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Early potential metabolic
biomarkers of T1 stage lung
adenocarcinoma based on serum
metabolomics

Bin Wu, Min Zheng, Qingkui Guo, Ning Wang, Chen Zhu,
Wen Zhao and Ye Xu*

Department of Thoracic Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai, China

Background: This study aims to investigate serum metabolite changes in
patients with early-stage (T1) lung adenocarcinoma, identify potential diagnostic
biomarkers, and establish an early warning mechanism for T1 stage lung
adenocarcinoma.

Methods: The study included two groups: a lung adenocarcinoma group and a
healthy control group. Serum samples underwent non-targeted metabolomics
analysis. Total ion chromatograms (TIC) were generated to assess system
stability. Chromatographic data were analyzed using multivariate statistical
methods, including principal component analysis (PCA) for dimensionality
reduction. Partial least squares discriminant analysis (PLS-DA) further validated
PCA findings. Variables with VIP scores >1.0 in the PLS-DA model were
selected, combined with ANOVA and T-tests (P < 0.05), to identify differentially
expressed metabolites. Receiver operating characteristic (ROC) curve analysis
was conducted to evaluate the diagnostic performance of selected metabolites.

Results: Serum metabolites significantly differed between the lung
adenocarcinoma group and the healthy control group. Multivariate statistical
analysis and ROC curve evaluation identified four potential diagnostic
biomarkers: Cortisol, 3-Oxo-OPC4-CoA, PE-NMe(14:1(9Z)/14:1(9Z)), and
Ceramide (d18:1/9Z-18:1), with AUC values of 0.930, 0.895, 0.890, and 0.795,
respectively.

Conclusion: Cortisol,3-Oxo-OPC4-CoA,PE-NMe(14:1(9Z)/14:1(9Z)), and
Ceramide (d18:1/9Z-18:1) exhibit significantly altered metabolic levels in T1
stage lung adenocarcinoma patients and can serve as metabolic biomarkers.
These markers may enhance the sensitivity and specificity of early diagnosis,
facilitating improved detection of T1 stage lung adenocarcinoma.
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Background

Lungcancer isoneofthemostcommonmalignanttumorsglobally,
with the highest morbidity and mortality (Adams et al., 2023). In
the past few years, the incidence and death rate of lung cancer in
China has increased. According to the global cancer statistics for
2020 reported by the International Agency for Research on Cancer,
there will be approximately 820,000 new lung cancer diagnoses and
715,000 lung cancer-related deaths in China in 2020 (Sung et al.,
2021; Cao et al., 2021). Due to the latent clinical symptoms of
the diseases in the early stages and the lack of effective treatment
options for advanced disease, lung cancer is associated with a high
mortality rate. Lung cancer has a variety of subtypes, and in addition
to morphological and histological differences, different subtypes also
have different tumor progression patterns. Lung cancer can be divided
into small-cell lung cancer (15%) and non-small cell lung cancer
(85%) according to the pathological morphological characteristics
and differentiation of cells (Buma et al., 2023). Non-small cell lung
cancer (NSCLC) includes adenocarcinoma, squamous cell carcinoma
and large cell carcinoma, accounting for about 50%, 35% and 15%,
respectively. The most common histological subtype of NSCLC is
adenocarcinoma, followed by squamous cell carcinoma, and the
proportion of histological subtypes varies by ethnicity. Among all
NSCLC subtypes, lung adenocarcinoma accounts for about 47% of
Western patients and about 55%–60% inChinese patients (Chen et al.,
2022). In daily clinical practice, imaging and clinical symptoms can
no longer reflect the full disease status of patients. Studies indicate
that a majority of lung cancer patients are diagnosed at advanced
stages (stage III/IV)orwithmetastatic disease, facing apoorprognosis
characterized by five-year survival rates as low as 7% for metastatic
NSCLCand3%forSCLC,alongside limitedcurative treatmentoptions
beyond systemic therapies such as chemotherapy or targeted agents
(Hirsch et al., 2017; Blandin Knight et al., 2017; Li et al., 2018). Because
tumor marker measurement can provide a rapid, minimally invasive,
and safe real-time assessment of a patient’s tumor status, it can be used
asanearlydiagnostic tool for lungcancer.Therefore, searchingforearly
warningmarkers of lung cancer can improve the early detection rate of
lung cancer patients and improve the clinical outcome of lung cancer.

In recent years, the important role of changes in cell metabolism
in the development of tumors has been gradually recognized.
During early tumorigenesis, when alterations in protein abundance
or gene expression remain undetectable by conventional methods,
metabolomic shifts-driven by both endogenous dysregulation (e.g.,
oncogene-induced enzymatic activity changes) and external stimuli
(e.g., microenvironmental interactions)-can be identified through
sensitive analytical platforms such as mass spectrometry. Unlike
proteomics or genomics, where sensitivity primarily refers to
detecting low-abundance molecules (e.g., cancer-related proteins
at pg/mL levels), the unique advantage of metabolomics lies in
its ability to capture early functional perturbations in biochemical
pathways. These metabolic alterations often precede measurable
changes in protein/gene expression, as small-molecule metabolites
(e.g., lactate, 2-hydroxyglutarate) rapidly accumulate or deplete in
response to nascent tumorigenic signals, enabling earlier detection
of pathological states before morphological tumor formation
(Patti et al., 2012; Mayers et al., 2014). Metabolomics is a
rapid method for qualitative and semi-quantitative analysis of
metabolites in cells, biological fluids, and tissues. As a relatively

new tool for disease biomarker identification, metabolomics has
been applied to identify early diagnostic markers of various diseases
(Chen et al., 2019). With the continuous recognition of the
important role of metabolomics in the early diagnosis of tumors,
lipid molecules, as an essential class of metabolites in the human
body, have a variety of critical biological functions, such as biofilm
composition, vesicle transport, adhesion, migration, apoptosis,
energy storage, neurotransmission, signal transduction, and post-
translational modification (Zhu et al., 2020). According to the
International Committee on the Classification and Nomenclature
of Lipids, lipids are mainly divided into the following types:
fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterol
lipids, prenol lipids, saccharolipids, and polyketides. At present, fatty
acids, glycerolipids, ,sphingomyelins and sterol lipids are considered
most relevant to tumor development and chemotherapy (Huang
and Freter, 2015). With the deepening of the study of lipid
metabolism, lipid metabolites have gradually developed into
metabolomics, which is a more systematic study of the occurrence
and development of tumors.

Metabolomics, as a system biological technique for the large-
scale determination of metabolites, has been applied to the study
of various human diseases. Given the systematic characteristics
of the omics method, applying metabolomics can generate a
complete metabolic landscape map and conduct a comprehensive
analysis to identify key metabolic factors in disease pathology
(Lin et al., 2021). At present, the primary detection methods
include nuclear magnetic resonance (NMR), liquid-mass coupling
(LC-MS), gas-mass coupling (GC-MS) and chromatography, etc.
Untargeted metabolomics enables the discovery of disease-specific
biomarkers by analyzing metabolic profiles through high-resolution
spectral detection and chemical pattern recognition. To ensure
biological interpretability, this approach requires a tightly defined
research question-such as identifying cancer-associated metabolic
perturbations-rather than conflating distinct objectives like drug
efficacy and toxicity assessment. By focusing on cohort-stratified
metabolic signatures (e.g., tumor vs. normal tissue) and validating
candidates via orthogonal assays, metabolomics offers a robust
framework for biomarker identification, as demonstrated in recent
studies linking dysregulated pathways (e.g., glycolysis, nucleotide
metabolism) to cancer progression (Wishart, 2016; Johnson et al.,
2016). Studies have shown that the disturbance of lipid metabolism
can change the composition and permeability of cell membranes,
leading to the occurrence and development of various tumors,
and abnormal lipid metabolism has been found in colon cancer,
breast cancer, prostate cancer and other tumors (Long et al.,
2018). However, there are few effective reports on the early
diagnostic markers of T1 lung adenocarcinoma based on lipid
metabolites. Currently, common biomarkers for lung cancer include
CYFRA 21-1, carcinoembryonic antigen, neuron-specific enolase,
and squamous cell carcinoma antigen (Nooreldeen and Bach, 2021).
These biological criteria have shown poor diagnostic value in daily
clinical practice and are unsuitable for early detection of T1 lung
adenocarcinoma. In addition, it is difficult to ac accurately diagnose
and classify a disease with a single marker, and the combination
of multiple markers can effectively improve the sensitivity and
specificity of diagnosis.

In summary, current clinical practice for T1 lung
adenocarcinoma lacks reliable early detection biomarkers,
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TABLE 1 The characteristics of the selected population.

Factors Lung cancer
(n = 20)

Health (n =
20)

Age (years) Mean 61.96 62.76

Sex Female/male 6/14 10/10

Location

Right upper 7

Right middle 1

Right lower 2

Left upper 8

Left lower 2

underscoring the urgent need to identify and validate highly
sensitive diagnosticmarkers to address this critical gap in early-stage
disease management. Our study employed untargeted metabolomic
profiling of serum samples from lung adenocarcinoma patients
and healthy controls to identify biomarkers with robust diagnostic
potential, establishing a foundation for early detection of stage T1
lung adenocarcinoma.

Material and methods

Chemical and instrumentation

LC/MS grade acetonitrile and HPLC grade methanol were
purchased from Merck (Dannstadt, Germany), formic acid and L-
2-chloro-phenylalanine were purchased from Sigma-Aldrich (St.
Louis,MO,USA), and the experimental water wasWatsons’ distilled
water. All other reagents were commercially analytically pure. The
Thermo Fisher FRESCO17 cryogenic centrifuge is used for ultra-
high speed centrifugation of samples.

Patients

This study enrolled 20 treatment-naïve patients with surgically
confirmed stage T1 lung adenocarcinoma (tumor size: 1–3 cm) and
20 age-matched healthy controls (mean age: 61.96 vs. 62.76 years)
from Shanghai Jiao Tong University Affiliated Tongren Hospital
(2021-2022). All patients exhibited upper lobe predominance
(right upper: 7; left upper: 8) with standardized nodule sizes
to minimize disease heterogeneity, while controls had no
cancer history and matched BMI (18.5-23.9). Exclusion criteria
included metabolic disorders (obesity, diabetes, hyperlipidemia),
concurrent medications, or systemic diseases. Demographic details
(age, sex distribution: patients 6F/14M vs. controls 10F/10M)
and tumor localization are summarized in Table 1. The study
protocol (IRB: 2021-080-02) was approved by the hospital ethics
committee, with written informed consent obtained from all
participants.

TABLE 2 Elution gradient of the mobile phase.

Time (min) Flow rate (mL/min) A (%) B (%)

0 0.4 98 5

3 0.4 98 5

16 0.4 2 98

18 0.4 2 98

Samples collection and preparation

All blood samples were taken from subjects before fasting
to avoid the influence of diet on lipid metabolites in blood.
Venous blood was placed at 25°C for 10 min and centrifuged at
2,000 rpm for 20 min. About 100 μL serum was added to 300 μL
methanol solution containing 5 μg/mL L-2-chlorophenylalanine
as the internal standard and rotated for 2 min. Centrifuge at
13,000 rpm for 10 min at 4°C and obtain 200 μL supernatant. The
same volume of serum is extracted from all samples and mixed
evenly to prepare quality control samples.

Chromatographic condition

In this study, ACQUITYTM UPLC-Waters Xevo G2-XS
QTof high resolution mass spectrometry system was used. For
chromatographic separation, a Waters HSS T3 analytical column
of 2.1 × 100 mm and 1.8 μM was employed, along with a Waters
HSS T3 guard column. The sample size was 2 μL, the column
temperature was 25°C, the flow rate was 0.4 mL/min.The elution
protocol was initiated at a flow rate of 0.4 mL/min with 98% A
and 5% B (0–3 min), followed by a linear gradient to 2% A and
98% B over 13 min (3–16 min), and maintained at 98% B for
an additional 2 min (16–18 min) to ensure complete elution of
analytes as shown in Table 2. The total runtime of the method
was 18 min under consistent flow rate conditions. Data acquisition
and processing were conducted using the instrument-integrated
MassLynx™ software (v4.2).

Mass spectrum conditions

The mass spectrometer operated in both positive and negative
electrospray ionization (ESI) modes, with capillary voltages set to
2.5 kV (ESI+) and 2.0 kV (ESI−), a cone voltage of 40 V, and a
mass acquisition range of m/z 50-1500 to cover small-molecule
metabolites. High-resolution data were acquired at a scan rate of
0.2 s/scan with a resolution exceeding 20,000 FWHM. Ion source
conditions included a temperature of 120°C, desolvation gas (N2)
flow of 800 L/h at 500°C, and cone gas flow of 50 L/h. For structural
elucidation, data-dependent acquisition (DDA) was employed
with dynamic collision energy (15–40 eV) to fragment precursor
ions. Real-time mass calibration utilized leucine enkephalin (m/z
556.2771 for ESI+ or 554.2615 for ESI−) via LockSpray every
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30 s, ensuring mass accuracy below 5 ppm. System stability was
monitored using daily QC samples, with retention time drift
<0.1 min and peak intensity RSD <15%.

Data processing and statistical analysis

Raw data acquired in both positive and negative ionization
modes (m/z 50–1500) were imported into Progenesis QI™ (v3.0) for
preprocessing, including noise reduction, baseline correction, and
peak alignment across all samples. Feature detection was conducted
with a sensitivity threshold of 10 counts and a minimum peak width
of 0.1 min, while isotopic and adduct ion clusters were deconvoluted
to generate a refined list of molecular features. Quality control (QC)
samples, comprising pooled aliquots of all study samples, were
analyzed to monitor technical variability, with features exhibiting
>15% relative standard deviation (RSD) in QCs excluded from
downstream analysis.Metabolite identificationwas performed using
Progenesis QI™ software (version 3.0, Waters Corporation) with
optimized parameters to ensure robust and reproducible analysis.
Raw LC-HRMS data files (.raw) were imported into the software
for automated peak detection, alignment, and deconvolution,
applying a signal-to-noise ratio (S/N) threshold of 10 and a
minimum peak width of 0.1 min to distinguish true metabolic
features from background noise. Retention time alignment across
all samples was conducted with a tolerance of 0.2 min to correct
for instrumental drift, while isotopic and adduct ion clusters (e.g.,
[M+H]+, [M+Na]+, [M−H]−) were resolved using a mass error
tolerance of <5 ppm and an intensity threshold of 1,000 counts.
Feature quantification was based on area-under-the-curve (AUC)
integration, with baseline subtraction performed dynamically to
minimize noise interference.Metabolite annotation was achieved by
matching accurate mass (<5 ppm error) and MS/MS fragmentation
patterns (when available) against the HumanMetabolome Database
(HMDB), METLIN, and an in-house library of authenticated
standards. For unidentified features, tentative annotations were
assigned using elemental composition prediction and neutral loss
analysis. Final data were normalized to internal standards and
exported for visualization in tools such as SIMCA-P+ 13.0 software
for multivariate statistical analysis, and total ion chromatogram
(TIC) was established to investigate the stability of the instrument.
Principal component analysis (PCA) and partial least squares-
discriminant analysis (PLS-DA), were applied to identify cohort-
specific metabolic signatures.For differential metabolite screening,
a dual statistical approach combining univariate and multivariate
analyses was applied: univariate analysis identified features with
significant fold changes and adjusted p-values (FDR <0.05 via
Benjamini-Hochberg correction), while multivariate analysis using
partial least squares-discriminant analysis (PLS-DA) prioritized
metabolites based on variable importance in projection (VIP scores
>1.0). Metabolites meeting both criteria (FC > 1.2 or FC < 0.6,
FDR <0.05, and VIP >1.0) were classified as high-confidence
differential candidates. Then, the area under the ROC curve was
used to evaluate the diagnostic ability of differential metabolites.
Finally, bioinformatics analysiswas performed by Ingenuity Pathway
Analysis (IPA) software to identify the differential metabolite
interaction networks. IPA is a robust bioinformatics tool designed
to interpret complex biological data by integrating experimental

findings with curated knowledge from scientific literature and
databases. In the context of metabolomics, IPA facilitates the
construction of metabolite interaction networks through a
systematic workflow. Initially, differentially expressed metabolites
identified via untargeted metabolomics are uploaded into the IPA
platform, accompanied by identifiers such as HMDB or KEGG IDs
to ensure accurate annotation. The software maps these metabolites
to its Knowledge Base, which encompasses manually curated
interactions, pathways, and functional associations derived from
peer-reviewed studies.

Results

Multivariate statistical analysis

A total ion flow chromatogram (TIC), as shown in
Supplementary Figures S1A,B, was established to observe the
retention time of the instrument, the stability of the instrument,
and the amount of substances measured.The PCA analysis revealed
the global metabolic variation between healthy controls (HC)
and lung cancer, with the first two principal components(two
components model: R2X[1] = 0.146, R2X[2] = 0.0752).NEG (two
components model: R2X[1] = 0.396, R2X[2] = 0.0765)). The score
plot demonstrated partial overlap between groups along PC1 but a
discernible separation trend along PC2 (Figures 1A,B), suggesting
underlying metabolic differences. Data preprocessing included log-
transformation and unit variance scaling to mitigate dominance by
high-abundance metabolites, with no outliers detected (Hotelling’s
T2 < 95% confidence interval). To enhance group discrimination,
Partial Least Squares-Discriminant Analysis (PLS-DA) was applied,
yielding a model with two latent variables (R2X = 0.262, R2Y =
0.99) and robust predictive capability (Q2 = 0.945 via 7-fold cross-
validation) (Figures 2A,B). Permutation testing (200 iterations)
confirmed model validity, with a negative regression slope (p <
0.001), ruling out overfitting (Figures 2C,D).

Differential metabolite screening

To find the differential metabolites in the T1 lung
adenocarcinoma group, variables with VIP greater than 1.0 were
selected according to the PLS-DA model, Spss Statistics 18.0
combined with independent Analysis of Variance and T-test
were applied. With P < 0.05 as statistical significance, Bonferroni
correction was used for multiple test adjustments. Finally, 105
differential metabolites were identified, of which 82 were lipid
metabolites, as shown in Supplementary Table S1. The volcanic and
heatmap of the differential metabolites were obtained, as shown in
Figures 3, Figures 4.

Significant changes in differential
metabolites of lung adenocarcinoma
groups

In the condition of statistical significance (P < 0.05), the
lung adenocarcinoma group was compared with the healthy
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FIGURE 1
Principle component analysis (PCA) 3D scores plot to discriminate the metabolic profiles in serum of the lung adenocarcinoma group and healthy
control group. POS (two components model: R2X[1] = 0.146, R2X[2] = 0.0752).NEG (two components model: R2X[1] = 0.396, R2X[2] = 0.0765); (A) PCA
score of the two groups (pos); (B) PCA score of the two groups (neg).

FIGURE 2
PLS-DA score plot and permutation validation for discriminating lung adenocarcinoma patients from healthy controls. (A) PLSDA score scatter plot
between lung adenocarcinoma group and healthy control in positive ion mode (R2X = 0.262,R2Y = 0.99,Q2 = 0.945); (B) PLSDA score scatter plot
between lung adenocarcinoma group and healthy control in negative ion mode(R2X = 0.563, R2Y = 0.896, Q2 = 0.743); (C) Permutation test evaluating
the robustness of the PLS-DA model (n = 200 permutations, R2=(0.0,0.917), Q2=(0.0,0.018)) in positive ion mode; (D) Permutation test evaluating the
robustness of the PLS-DA model (n = 200 permutations, R2=(0.0,0.658), Q2=(0.0,0.0676)) in negative ion mode; CTL - Healthy Control group, D - lung
adenocarcinoma group.

control group. Fold change greater than 2 indicates a significant
increase, and Fold change less than 0.5 indicates a significant
decrease. 34 indicators were significantly increased, as shown in
Supplementary Table S1. There are 71 indicators of significant
downward adjustment, as shown in Supplementary Table S1.

ROC curve analysis of differential
metabolites

In order to evaluate the differential metabolites found
through multivariate statistical analysis, ROC curve analysis
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FIGURE 3
Volcano plot of differential metabolites, red dots represent significantly upregulated metabolites in the lung adenocarcinoma group, and green dots
represent significantly downregulated metabolites in the lung adenocarcinoma group.

was performed for 105 differential metabolites, as shown
in Supplementary Table S2. With AUC values 0.75 as the
threshold, a total of four differential metabolites have been
found, Cortisol, 3-Oxo-OPC4-CoA, PE-NMe(14:1(9Z)/14:1(9Z)),
and Ceramide (d18:1/9Z-18:1), as shown in Figure 5.
The AUC values were 0.930, 0.895, 0.890, and 0.795,
respectively.

Differential metabolite network analysis
diagram

Theinteractionnetwork generated through IPAanalysis (Figure 6)
integrates differentially expressed metabolites (fold change >2,
FDR <0.05) and reveals critical metabolic reprogramming features
associated with lung cancer progression. The figure presents
a steroidal framework centered around 5-pregnen-3β-ol-20-
one, characterized by its cyclopentanophenanthrene core with

a hydroxyl group at the C3 position and a ketone moiety at
C20. A dehydration reaction (−H2O) is indicated at the C3
hydroxyl, likely leading to the formation of a double bond, a
common step in steroid biosynthesis to generate derivatives
such as progesterone analogs. Subsequent modifications include
the introduction of a fluorine atom (Flairine) at a strategic
position, inferred to enhance metabolic stability and receptor
interaction through its electronegative properties, and an acetyl
group attached via esterification, potentially serving as a protective
modification to modulate solubility or act as a prodrug mechanism.
The sequential transformations—dehydration, halogenation, and
acetylation—highlight a synthetic pathway aimed at optimizing
pharmacokinetic properties, such as prolonged half-life and targeted
bioactivity. Structural ambiguities, notably the incomplete closure of
the upper-right ring system, are resolved through standard steroidal
numbering conventions, while the absolute stereochemistry
(e.g., β-configuration at C3) is presumed based on typical
biosynthetic pathways.
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FIGURE 4
Heat map of differential metabolites, with red representing high content and blue representing low content.

Discussion

Due to the influence of smoking, air pollution and the
aging population, the incidence of lung adenocarcinoma is
increasing yearly. However, the early clinical symptoms of lung
adenocarcinoma patients are not obvious, and most patients are
already in the local advanced stage or metastases when diagnosed,
with a low 5-year survival rate and a very high recurrence rate
(Ray et al., 2023). In recent years, researchers have explored the
etiology and pathogenesis of lung adenocarcinoma from many
angles. Still, so far, no theory can effectively explain the process
of its occurrence and development. Although several blood-
based tests have been developed to help classify lung cancer,
non-invasive and reliable methods and biomarkers for early lung
cancer detection are still lacking (Cohen et al., 2018). Presently, the
specificity and sensitivity of commonly used diagnostic markers
for lung adenocarcinoma in clinical practice are low, showing
poor diagnostic value, and a single diagnostic marker is difficult
to diagnose and classify a disease accurately. Therefore, the search
for early warning markers of lung adenocarcinoma has become the
top priority to improve the clinical diagnosis and treatment of lung
adenocarcinoma, especially in stageT1,which is of great significance
to improve the 5-year survival rate.

Our study identified four biomarkers-cortisol, 3-Oxo-OPC4-
CoA, PE-NMe(14:1(9Z)/14:1(9Z)), and Ceramide (d18:1/9Z-
18:1)-as potential diagnostic candidates for early-stage (T1) lung
adenocarcinoma. These metabolites have not been specifically
reported as biomarkers for T1-stage lung adenocarcinoma. In

the context of T1 stage lung adenocarcinoma, understanding
the role of them could provide insights into novel therapeutic
strategies and prognostic markers. Cortisol, a glucocorticoid
hormone produced by the adrenal glands, plays a significant role
in various physiological processes, including metabolism, immune
response, and stress regulation. While cortisol is extensively studied
in adrenal pathologies and stress-related disorders, its role as a
metabolic biomarker in cancer is less defined. In adrenocortical
carcinoma (ACC), cortisol overproduction is a diagnostic and
prognostic marker, with guidelines recommending its assessment
in clinical management (Fassnacht et al., 2018). However, no
direct evidence links cortisol to T1-stage lung adenocarcinoma.
Its immunosuppressive effects and metabolic reprogramming
properties (e.g., promoting glycolysis) suggest potential relevance
in tumor microenvironments, but this remains unexplored in early
lung cancer. 3-Oxo-OPC4-CoA, a key intermediate in fatty acid
β-oxidation, reflects the reliance of cancer cells on altered lipid
metabolism to fuel rapid proliferation, is not explicitly studied in
T1-stage adenocarcinoma. However, fatty acid oxidation (FAO)
is a recognized metabolic adaptation in cancer cells, including
lung cancer, to support energy demands and survival. Compounds
targeting FAO pathways (e.g., etomoxir) are under investigation,
implying that intermediates like 3-Oxo-OPC4-CoA could serve as
metabolic markers, though this requires validation (Fassnacht et al.,
2018). PE-NMe(14:1(9Z)/14:1(9Z)), a phosphatidylethanolamine
derivatives, is implicated in membrane dynamics and signaling
across cancers. There was no studies specifically address PE-
NMe species in lung adenocarcinoma. Their structural role in
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FIGURE 5
ROC curve analysis of differential metabolite.

membrane fluidity and interaction with oncogenic signaling
pathways suggests potential utility in early tumor detection,
though this remains speculative. Ceramides, including Ceramide
(d18:1/9Z-18:1), are sphingolipids that have been implicated in
the regulation of cell death and survival. They are known to
induce apoptosis in cancer cells, making them a potential target
for cancer therapy (Ung et al., 2024).

There are 84 lipid metabolites among 105 differentially
expressed metabolites in our study,it is important to underscores
the critical role of lipid metabolism dysregulation in the
pathogenesis of T1-stage lung adenocarcinoma. The differential
lipid classes identified in our study—phosphatidylcholines
(PC), phosphatidylethanolamines (PE), triglycerides (TG), and
ceramides—highlight distinct metabolic disruptions linked to T1-
stage lung adenocarcinoma development. Phosphatidylcholine (PC)
is critical for membrane structure and signaling, with emerging
roles in T1-stage lung adenocarcinoma. Lipidomic studies using
LC-MS revealed distinct monounsaturated-to-saturated PC ratios

between adenocarcinoma and normal tissues, suggesting diagnostic
potential for histological subtypes (Muranishi et al., 2019). Genetic
studies highlight glycerophosphocholine acyltransferase Gpc1’s role
in PC remodeling, influencing cancer cell membrane dynamics
through saturated/unsaturated PC balance (Anaokar et al., 2019).
Advanced imaging techniques, particularly intra- and peritumoral
radiomic features from CT scans, enhance subtype discrimination
in pure ground-glass nodules (Jiang et al., 2024). Integrating lipid
metabolism (PC profiling) and radiomics offers a multimodal
strategy to refine early diagnosis and targeted therapies for T1-
stage lung adenocarcinoma. Phosphatidyl ethanolamine (PE) is
an abundant phospholipid in mammalian cells. It has significant
activity and regulatory functions in cell proliferation, metabolism,
organelles, entosis, autophagy, stress response, apoptosis, and
senescence. Using ultra-high performance liquid chromatography-
time-of-flight mass spectrometry, Chen et al. conducted non-
targeted metabolomics analysis on the serum of patients with early
lung cancer, patients with benign lung diseases and healthy controls

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1544774
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Wu et al. 10.3389/fmolb.2025.1544774

FIGURE 6
Differential metabolite-associated biological networks, typical pathways, and functions. In a network diagram, molecules are represented as nodes, and
the biological relationship between two nodes is defined as a line. Orange symbols indicate upregulated metabolites, blue symbols indicate
downregulated metabolites, yellow means found to be inconsistent with downstream molecular states, and gray means undetected. The solid line
between molecules indicates the direct physical relationship between molecules, while the dashed line indicates the indirect functional relationship.

and found that lipid metabolism profile of patients with early lung
cancer had significant changes, among which phosphatidylcholine
and phosphatidylethanolamine could be used as biomarkers
of early NSCLC (Chen et al., 2018). Triglycerides, studied for
their role in cancer metabolism, are linked to tumor progression
in T1-stage lung adenocarcinoma. Inflammatory biomarkers
like CXCL9, associated with improved disease-free and overall
survival, suggest interconnected metabolic-inflammatory pathways
influencing prognosis (Zhang et al., 2020). Surgical interventions,
such as segmentectomy (lung-preserving) versus lobectomy, offer
comparable oncological outcomes forT1 tumors, balancing function
preservation and efficacy (Bilgi and Swanson, 2019; Hattori et al.,
2016). Advanced imaging techniques, including CT habitat analysis,
improve preoperative prediction of invasive patterns (e.g., spread
through air spaces), guiding personalized management (Peng et al.,
2024). Integrating metabolic insights, surgical strategies, and
imaging innovations enables a multidisciplinary approach to
optimize T1-stage adenocarcinoma treatment and patient outcomes.
In order to describe the expression characteristics of abnormal lipid
metabolism in early lung cancer,Wang et al. used high-performance
liquid chromatography and mass spectrometry to conduct non-
targeted lipid omics analysis and data analysis on the plasma of 171

patients with T1 lung cancer and 140 healthy adults. They identified
1478 metabolites of 14 types of lipids under the positive ion mode.
In the negative ion mode, 708 metabolites of 13 kinds of lipids
were found, and lysophosphatidylcholine, phosphatidylcholine, and
triglyceride were identified as the most important characteristics of
early cancer detection (Wang et al., 2022).

In addition to triglyceride metabolism, lipid changes are
related to free fatty acid metabolism, sphingomyelin, and ceramide
metabolism. Fatty acid metabolism is involved in tumorigenesis
and development and plays an important role in many biological
functions, such as cell membrane formation, energy storage, and
molecular transmission of tumor signals (Ye and Li, 2023). Various
bioactive intermediates produced during fatty acid metabolism
regulate the occurrence and development of lung tumor cells
throughmultiple steps. Highly active fatty acidmetabolism provides
favorable conditions and necessary energy for lung tumor cells’
survival, proliferation and invasion. Enzymes in the sphingomyelin
metabolic pathway have been found to be dysfunctional in
lung cancer, desensitizing cells to treatment response and
promoting cell proliferation, migration, and angiogenesis by down-
regulating ceramides levels (Janssen et al., 2020). Sphingomyelin
is considered a sphingolipid, accounting for about 85% of all
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sphingolipids in cell membranes. Sphingomyelin consists of a
phosphatidylcholine head, fatty acid tail, and sphingomyelin. The
chemical structure of sphingomyelin gives it a significant role in
signaling pathways. Sphingomyelin isolated from cancer cells can
also promote growth, angiogenesis, and metastasis. Ceramide,
as the center of sphingolipid metabolism and the precursor
of complex sphingolipids, can be used to synthesize complex
sphingolipids, including sphingolipids or glucose sphingolipids,
and can also be degraded by ceramidase to produce sphingoside,
which is mainly used to induce cell cycle arrest and apoptosis,
and control the growth and spread of cancer cells (Gomez-
Larrauri et al., 2021). Ceramide is widely recognized as a central
tumor suppressor molecule due to its ability to induce apoptosis and
anti-proliferative response, which can promote apoptosis in almost
all cells, tissues and organs. High ceramide levels can directly or
indirectly disrupt REDOX homeostasis, and increase membrane
permeability and reactive oxygen species formation. Cang et al.
conducted a non-targeted metabolomics study on 20 NSCLC
patients and 10 healthy volunteers, collected positive and negative
ion scanning data of subjects in the two groups. The results showed
a large number of lipid changes between lung cancer and healthy
group, such as phosphatidylcholine, phosphatidylethanolamine,
lysophosphatidylcholine, lysophosphatidylethanolamine,
sphingomyelin, ceramide, diglycerol, triglyceride and cholesterol
(Cang et al., 2021). Mitchell et al. used non-targeted lipidomics
to detect the difference in lipid profiles between cancerous
and non-cancerous lung tissue samples from 86 patients with
suspected stage I or IIA primary NSCLC. The results showed
that compared with non-cancerous tissues, the lipid profiles
of cancerous tissues were consistently higher in sterols, higher
in sphingolipids and lower in cardiolipins. And there were
significant lipid profile differences between cancer and non-cancer
samples (Mitchell et al., 2021). Fan et al. conducted non-targeted
lipidomics analysis of 67 NSCLC cases and 18 healthy subjects
based on liquid chromatoclC-mass spectrometry, and the results
showed that compared with remote non-cancerous tissues, the
levels of phosphatidylethanolamine, lysophosphatidylglycerol,
ceramide (Cer), phosphatidylcholine (PC), phosphatidylglycerol
and triglyceride in lung cancer tissues were increased. Levels of free
fatty acids, cardiolipin and phosphatidylinositol were decreased, and
ceramide and diacylglycerol were used as combined tissue markers
to distinguish adenocarcinoma from squamous cell carcinoma,
PC(38:6) and Cer G3 (d18:1/22:0) were used as potential markers
to distinguish lung cancer from healthy tissue. The sensitivity,
specificity and area under the curve are (0.78, 0.70 and 0.78) and
(0.94, 0.67 and 0.80), respectively (Fan et al., 2020).

As these examples suggest, a greater understanding of the
differences in lipid metabolism between lung cancer groups
and healthy controls is an essential first step in building more
complete models of early progression and warning of lung
cancer. To screen efficient and specific metabolic markers for the
early diagnosis of T1 lung adenocarcinoma, this study adopted
the metabolomics technology based on liquid chromatography
and high-resolution mass spectrometry (LC-MS) to establish a
complete set of methods, including sample pre-processing, data
collection and data processing to explore the changes of serum
lipid metabolites in T1 lung adenocarcinoma group and healthy
control group. Differential metabolites were screened out, and

the diagnostic value of potential differential metabolites was
evaluated using ROC curve. The results showed that Cortisol,
3-Oxo-OPC4-CoA, PE-NMe(14:1(9Z)/14:1(9Z)), and Ceramide
(d18:1/9Z-18:1) can be used as metabolic markers for the early
diagnosis of T1 lung adenocarcinoma, which can be used for
mass screening of high-risk populations for cancer prevention,
and reduce unnecessary radiation exposure and invasive diagnostic
procedures.

Conclusion

To sum up, this study is based on the serum samples of the
subjects, which is simple and less invasive, and easy to repeat
the detection over time. The potentially confusing effects of lipid
metabolism complications, such as diabetes, hyperlipidemia and
atherosclerosis, were excluded. The changes of lipid metabolism
in serum of patients with stage T1 lung adenocarcinoma were
explored by combining metabolomics technology and multivariate
statistical analysis. It was found that the serum metabolic profile
of the lung adenocarcinoma group was significantly different from
that of the healthy control group. Cortisol, 3-Oxo-OPC4-CoA,
PE-NMe(14:1(9Z)/14:1(9Z)), and Ceramide (d18:1/9Z-18:1) can
be used as combined lipid markers for the early diagnosis of
T1 lung adenocarcinoma, improving the diagnostic efficiency of
T1 lung adenocarcinoma. Of course, our study is also related to
limitations; the relatively small study sample and regional data set
may question the generality therefore, the clinical applicability of
these combined markers will need to be confirmed by further large-
scale cohort studies.
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