension of traditional
(generative) autoencoders (AEs), VAEs employ a dual neural
network architecture—a combination of an encoder and a
decoder—to reduce the high-dimensional input data, such as
protein structural coordinates, into a lower-dimensional latent
space, which can then be reconstituted into the original structural
format (Kingma and Welling, 2022). This latent space encodes a
smooth distribution of conformations, such that novel and realistic
protein structures can be generated by sampling from it, offering
a means to access structural variations that extend beyond the
training set (Chien, 2019). Specifically, for IDPs, VAEs have proven
invaluable in capturing the flexibility and structural diversity
inherent to these proteins, thereby facilitating the exploration of

conformational ensembles that include rare or transient states
(Zheng et al., 2023; Zhu et al., 2023). VAEs trained on IDP data have
shown a remarkable ability to generate high-quality, experimentally-
consistent ensembles with fidelity levels that exceed traditional MD
and even AlphaFold-based predictions (Mansoor et al., 2024). Here,
protein backbone positions were encoded, providing a compressed
yet information-dense representation that, upon decoding, could
predict high-quality ensemble structures consistent with IDP
conformational fluidity.

The model described in Zhu et al. (2023), employs a VAE
framework optimized for IDP ensemble sampling, enhancing
the conformational space coverage while maintaining structural
consistency with experimental and MD-derived data. The encoder
in this model transforms high-dimensional Cartesian coordinate
representations of IDP conformations into a low-dimensional
latent space using deep neural networks. Unlike AEs, which
directly compress data into a deterministic latent space, the VAE
applies variational inference, encoding each conformation as a
Gaussian-distributed latent variable rather than a fixed vector.
To ensure a stable and generalizable latent representation, the
model applies Kullback–Leibler (KL) divergence regularization,
which enforces the latent space to approximate a Gaussian
prior distribution. This prevents overfitting and ensures that
interpolations between sampled conformations remain structurally
plausible rather than generating unrealistic outliers. Once trained
on MD-derived conformations, the decoder samples new latent
variables from the learned Gaussian distribution and reconstructs
full protein backbone structures. The decoding process follows
a hierarchical generative approach, progressively reconstructing
structural features from global backbone topology to finer atomic-
level details. Unlike traditional AEs, which can suffer from
discontinuities in sampled conformations, the VAE framework
ensures smooth and diverse ensemble generation, producing
conformations that faithfully match experimental chemical
shifts, Rg values, and secondary structure distributions. Zhu
et al. validated the effectiveness of the generated ensembles by
benchmarking them againstMD-derived reference structures across
five IDP systems (RS1, Aβ40, PaaA2, R17, and α-synuclein). The
comparison (e.g., for α-synuclein, Figure 1) demonstrated that the
VAE-generated ensembles exhibited significantly lower Cα root-
mean-square deviations (RMSD) than those obtained from MD-
sampled conformations, indicating improved structural accuracy.
Furthermore, Spearman correlation coefficients showed that the
generated ensembles better preserved the statistical distribution
of MD-derived conformations, reinforcing their consistency with
established IDP ensemble characteristics. The model was also
experimentally validated using chemical shift predictions and
Rg comparisons, demonstrating strong agreement between VAE-
generated structures and experimental IDP data (Zhu et al., 2023).

Phanto-IDP (Zhu et al., 2024a) uses an encoder-decoder
architecture optimized for IDPs conformational sampling,
specifically addressing IDPs’ unique structural flexibility and
complexity. The model leverages a graph-based VAE for encoding
structural features and a transformer-based decoder for high-fidelity
conformation generation. The encoder component of Phanto-
IDP employs a graph convolutional network (GCN) to represent
protein backbone atomic features as graph nodes and their spatial
relationships as edges. This graph-based representation ensures
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FIGURE 1
Visual comparison of MD-sampled versus AI-sampled IDP ensembles of α-synuclein (140 residues). (A) depicts a superposition of MD-sampled
conformations (Allison et al., 2009). (B) shows an equivalent number of conformations [sampled by idpGAN (Janson et al., 2023)]. Both the ensembles
have been procured from PED and sampled evenly.

that local and global structural constraints are preserved during
encoding. The encoded features are then processed through a
variational inference module, where the model learns a probabilistic
latent space that allows for continuous conformational sampling.
Thedecoder consists of three transformer blocks, each incorporating
self-attention mechanisms and update layers to refine the generated
structures. Unlike traditional VAEs, which often struggle with
capturing intricate protein folding landscapes, the transformer-
based decoder enhances non-local sequence interactions, making
it particularly effective for IDP ensemble generation. This approach
enables Phanto-IDP to generate ensembles that faithfully reproduce
structural properties observed in MD simulations, such as Rg
distributions, backbone dihedral angle variations, and contact
maps. Phanto-IDP’s performance is benchmarked against both
MD-derived ensembles and other generative deep-learning models
(Gupta et al., 2022; Zhu et al., 2023). Comparative analysis reveals
that Phanto-IDP achieves higher structural fidelity and diversity
while significantly reducing computational cost. The reconstructed
backbones exhibited an average RMSD of less than 1Å from MD
reference conformations (Zhu et al., 2024a).

The Internal Coordinate Net (ICoN) model offers another
VAE-based framework for IDP ensemble generation, utilizing
bond-angle-torsion (BAT) internal coordinates to represent
conformational diversity efficiently. The encoder in ICoN is
designed to compress high-dimensional protein conformations
into a smooth, three-dimensional latent space, enabling an
efficient and compact representation of structural variability.
Unlike Cartesian coordinate representations, which may introduce
discontinuities in flexible protein structures, ICoN leverages
BAT coordinates to capture the essential degrees of freedom
governing IDP conformational changes. The encoder architecture
consists of multiple fully connected layers, which gradually
reduce the dimensionality of the input structural data to a 3D
latent space. The model is trained using variational inference.
Once trained, ICoN samples new latent vectors from the learned

probabilistic distribution, reconstructing full atomistic protein
structures via its decoder network. The decoder reverses the
encoding process, mapping latent vectors back to BAT coordinates
before converting them into Cartesian space. Unlike conventional
VAEs, which often struggle to maintain sidechain and backbone
coherence, ICoN directly learns the physical constraints of
protein motion. ICoN generates conformations with low-energy,
high-fidelity structural properties, enhancing the accuracy of
conformational predictions beyond those captured by the original
MD dataset (Ruzmetov et al., 2024).

4.3 Transformers (AphaFold pipelines)

Transformers excel by leveraging self-attentionmechanisms that
allow them to consider all residues in a sequence simultaneously
(Wang and Li, 2024). This capability is essential for IDPs, where the
interactions between distant residues—often characterized by high
contact order—can significantly influence the overall conformation
(Plaxco et al., 1998). The self-attention mechanism at the core of
transformer models sets them apart from other DL techniques
like CNNs and RNNs, by allowing it to dynamically weigh the
influence of each residue in a sequence based on its transitory effect
on every other residue, regardless of distance (Choi et al., 2023).This
ability to capture long-range, non-linear interactions is particularly
advantageous for IDPs, where such dynamic and non-local
interactions are crucial for defining the protein’s conformational
ensemble, leading to predictions that are both more comprehensive
and reliable compared to traditional MD simulations or other DL
models. Transformers can process entire protein sequences quickly
and efficiently, generating a probabilistic distribution of possible
conformations that reflects the inherent flexibility and diversity
of IDPs (Ruff and Pappu, 2021). Moreover, transformers have
a unique comparative advantage in their scalability and ability
to learn from large, diverse datasets. Unlike RNNs, which may
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suffer from issues like vanishing gradients when dealing with
long sequences, transformers maintain performance by processing
sequences in parallel, making them highly scalable. AlphaFold
(Jumper et al., 2021; Abramson et al., 2024) employs an advanced
transformer architecture to capture complex sequence-structure
dependencies, leveraging multi-head self-attention mechanisms
to model the intricate spatial relationships among amino acid
residues, thereby achieving unprecedented accuracy in predicting
protein structure (Ruff and Pappu, 2021). Moreover, the advent
of AlphaFold2 has fostered the development of various pipelines
aimed at effectively modeling multiple conformational states or
predicting conformational ensembles of both well-folded proteins
and proteins exhibiting intrinsic disorder or intrinsic flexibility
(Aranganathan et al., 2024; Fan et al., 2024; Ghafouri et al., 2024;
Guan et al., 2024; Li et al., 2024). AlphaFold2 has demonstrated
an emergent capability to capture alternative conformational
states when guided by appropriate modifications to its multiple
sequence alignment (MSA) inputs (del Alamo et al., 2022). Recent
studies have demonstrated that by manipulating MSA depth and
composition, AlphaFold2 can predict not just single structural
states but entire ensembles of functionally relevant conformations,
including those of IDPs and membrane proteins that undergo large-
scale conformational shifts (Ghafouri et al., 2024). His suggests
that AlphaFold2’s architecture inherently encodes information
about sequence-driven conformational landscapes, albeit indirectly.
Beyond standalone transformer-based architectures, recent
advancements have explored hybrid approaches that combine
transformers with other DL frameworks to improve IDP ensemble
generation (Zhu et al., 2024a).

A transformer-based model developed by Chennakesavalu
and Rotskoff, 2024 enhances the conformational sampling of
IDPs by reconstructing atomic-resolution protein structures
from backbone coordinates. The model integrates statistical side-
chain conformations with a transformer architecture to generate
realistic protein ensembles. Using a transformer that predicts
side-chain configurations based on backbone dihedral angles,
the model incorporates both local dihedral dependencies and
global sequence-wide interactions. The model efficiently produces
atomistic conformations consistent with MD simulations when
applied to proteins like Chignolin and the IDR of the androgen
receptor (AR-IDR) (Chennakesavalu and Rotskoff, 2024).

4.4 Diffusion models

Diffusionmodels represent another class of DL-based approachs
that are being used for generating conformational ensembles of
IDPs, as opposed to relatively older models like GANs (Ho et al.,
2020). They leverage a probabilistic generative framework to learn
the inherent structural diversity of IDPs with a higher fidelity when
compared to previous frameworks. Diffusion probabilistic models
operate through a two-step process involving forward diffusion and
reverse denoising. In the forward process, noise is incrementally
added to the data, transforming the protein conformations into
a noisy latent representation. The reverse process then employs a
neural network, typically inspired by architectures like transformers,
to denoise the latent space iteratively, reconstructing plausible
protein conformations (Zhang et al., 2024). This framework enables

the generation of diverse ensembles directly from input sequences,
without relying on multiple sequence alignments or extensive
experimental data.

The idpSAM model is a significant advancement, evolving from
the earlier idpGAN architecture with transferability in mind. It
integrates an AE and a denoising diffusion probabilistic model
(DDPM) to enhance the generation of protein conformations.
The AE compresses the 3D structural information of protein Cα
coordinates into a lower-dimensional latent space. The DDPM then
iteratively refines these noisy encodings, learning their probability
distribution and improving the quality of generated conformations.
After training, a decoder reconstructs 3D structures from these
refined encodings, allowing idpSAM to produce highly accurate
models of IDPs, including those not present in the training dataset
(Janson and Feig, 2024). An overall display of these models and
methods as compared to MD simulation is portrayed in Figure 2.

The IDPFold model utilizes a conditional diffusion model
framework to generate protein conformational ensembles directly
from their sequences. This generative framework consists of two
primary processes: a forward diffusion process and a reverse
denoising process. During the forward diffusion phase, Gaussian
noise is progressively added to real protein structures in a series
of small steps, effectively disrupting the native conformations and
embedding them into a smooth latent space. This process mimics
a stochastic trajectory that gradually removes structural details
while retaining global sequence information. The reverse process,
governed by a DL-based denoising network, reconstructs valid
protein structures by iteratively refining the noisy representations
back into physically meaningful conformations. IDPFold employs
DenoisingIPA Blocks, inspired by AlphaFold2’s structural modules,
to ensure that generated structures adhere to realistic backbone
geometries and residue-residue interactions. Additionally, the
model integrates sequence-based conditioning to guide the
denoising trajectory toward ensembles that reflect the inherent
flexibility and heterogeneity of IDPs. IDPFold employs a hybrid
dataset comprising crystal structures, NMR structures, and
MD trajectories for training and evaluation. IDPFold predicted
ensembles achieve accuracy levels that are comparable to traditional
MD simulations, and sometimes even higher while not being
restricted by energy barriers during sampling (Zhu et al., 2024b).

Taneja and Lasker devised a two-stage generative pipeline. The
first stage employs supervised models to predict ensemble-derived
two-dimensional (2D) structural properties, such as pairwise
distance maps and covariance matrices, by learning from sequences
with closely related ensembles. These 2D features serve as low-
dimensional representations of IDP conformations and guide the
subsequent generative process. In the second stage, a diffusion
model generates 3D CG conformational ensembles using learned
2D representations. The forward diffusion process gradually adds
Gaussian noise to known conformations, transforming them into a
latent distribution. The reverse diffusion process then removes this
noise stepwise, reconstructing biologically plausible IDP ensembles.
A neural network guides this denoising, ensuring structural realism
while overcoming mode collapse, making diffusion models a robust
alternative for IDP ensemble generation. This approach, trained on
a dataset of CG MD simulations, demonstrated accurate 2D and 3D
predictions closely mathcing experimental observables (Taneja and
Lasker, 2024).
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FIGURE 2
A comparative array of approaches of generating the conformational ensembles for IDPs. (A) Traditional MD simulations, which provide detailed
conformational sampling of IDPs and (B) DL-based generative frameworks offering computationally efficient alternatives to derive IDP ensembles with
comparable accuracy. Sub-images (boxes) in (B) portray the graphical abstracts of a few highlighted DL-based methods (taken directly from the
corresponding papers with appropriate copyright permissions), namely, (i) idpGAN (GAN-driven ensemble generation from MD-based and learned
distributions) (Janson et al., 2023), (ii) idpSAM (autoencoder-Diffusion-based sampling of conformations) (Janson and Feig, 2024), and (iii) Phanto-IDP
sequence-to-ensemble modeling leveraging MD sampling for broader conformational exploration) (Zhu et al., 2024a).

5 Overcoming the energy landscape
in IDPs

Effectively sampling the conformational space in IDPs
requires overcoming large energy barriers that separate diverse
conformational states (Do et al., 2014). Traditional methods like
REMD address this challenge by simulating multiple replicas of
the system at different temperatures, allowing exchanges between
replicas to enhance sampling (Qi et al., 2018). However, REMD is
computationally expensive, limiting its applicability to large IDPs
or long simulation timescales. Deep generative models offer a
promising alternative, as they are not restricted by the topology
of the potential energy landscapes and can explore conformational
spaces more efficiently (Anstine and Isayev, 2023). BGs are a class
of generative models specifically trained to sample configurations
directly from the system’s energy function (Noé et al., 2019). Instead
of explicitly learning the system’s probability density function
(such as from short MD trajectories), these models are designed
to sample configurations from an equilibrium distribution by
leveraging a dimensionless energy function u(x). They achieve this
through a generative network paired with reweighting procedures.
The generative network transforms samples from a simple prior
distribution P(z) (e.g., a Gaussian) in latent space into high-
probability configurations from the target distribution P(x)∝e−u(x)

(Zheng et al., 2023). One significant limitation of BGs is their
tendency toward mode collapse, focusing on a limited number
of low-energy metastable states and failing to explore the broader
conformational landscape characteristic of IDPs (Patel and Tewari,
2022). Sparse training data and the complexity of IDP free energy
landscapes exacerbate this issue, as these models tend to neglect
transient or high-energy states (Noé et al., 2019). Therefore, energy-
only learning biases sampling toward stable regions and lacks the
diversity needed for IDP modeling. It has been suggested that
training solely on energy functions may be insufficient to capture
the extensive conformational diversity of IDPs (Patel and Tewari,
2022; Aranganathan et al., 2024). Recent advancements to BGs
encompass equivariant flow matching models (Klein et al., 2023b)
and transferable BGs (Klein and Noé, 2024), which establish a
framework for incorporating molecular topology and symmetries
into the energy function of the biomolecular system. But the key
drawback remains that massive training datasets are required to
explore essential modes without suffering from mode collapse
(Aranganathan et al., 2024). Following the achievements of AF2,
the Str2Str model employs a heating-annealing training technique
for a score-matching model, facilitating navigation across energy
landscape barriers (Lu et al., 2024). This method is exclusively
trained on crystal structures and enables the simulation of local
fluctuations similar to those observed in microsecond-long MD

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1542267
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Sil et al. 10.3389/fmolb.2025.1542267

simulations. AlphaFlow/ESMFlow (Jing et al., 2024) leverages the
AF2 network within a flow-matching framework and has been
trained on both PDB and short MD datasets of 100 nanoseconds
to incorporate timescale information into its training regimen
to effectively capture local fluctuations (Aranganathan et al.,
2024). The ConfDiff model integrates a force-guided diffusion
framework and enhances the generation of diverse and high-
fidelity protein structures. The model employs a regular forward
diffusion - reverse diffusion setup where a DL network utilizes an
additional force guidance mechanism to prioritize conformations
with lower potential energy. This unique approach allows ConfDiff
to align generated structures more closely with the Boltzmann
distribution, effectively addressing the limitations of existing score-
based diffusion methods that often fail to incorporate essential
physical knowledge (Wang Y. et al., 2024).

Integrating energy-based constraints or regularization terms
into other deep generative models has proven successful (Li et al.,
2023). For example, idpGAN incorporates energy distributions
from MD simulations during training (Janson et al., 2023).
This acts as an implicitly learned energy constraint, guiding
the model to generate ensembles with realistic energy profiles,
thereby improving the accuracy of the generated conformational
ensembles. IDPFold captures Boltzmann distributions, ensuring
diverse sampling beyond metastable states (Zhu et al., 2024b). Its
hybrid training approach—pre-training on experimental structures
and fine-tuning on MD trajectories—enhances structural fidelity
and flexibility, effectively avoiding energy barriers that limit BGs.
By filtering non-physical structures and aligning free energy
distributions with MD data, ICoN achieves thermodynamically
consistent ensembles (Ruzmetov et al., 2024). Looking forward,
the authors have expressed their interest in exploring energy-
based training methods for Phanto-IDP to further enhance its
performance (Zhu et al., 2024a).

6 Enhanced conformational sampling
using AI in MD simulation

Conformational sampling using AI-enhanced MD simulations
marks a transformative advancement in structural biology by
synergizing the precision of physics-based models with the
computational efficiency of ML and DL strategies (Zhang J. et al.,
2023). Traditional MD simulations, governed by Newtonian
mechanics, excel at providing atomistic insights into biomolecular
dynamics but are intrinsically limited by their reliance on fine-
grained time steps (Hollingsworth and Dror, 2018), which
capture fast motions such as bond vibrations but fail to traverse
biologically relevant timescales efficiently (Son et al., 2024).
Enhanced sampling techniques, such as metadynamics, umbrella
sampling, and replica exchange MD, aim to overcome these
barriers by reweighting conformational distributions or sampling
biased energy landscapes (Abrams and Bussi, 2014). However,
these approaches often require detailed prior knowledge of the
system, involve considerable computational expense, and are
susceptible to missing critical transitions between metastable
states. Integration of AI has contributed to the development of
enhanced sampling techniques by addressing key limitations of
the traditional methods (Prašnikar et al., 2024). For example,

ML models trained to estimate free energy surfaces or bias
potentials enable adaptive approaches to biased simulations,
improving sampling efficiency (Galvelis and Sugita, 2017). RL
algorithms have also been employed to optimize the initialization
of sampling or the application of bias potentials (Shamsi et al.,
2018; Zhang et al., 2018). Learned Replica Exchange (LREX)
approach, where BGs are used to directly map high-temperature
configurations to target temperatures, effectively bypassing
the need for multiple intermediate replicas (Invernizzi et al.,
2022). However, these approaches do not fix the problem of
needing to re-run simulations from scratch for altered parameters
(Aranganathan et al., 2024). Recent work by Brotzakis et al.
(2025) exemplifies the power of AI-guided MD by integrating
AlphaFold-predicted inter-residue distances as structural restraints
within a Bayesian metainference framework. This approach,
termed AlphaFold-Metainference (AF-MI), efficiently samples
conformational ensembles of IDPs while maintaining agreement
with SAXS andNMRdata, overcoming the limitations of standalone
AlphaFold predictions (Brotzakis et al., 2025).

Other than just AI-enhanced sampling procedures, other works
have successfully integrated DL models into the MD simulation,
such as DeepDriveMD (Lee et al., 2019), which is a deep
convolutional variational autoencoder (CVAE) to cluster protein
folding trajectories, all collated to a reasonably small number
of conformational states. ITO (Implicit Transfer Operator) uses
DDPMs to learn transition probabilities directly from MD data,
enabling efficient simulation over larger time steps while preserving
physical accuracy (Schreiner et al., 2023). Similarly, Timewarp
is a normalizing flow-based generative model that learns to
dynamically increase and optimize time steps upto a hundred
femtoseconds at a time to accelerate the rate of MD when used
for conformational sampling (Klein et al., 2023a). DiAMoNDBack
employs a generative model to backmap CG protein structures
to all-atom resolution. Using a diffusion-denoising process, it
restores atomistic details while maintaining the integrity of the
Cα trace to improve the resolution and accuracy of (Jones et al.,
2023). Integrating various AI methods (Table 1) directly into the
MD engine enjoys the advantage of being transferable and well
generalized across most large, complex, and novel biomolecular
test systems (Aranganathan et al., 2024).

7 Comparative efficiency: DL versus
MD

While MD simulations provide detailed, physics-based insights
into protein dynamics, they are notoriously resource-intensive.
Simulating a single IDP to capture its complete conformational
landscape can require continuous operation on high-performance
computing (HPC) clusters for weeks or even months (Shaw et al.,
2008; Hollingsworth and Dror, 2018). Studies have shown that
adequately exploring the conformational space in IDPs via MD
often demands several thousands of CPU hours. Despite the
extensive computational resources involved, MD may still fail to
capture rare but biologically significant conformational states, which
are crucial for understanding the functional roles of IDPs in
processes such as protein-protein interactions and the formation of
transient complexes (Gopal et al., 2021). In contrast, DL models
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TABLE 1 An overview of various AI-based methods for modelling IDP conformational ensembles, highlighting applicability, advantages, and limitations.

Method Applicability in IDP
sampling

Key advantages Key limitations

Recurrent Neural Networks (RNNs) Used for sequence-based structural
predictions (including disorder). Can
track sequential transitions in short
IDRs or small peptides by updating
hidden states over time. Used in
DynamICE.

Suitable for time-series or short
“fragment-based” conformational
modeling. Straightforward to
implement

Struggle with long IDP sequences
(vanishing gradients). Less effective at
capturing non-local residue interactions

Variational Autoencoders (VAEs) Learn a latent space of conformations
by compressing and reconstructing 3D
structures for IDP ensembles. Used in
ICoN

Provide a smooth, continuous latent
representation, enabling easy
interpolation between conformational
states

Require large and high-quality training
datasets. Transferability and
generalizability are a concern

Generative Adversarial Networks
(GANs)

Adversarial framework (generator vs.
discriminator) to produce diverse
structural conformations. Used in
idpGAN.

Often yield high structural diversity in
generated ensembles. Significantly fast
at inference

Risk of mode collapse, where certain
conformations dominate while others
vanish

Transformer-Based Architectures Sequence-to-structure models that
leverage self-attention to handle
long-range IDP interactions. Variants
or pipelines can sample alternative
conformations by altering input
conditions or by adding constraints.
Used in AF-Cluster/AF-MI.

Captures long-range dependencies
effectively; helpful in modeling
disordered regions

Often computationally heavy to train
from scratch

Diffusion Models Use a forward noise and reverse
denoising process to sample 3D
conformations from learned
distributions. Used in IDPFold

Can systematically explore complex,
high-dimensional spaces, often
capturing rare states. Once trained, can
generate large ensembles relatively
quickly. Better diversity in predictions

Typically computationally complex to
train (involving many forward–reverse
steps). Must have sufficiently
comprehensive training data to avoid
generating unphysical conformations

Graph Neural Networks (GNNs) Model proteins as graphs (residues =
nodes, edges = interactions). Useful for
capturing local and nonlocal
residue-residue interactions in
flexible/disordered domains. Used in
Phanto-IDP.

Naturally incorporate 3D connectivity.
Good at capturing subtle structural
relationships in IDP ensembles (e.g.,
contact maps, side-chain interactions)

Still relatively new for IDP ensemble
generation; typically combined with
other generative frameworks. Requires
abundant structural data for robust
training

Reinforcement Learning (RL) Optimizing IDP folding pathways and
ensemble sampling. DynamICE uses a
form of RL to integrate experimental
data for inference

Can learn optimal pathways for
conformational switching

Requires extensive training and well
defined reward functions

Flow-Based (Normalizing Flows &
Boltzmann Generators)

Invertible transformations from a
simple prior (e.g., Gaussian) to a
complex IDP distribution. BGs
integrate energy functions to sample
near Boltzmann equilibrium. Used in
AlphaFlow/ESMFlow

Can capture rare states missed by short
MD. Exact density estimates enable
reweighting or free-energy analysis

Computationally intensive for large
IDPs. Mode collapse or incomplete
sampling if data or hyperparameters are
insufficient. Requires accurate energy
functions for BGs

offer a scalable and far more time-efficient alternative, which are
particularly evident in high-throughput analyses. After an initial
training phase—which might require substantial computational
power (hundreds of GPUs) over a period of many days (Cheng et al.,
2023), particularly when processing large datasets like those
from the PDB—DL models can predict IDP conformational
states in seconds or minutes (Gupta et al., 2022). For instance,
a recent study demonstrated that a DL model, trained on
IDP conformations, could generate accurate ensemble of 300
conformations in under 20 min, a process that could take several
days to achieve through MD simulations (Zhu et al., 2024b).

The front-loaded computational cost of training DL models is
offset by the remarkable speed of the inference phase, which
can be executed on less powerful hardware, such as a standard
GPU, significantly reducing ongoing computational demands
(Alzubaidi et al., 2021).

Beyond their computational efficiency, DL models excel in
adaptability and continuous improvement. They can be updated
with new data as it becomes available, enhancing their accuracy
without the need to rerun simulations from scratch (Taye,
2023). This is particularly advantageous when integrating new
experimental data from cryo-EM, or NMR spectroscopy, or from
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curated IDP databases (Evans et al., 2023; Giri et al., 2023).
Updating DL models involves fine-tuning the model parameters
using optimization algorithms on new training data, allowing the
model to adapt to changes without complete retraining (Prapas et al.,
2021). This process typically utilizes transfer learning techniques,
where pre-trained weights are adjusted based on new datasets,
significantly enhancing prediction accuracy while maintaining
computational efficiency (Koval et al., 2023). Such integration
refines the model’s predictions and further enhances its utility,
a capability that contrasts sharply with MD simulations, which
typically require starting anew for each modification or new
experimental condition. This adaptability makes DL models highly
suitable for dynamic research environments where conditions and
data are constantly evolving (Nikolados et al., 2022). The outputs
fromDL-based IDP conformational sampling tools typically include
a set of predicted conformations along with their associated
probability distributions, energy scores, and structural metrics to
evaluate the relative stability and likelihood of different conformers
(Teixeira et al., 2022; Brown et al., 2024). Figure 3 portrays the
comparative workflows of MD vs. AI approach towards sampling of
conformational spaces in IDPs from an end-user and a developer
perspective.

The recent development of Phanto-IDP offers compelling
qualitative and quantitative evidence in favour of AI-basedmethods.
In a systematic benchmarking provided by Zhu et al. (2024c),
Phanto-IDP demonstrated superior performance across multiple
metrics compared to both MD and prior DL models (Zhu et al.,
2024a). For instance, on the IDP system α-synuclein (140 residues),
Phanto-IDP achieved an average backbone reconstruction RMSD
of 2.714 Å, significantly lower than the authors’ older VAE-based
(Zhu et al., 2023) models’ 10.417 Å, when compared to the
reference ensemble sampled by MD (see Table 1 of Zhu et al.,
2024a). Furthermore, the Jensen-Shannon (JS) divergence of
the Rg distributions of Phanto-IDP-generated ensembles when
compared with MD-derived ensembles was 0.105, indicating
excellent alignment with Boltzmann-distributed conformational
diversity, much better than that of their previous model showing
a divergence of 1.223. Critically, Phanto-IDP generated 50,000
conformations in under 50 s on a single GPU, i.e., much faster than
the 270 h required for a 1 µsMD simulation even if ab initio training
is taken into consideration—while still preserving global properties
like ensemble diversity and Rg distributions after side-chain
refinement (see Figure 4 of Zhu et al, 2024a). Enhanced sampling
capabilities were clearly demonstrated by Phanto-IDP through its
ability to identify rare conformational states. When trained on short
MD trajectories, the model generated approximately 5.6% helicity-
rich conformations that were entirely absent from the training
data—approaching the 18.3% observed in REMD—even though
it omits the iterative, physics-based sampling typically required
to overcome kinetic barriers (see Figure 6 of Zhu et al, 2024a).
Moreover, PCA analysis revealed that the conformational space
covered by Phanto-IDP is considerably broader, including regions
unvisited by traditional MD (see Figure 4 of Zhu et al, 2024a),
which confirms the enhanced diversity of the generated ensembles.
This broader sampling not only underscores Phanto-IDP’s capacity
to traverse high-energy barriers but also its potential to capture
biologically relevant states that conventional MD might miss. While
J-coupling values for Phanto-IDP ensembles aligned better with

experiments in systems like RS1 and drkN SH3, MD outperformed
the model in others (see Supplementary Figure S16 of Zhu et al,
2024a), highlighting context-dependent accuracy. Even though
more training and fine-tuning is required as acknowledged by
the authors, it shows AI-methods’ promise in achieving near-
experimental accuracy.

The method idpGAN demonstrated rapid sampling speeds
where it could generate thousands of conformations within 1 s
of wall-clock time for IDPs lower than 150 residues as shown in
the authors’ Supplementary Figure 25 (Janson et al., 2023). This
speed advantage makes idpGAN orders of magnitude faster than
MD; however, it struggled with ensemble fidelity, particularly in
recovering MD ensemble distributions and Rg statistics, leading
to inconsistent transferability. To address these shortcomings, the
idpSAM was developed as a successor, leveraging a diffusion-based
framework that improved ensemble fidelity while maintaining high
computational efficiency (Janson and Feig, 2024). IdpSAM achieved
an optimal trade-off between speed and accuracy at 100 diffusion
steps, generating 10,000 conformations in ∼4 min while still far
outperforming the total 509CPUhours required for 5MCMC-based
IDP sampling. IDPFold exhibited the best experimental agreement
among these approaches (Zhu et al., 2024b). While idpSAM was
faster (0.63 min for 300 conformations) as evident in their Table
(see Table 1 of Zhu et al., 2024b), its structures were overly compact
and deviated from experimental values in terms of Rg for certain
IDP systems. In contrast, IDPFold achieved a lower mean absolute
error (MAE) of 0.48 compared to MD’s 0.59 in chemical shift
predictions, indicating superior accuracy. Furthermore, IDPFold
extended sampling beyond metastable MD states, capturing a
broader Boltzmann-distributed ensemble to an extent (see Figure 3
of Zhu et al, 2024b),making itmore representative of experimentally
observed IDP behavior. While idpSAM faithfully reproduced
its MD-derived training ensembles, IDPFold provided a more
experimentally accurate and diverse conformational landscape,
albeit at a higher computational cost (∼21 min). A look-up summary
Table (Supplementary Table S1) of comparison pertaining the above
discussed results is added in the Supplementary Materials.

8 Disadvantages of DL over MD
simulations

Despite the numerous advantages of DL models in sampling
conformational ensembles of IDPs, they also present several
notable disadvantages compared to traditional MD simulations.
Firstly, DL models are heavily dependent on the quality and
diversity of the training data (Munappy et al., 2022). Inadequate
or biased datasets can lead to models that fail to generalize
well to novel or underrepresented IDP sequences, potentially
missing critical conformational states. Secondly, the interpretability
of DL models remains a significant challenge (Liu and He,
2024). Unlike MD simulations, which are grounded in physical
principles and provide explicit insights into atomic interactions,
DL models often operate as “black boxes,” making it difficult to
understand the underlying mechanisms driving their predictions
(Samek et al., 2019). Thirdly, DL models require substantial
computational resources and expertise for their development and
training. Constructing and fine-tuning these models necessitates
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FIGURE 3
Developer and End-user level tasks for AI-Based Methods vs. MD Simulations for IDP Conformational Sampling. This figure contrasts the workflow
differences between AI-based methods (transferable e.g., idpGAN, idpSAM, ICoN, IDPConformerGenerator, etc.) and MD simulations, distinguishing the
roles of developers and end-users in each approach. AI-based methods streamline conformational sampling by shifting the complexity to the
development phase while allowing rapid inference at deployment. Whereas, MD simulations necessitate a lengthier (and time-intensive) process. The
developer-side complexity of MD simulations, including force field optimization, solvent modeling, MD engine (GROMACS, LAMPPS, etc.)
parameterization, etc., is not fully depicted to maintain clarity and avoid visual congestion.

advanced knowledge in ML and access to powerful hardware, which
may not be readily available to all research groups (Sarker, 2021).
Additionally, DL models are susceptible to overfitting, especially
when trained on limited datasets. Overfitting can result in models
that perform exceptionally well on training data but poorly on
unseen data, undermining their reliability for predictive applications
(López et al., 2022). Lastly, the physical accuracy of DL-generated
conformations can sometimes be compromised, as these models
may prioritize statistical patterns over thermodynamic plausibility,
leading to predictions that, while statistically likely, may not always
reflect biologically relevant states (Wodak et al., 2023). While
DL models offer several advantages in generating conformational
ensembles of IDPs, including their computational efficiency and
ability to predict a broad array of conformations from sequence
data alone, it is important to recognize that these models cannot
completely replace MD simulations (Gomes et al., 2020; Lindorff-
Larsen and Kragelund, 2021). DL-based approaches often rely
on training datasets derived from MD-generated conformational
ensembles, and their accuracy is intrinsically linked to the quality

and diversity of the data they are trained on (Zheng et al.,
2023). Without continuous updates and supplementation with
new experimental or simulated data, DL models risk generating
outdated or biased predictions (Gichoya et al., 2023), particularly
as they struggle to generalize well to novel protein sequences
or biological conditions not represented in the training data
(Janson et al., 2023; Janson and Feig, 2024; Ruzmetov et al.,
2024). A table of comparison is given (Table 2) to illustrate the
pros and cons of AI-based methods and MD simulations for IDP
conformational sampling.

9 Applications and case studies: deep
learning in IDP research

One significant advancement in the field of DL-based
conformational ensemble generation for IDPs is the recent
inclusion of ensembles generated by methods such as idpGAN
and IDPConformerGenerator (Teixeira et al., 2022) in the PED
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TABLE 2 Pros and cons of AI-Based methods and MD simulations for IDP conformational sampling.

Feature AI-BASED methods MD simulations

Computational Efficiency Pros: Generates large ensembles rapidly (minutes to
hours) once the model is trained

Cons: Simulation of medium-to-large systems is
computationally expensive and often requires HPC
clusters

Sampling Capability Pros: Efficiently explores vast conformational spaces,
including rare and transient states
Cons: Sampling quality is heavily dependent on the
size and quality of the training dataset.

Pros: Ensures thermodynamic accuracy in sampled
states
Cons: Rare state sampling is limited by inherent
timescale constraints and energy barriers, making it
challenging to capture less populated conformations

Physical Accuracy Cons: Relies on statistical approximations that may not
fully capture physical laws unless physics-based
learning or constraints are incorporated into the
predictive model

Pros: Based on physics-driven force fields, providing
consistent and realistic atomistic behaviour when
paired with the proper choice of water model and force
field

Scalability Pros: Scales efficiently with large datasets and supports
rapid inference

Cons: Despite parallelization, the computational cost
increases steeply with system size and simulation
duration

Data Dependence Cons: Requires extensive, high-quality training data;
performance can degrade with biased or limited data

Pros: Operates independently of external training data,
relying solely on physical models

Experimental Validation Pros: Can integrate experimental constraints (e.g.,
NMR, SAXS, etc.) to guide or refine predictions
Cons: Even with integrated constraints, the models
typically require independent experimental validation
to ensure that predictions are accurate and not overly
biased by the training data

Pros: Simulation outcomes can be directly compared
with experimental observables for validation
Cons: Despite high accuracy, limited simulation
timescales can make it challenging to capture rapid or
rare dynamic events, potentially leaving out key
aspects of the conformational ensemble

Flexibility Pros: Easily adapted to various IDP types using
techniques like transfer learning

Cons: Requires re-simulation for different conditions
or system modifications

Interpretability Cons: Often perceived as a “black box,” which can
complicate mechanistic understanding

Pros: Provides clear mechanistic insights into atomic
interactions and dynamics, facilitating interpretation
of the molecular behaviour

(Ghafouri et al., 2024). This marks a pivotal shift from the previous
focus solely on ensembles derived from explicit experimental data,
such as those obtained through MD simulations. These methods
are particularly useful for disordered proteins like Amyloid-beta
(Aβ) (Scollo and Rosa, 2020) and α-synuclein (Williams et al.,
2018), which play key roles in neurodegenerative diseases such as
Alzheimer’s and Parkinson’s disease respectively. Aβ is a disordered
peptide involved in Alzheimer’s disease, and its structural ensemble
has been extensively studied (Balupuri et al., 2020).

Brotzakis et al. (2025) introduced a significant advancement by
integrating AlphaFold-derived inter-residue distances as structural
restraints within a Bayesian inference framework (Metainference)
(Brotzakis et al., 2025). This method refines MD simulations by
leveraging DL-based structural constraints, resulting in ensembles
that exhibit greater agreement with experimental data compared
to conventional MD approaches alone. A key application of this
method was demonstrated in the structural characterization of
both full disordered proteins (e.g., Aβ, α-synuclein, etc.) and
partially disordered proteins (e.g., TDP-43, ataxin-3, human prion
protein), where AlphaFold-predicted distance distributions were
employed as guiding restraints in Metainference-enhanced MD
simulations. Quantitative benchmarking against experimental
data demonstrated that AF-MI ensembles substantially reduced

deviations in inter-residue distance distributions (e.g., KL
divergence of 0.018 for TDP-43 vs. 0.582 for standalone AlphaFold)
and improved agreement with SAXS-derived radius of gyration
(Rg) values (Supplementary Figure S4 of Brotzakis et al., 2025),
confirming the physical relevance of AlphaFold-derived restraints.
Furthermore, computational efficiency was markedly improved, as
AF-MI simulation converged significantly faster than conventional
MD. Beyond improving accuracy and efficiency, the ability to
sample a broader conformational ensemble was significantly
enhanced, as the Metainference-assisted ensembles exhibited
significant increase in conformational heterogeneity compared to
MD-only simulations. This is evident from the pairwise distance
distributions in Figure 2 of Brotzakis et al., 2025,whereAF-MI better
reproduces SAXS-derived experimental distributions compared
to conventional MD and CALVADOS-2 (Lindorff-Larsen and
Kragelund, 2021), a CG IDP simulation model. Additionally, SAXS
validation across multiple proteins (Figures 3–6 of Brotzakis et al.,
2025) demonstrates that AF-MI yields ensembles that more
accurately capture experimentally observed disorder, supporting
its ability to explore diverse conformational states. AF-MI was also
compared against CALVADOS-2 through a direct experimental
validation via SAXS. For four of six partially disordered proteins
(e.g., ataxin-3, KL = 0.020 vs. 0.042 for CALVADOS-2), AF-MI
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ensembles aligned more closely with SAXS data, while matching
CALVADOS-2’s performance in the remaining two cases (e.g.,
TDP-43, KL = 0.018). Notably, this approach corrected structural
inaccuracies in standalone AlphaFold predictions (e.g., overly
compact conformations in disordered regions), resulting in
ensembles that better reproduced NMR chemical shifts and SAXS-
derived scaling exponents. These findings suggest that AF-MI is
not only computationally efficient (compared to only MD) but also
capable of generatingmore biologically relevant IDP ensembles than
existing CG models.

Amyloid-β1-42 (Aβ42) aggregation is a key pathological
hallmark of Alzheimer’s disease, with oligomerization and fibril
formation being driven by specific structural rearrangements.
Among these, salt-bridge interactions, particularly D23–K28, are
hypothesized (Ruzmetov et al., 2024) to regulate aggregation
propensity. Experimental studies have suggested that this interaction
promotes β-sheet stabilization and enhances fibril formation, but
due to the transient and heterogeneous nature of Aβ42 monomers,
its precise conformational landscape has remained elusive.
Ruzmetov et al. (2024) introduced ICoN, a DL-based generative
model, which efficiently sampled the wide conformational space
of Aβ42 beyond what was observed in MD simulations. ICoN
uncovered previously unseen conformations that featured the
D23–K28 salt-bridge—a structural arrangement that was rarely
observed in the MD trajectory despite extensive sampling efforts,
revealing a spectrum of previously inaccessible conformational
substates stabilized by the D23–K28 interaction. This discovery
validated experimental hypotheses about the role of D23–K28 in
aggregation but provided a new level of structural resolution by
demonstrating multiple viable conformational states, ranging from
extended to highly compact monomeric arrangements, which may
serve as precursors for fibril formation. Additionally, ICoN revealed
key structural motifs in Aβ42monomers, including four local bends
at residue positions 4–6, 11–14, 26–28, and 36–38.While these turns
have been individually reported in prior studies, their simultaneous
presence in theAI-generated conformations suggests a potential role
as structural precursors for fibril assembly, thus necessitating further
studies. Furthermore, ICoN identified an alternative E22–K28
salt-bridge conformation, which is hypothesized to suppress
the toxic β-hairpin formation at residues E22–D23 and reduce
aggregation propensity (Nasica-Labouze et al., 2015). This AI-
generated ensemble provided structural models that could not be
derived solely from MD, offering novel mechanistic insights into
Aβ42 aggregation dynamics. The ability to sample such rare states
computationally is critical for designing aggregation inhibitors and
therapeutics targeting early-stage oligomer formation.

In another study focused on three IDPs—polyglutamine
Q15, Amyloid-beta 40 (Aβ40), and ChiZ from Mycobacterium
tuberculosis—researchers employed DL-based AEs to generate
conformational ensembles (Gupta et al., 2022). The AEs were
trained on a limited dataset from shortMD simulations, minimizing
training time while maintaining the quality of the resulting
conformations. The AEs demonstrated a marked ability to generate
full conformational ensembles that accurately reproduced the
experimental data and covered all conformations sampled in
long MD simulations. For Q15 and Aβ40, the multivariate
Gaussian model applied in the latent space enabled high-quality
conformational reconstructions, with RMSD of around 5 Å and

6 Å, respectively. The generated ensembles effectively captured
the diversity of the MD-sampled conformations, particularly in
the smaller IDPs like Q15. Despite the challenges presented by
larger proteins like ChiZ, where reconstruction RMSDs were higher
(∼7 Å), the generative AE approach still outperformed traditional
MD simulations by rapidly expanding the conformational space
without extensive computational overhead. The results were
validated through SAXS profiles and NMR chemical shifts, further
highlighting the potential of DL in mining the conformational
landscapes of complex IDPs.

10 Discussion and future directions

Recent breakthroughs in AI has shifted the status quo in protein
structure and function prediction. The 50 year old problem of
predicting proteins’ complex structures has largely been addressed
by the likes of AlphaFold, RoseTTA Fold and others and the field has
been awarded a part of the Nobel Prize in Chemistry 2024. However,
most of the work in this field has largely been on well defined
structured proteins and IDPs remain largely unexplored (Trivedi
and Nagarajaram, 2022). Studying conformational ensembles of
IDPs remain crucial to understanding their intrinsic flexibility
allowing them to engage in a variety of biological functions such
as signalling and molecular recognition, which are often mediated
transient interactions with other biomolecules (Krieger et al.,
2014). Additionally, aberrant behavior of IDPs is often linked
to various diseases, including neurodegenerative disorders and
cancers (Martinelli et al., 2019). Understanding the conformational
dynamics of IDPs can help elucidate the molecular basis of these
diseases and identify potential therapeutic targets (Abyzov et al.,
2022). Traditional MD simulations and their various modifications
have been extensively used for sampling the conformational
ensembles of IDPs, however their shortcomings stand bold and clear
(Zhu et al., 2023; Janson and Feig, 2024). Use of AI based tools in
generating or sampling the various conformational states of IDPs
has emerged as a key new frontier with distinguished advantages
(Zhu et al., 2024b). For this, AI methods have been integrated
in enhanced sampling techniques from MD simulations, as well
as, integrated directly into the MD engines (Aranganathan et al.,
2024; Prašnikar et al., 2024). Much effort has been dedicated to
generative models such as GANs, VAEs, diffusion models, and
others (Ruzmetov et al., 2024). Many methods have also been
devised to sample IDP conformational states using AlphaFold
pipelines (Ghafouri et al., 2024). Sampling most of the possible
biologically relevant conformations of IDPs just from their protein
sequence as an input is the ultimate goal but a gargantuan task. But
already we have seen steady progress in this endeavour (Zheng et al.,
2023). A common objective of most generative models, employed
for the generation of the conformational states of IDPs, is to learn
a low-dimensional latent representation of the high-dimensional
conformational space of proteins to efficiently generate realistic
and diverse conformational ensembles (Zhu et al., 2024a; Janson
and Feig, 2024; Zhu et al., 2024c). Incorporating physics-based
calculations into generative DL models is increasingly recognized
as essential for developing approaches that yield predictions with
higher accuracy and biological relevance (Raissi et al., 2019;
Jagtap et al., 2020; Yang et al., 2020; 2022).
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AlthoughDLmodels canefficientlypredictproteinconformations
and improve the speed of conformational ensemble generation,
they remain limited by their reliance on pre-existing datasets
(Vignesh et al., 2024). As a result, while AI-based methods are a
powerful tool for exploring protein conformational landscapes, they
should be considered complementary to, rather than a replacement
for, traditional MD simulations. AI-based conformational studies of
IDPs, suchasα-synuclein,Tauprotein, andamyloid-β,hold significant
promise for elucidating the molecular basis and pathophysiology
of diseases like Alzheimer’s and Parkinson’s (Sengupta and Kayed,
2022; Brotzakis et al., 2023). These studies can also aid in modelling
novel and targeted therapeutic approaches, enhancing drug discovery
efforts (Joshi and Vendruscolo, 2015). Future efforts should focus
on integrating thermodynamic constraints directly into generative
models to improve the accuracy and biological relevance of the
generated conformations, since it has already be shown that learning
the energy function along is not enough (Zheng et al., 2023). Most
of the models today are capable of accurately sampling only relatively
smaller IDP sequences. Larger IDP (including IDRs in large proteins)
sequences can form non-trivial local structures which show transient
long-range interactions within its sequence which are essential in
understanding the underlying phenomena (Wohl and Zheng, 2023).
Future research should explore scaling generative models to larger
IDPs, (also pertaining to the IDRs present in large proteins and
their intramolecular interactions) potentially by using hierarchical
approaches that break down long sequences into smaller segments.

Most of the DL based tools made to predict the conformational
ensembles of IDPs rely on training on simulated data i.e., CG or
all-atom MD simulations and then validation via experimental data
(Janson et al., 2023). While this paradigm has shown significant
progress and promise, the other avenue i.e., training both on
simulated data and experimental observables have been relatively
less explored (Liu et al., 2024b). To ensure the reliability of
AI-predicted conformational ensembles, rigorous experimental
validation is essential. NMR ensemble fitting methods, such
as back-calculated chemical shifts, J-couplings, and nuclear
Overhauser effects (NOEs), allow direct comparison of predicted
and experimentally observed data (Nerli et al., 2018). In addition,
SAXS profiles serve as a complementary validation approach,
offering global structural insights that can assess the compactness
and overall conformational heterogeneity of predicted ensembles
(Chinnam et al., 2023). Single-molecule Förster resonance energy
transfer (smFRET) experiments further enable validation by
capturing long-range distance constraints within IDPs, making
them particularly useful for assessing the dynamic fluctuations
of predicted structures (Qiao et al., 2021). These experimental
techniques, when integrated with AI models, facilitate an iterative
refinement process where structural predictions are continuously
updated to maximize agreement with physical measurements
(Qin et al., 2024). Recent efforts have focused on incorporating
these experimental constraints directly into AI pipelines, ensuring
that generative models not only sample plausible conformations
but also converge toward physically meaningful ensembles that
adhere to Boltzmann-weighted distributions (Liu et al., 2024a).
Future advancements in AI-driven IDP modeling should prioritize
the direct incorporation of experimental validation as an intrinsic
component of model training and optimization, ultimately
leading to more accurate and experimentally consistent ensemble

predictions. DynamICE is an AI based tool developed that learns
the probability of succeeding residue torsions from the preceding
residue of the input sequence by employing a generative recurrent
neural network (GRNN) model to build new conformational states
of an IDP ensemble (Zhang O. et al., 2023). DynamICE (dynamic
IDP creator with experimental restraints) distinguishes itself by
taking advantage of experimental data types such as three-bond
J-couplings, NOEs, and paramagnetic resonance enhancements
(PREs) fromNMR spectroscopy to bias the probability distributions
of torsions of the GRNN (Lincoff et al., 2020). It evolves the
structural ensembles dynamically by refining conformations
through reward-based feedback, ensuring consistency with
experimental data, rather than reweighting pre-existing static pools.
A recent advancement by the same group, IDPForge (Intrinsically
Disordered Protein, Folded and disordered Region Generator),
leverages a transformer-based diffusion framework to generate all-
atom conformational ensembles of IDPs and IDRs while preserving
folded domains. Unlike DynamICE, which relies on torsional
representations, IDPForge operates in Cartesian space, enabling
direct integration of distance-based experimental restraints (e.g.,
PREs, NOEs) during generation. It eliminates sequence-specific
training and achieves competitive agreement with NMR, smFRET,
and Rg data while sampling transient secondary structures and
rare conformations (Zhang et al., 2024). ExEnDiff is a model
that employs an experiment-guided diffusion framework, where
a stochastic differential equation is utilized to perturb protein
data distributions towards a Gaussian distribution. By integrating
experimental measurements from techniques such as NMR and
SAXS, ExEnDiff corrects the sampling process to ensure that
generated conformations align with physical realities and the
Boltzmann distribution (Liu et al., 2024b).

Despite these advances in experiment-driven AI methods, the
dynamic, loosely defined binding interfaces of IDPs continue to pose
challenges for classical structure-based druggability metrics. Unlike
folded proteins, IDPs (fuzzy) typically lack the stable pockets orwell-
formed hydrophobic clefts essential for conventional computational
screens (Saurabh et al., 2023). Nonetheless, above developments
highlight that if experimental observables can be incorporated
to capture disordered-state ensembles, then transient druggability
features can also be systematically modeled. The ability of AI
tools to evolve structural ensembles using experimental restraints
implies that subtle binding hot spots, allosteric regulatory sites,
and disorder-to-order transitions may be identified and assessed
for therapeutic potential. Expanding these pipelines to recognize
ephemeral pockets, ligand-induced conformational shifts, and other
IDP-specific druggability signatures could substantially enhance
the predictive accuracy of AI-based frameworks (Lindorff-Larsen
and Kragelund, 2021). Future efforts should explore to incorporate
experimental constraints directly into DL pipelines to gradually
evolve the structural ensemble prediction based on both simulated
data and experimental observables. Further comparative studies on
biological accuracy, thermodynamic relevance, and performance
across the two broad paradigms will be crucial in determining
whether a balanced reliance on both experimental and simulated
data is most effective, or if prioritizing one data type over the
other is more beneficial for generating accurate IDP conformational
ensembles. Apart from iterative improvement of existing AI based
models and using newer learning methods, it is hard to foresee
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how the generative ML models of predicting conformational
ensembles of IDPs will evolve, or how generally applicable these
models will be to the full range of protein behaviours critical to
biological processes. Additionally, the transferability of generative
models to novel sequences or different environmental conditions
remains an open question. Even though this field of research is
relatively new, there is no doubt that the further development
of AI tools and their subsequent application will revolutionise
the conformational sampling of IDPs both by enhancing MD
simulation strategies and conformational ensemble prediction by
generative methods (Ruzmetov et al., 2024).
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