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Introduction: Primary ciliary dyskinesia (PCD) is an autosomal recessive rare
disease caused by alterations in ciliary structure and function. Without a
unique gold standard diagnostic test, the European Respiratory Society and the
American Thoracic Society recommend using various diagnostic techniques
to improve accuracy. This study aimed to demonstrate the effectiveness of
immunofluorescence (IF) analysis in the diagnosis of PCD cases with uncertain
genetic results and to demonstrate the importance of international collaboration
in the diagnosis of PCD.

Methods: In collaboration with IF specialists at the University of Munster,
individuals with inconclusive results in the Marmara University PCD panel
consisting of the 22 most common genes and clinically suggestive of PCD
were included in the study. IF imaging determined the subcellular localization of
DNAHS5 and GASS8 in respiratory epithelial cells. Nasal nitric oxide measurements,
high-speed video microscopy (HSVM) analysis, and genetic analyses were
performed.

Results: 19 patients were evaluated. The median age (25-75p) was
15 years (10-20 years) with 12 (63.2%) males. Three cases (15.7%) showed
an absence of DNAH5, and one (5.3%) had a proximal distribution of
DNAHS5 in the ciliary axoneme. One case (5.3%) had cells without cilia,
indicating a possible ciliogenesis defect. All individuals with abnormal
IF analysis had a PICADAR score of 6 or above, and their cilia were
immotile in HSVM.

Discussion: Consistent with the IF finding suggesting a ciliogenesis defect,
further genetic analysis revealed biallelic pathogenic variants in CCNO in the
affected individual. The absence of DNAHS5 in the respiratory epithelial cells of an
individual carrying heterozygous pathogenic splice variants in DNAHS5 suggests
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the need for further genetic analysis. This study underscores the importance of
international collaboration in diagnosing rare diseases like PCD.

KEYWORDS

primary ciliary dyskinesia (PCD), international collaboration, low income countries, high
speed video microscopy, rare disease, diagnostic challenges

1 Introduction

Primary ciliary dyskinesia (PCD) (ORPHA:244) is a rare
autosomal recessive genetic disorder characterized by abnormal
movement of motile cilia (Frommer et al., 2015). It is a complex,
heterogeneous, and multisystemic disease presenting with a range
of clinical symptoms, including rhinosinusitis, middle ear disease,
bronchiectasis (BE), and subfertility. Approximately half of the PCD-
affected individuals exhibit situs abnormalities, and a subset of these
individuals may also have associated congenital heart diseases or
other organ abnormalities, particularly those with situs ambiguous
or heterotaxy (Kennedy and Plant, 2014).

Diagnosing PCD can be challenging because there is no single
gold standard test or method (O'Connor et al., 2021). The American
Thoracic Society (ATS) and European Respiratory Society (ERS)
recommend using a combination of diagnostic techniques to
increase sensitivity and specificity (Shapiro et al., 2018; Lucas et al.,
2017). Another barrier to accurate diagnosis is the complexity
of the diagnostic methods, which require specialized equipment
and trained staff (Leigh et al, 2011). Additionally, the lack of
diagnostic devices in low-income countries further complicates the
diagnosis process (Surdut et al., 2023).

In recent years, immunofluorescence (IF) staining has gained
popularity as a diagnostic tool for PCD (Omran and Loges, 2009).
This technique involves detecting ciliary proteins in respiratory cells
using fluorescence or confocal microscopy and labeling them with
antibodies targeting proteins such as outer (ODA) and inner (IDA)
dynein arms, radial spokes (RS), dynein regulatory complex proteins
(N-DRC), and central pair (CP) (Shapiro et al., 2018; Lucas et al.,
2017). IF staining helps in recognizing the structure of the ciliary
axoneme and has proven effective in confirming specific variants
as pathogenic by identifying the location of protein compounds
within the ciliary axoneme (Bhatt and Hogg, 2020). IF analysis
is cheaper, faster, and more convenient than other ultrastructural
analysis methods like transmission electron microscopy (TEM)
(Shoemark et al., 2017). ERS Task Force experts agree that IF can
be helpful in clinical settings (Lucas et al., 2017).

Our diagnostic approach for PCD primarily includes genetic
analysis and nasal nitric oxide (NO) measurements. While nasal
NO measurement is a valuable screening tool, its diagnostic
utility is limited (Knowles et al, 2014; Raidt et al, 2022).
Although the majority of PCD cases present with low nasal
NO levels, certain genetic variants have been reported to
exhibit normal or even elevated values (Knowles et al, 2014;
Yiallouros et al., 2019; Collins et al., 2014). Consequently, this
test cannot be relied upon as a conclusive diagnostic tool for
PCD as it may not accurately identify all cases. To address this
limitation, we introduced high-speed video microscopy (HSVM) in
January 2023. A potential drawback of our diagnostic approach is
that our PCD genetic panel comprises only 22 PCD-associated
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genes, making it challenging to diagnose patients with rare or
novel variants. Consequently, we often require panels with more
comprehensive genes or ultrastructural tests such as TEM and
IF. Some patients exhibit highly suspicious clinical findings, but
their genetic results show heterogeneous variations in PCD genes,
necessitating ultrastructural tests like IF to confirm the presence of
disease variants.

This study aims to diagnose individuals with highly suspicious
clinical findings and unclear genetic results, emphasize the
significance of IF analysis in diagnosing PCD, and highlight
the benefits of collaborating with specialized centers in the
diagnostic process.

2 Materials and methods

2.1 Subjects

Individuals with clinical symptoms and medical history
suggestive of PCD and no pathological variants detected in PCD
genetics performed using a targeted genetic panel, including the 22
most frequently identified PCD-associated genes (Table 1), were
included in the study. Written informed consent was obtained
from patients aged over 18 years and from the parents of patients
under 18 years. Clinical and demographic data were collected
from medical records. This study was approved by the Clinical
Research Ethics Committee of Marmara University (Protocol No:
09.2023.111). Nasal NO measurements were conducted according
to ERS recommendations using a CLD 88sp NO analyzer (ECO
MEDICS, AG, Duerten, Switzerland) (Omran and Loges, 2009).

2.2 Immunofluorescence analysis

To obtain respiratory epithelial cells, a transnasal brush
biopsy (Cytobrush Plus; Medscand Medical, Malmd, Sweden) was
performed (Omran and Loges, 2009). The cells were suspended
in cell culture medium (RPMI), spread onto glass slides, and
air-dried at the outpatient clinics of Marmara University. These
samples were then sent to the IF laboratories at the University
of Miinster between November and December 2022. IF analysis
was performed in a cohort of 19 PCD-suspected individuals and
five healthy controls at the University of Miinster. The cells were
treated with 4% paraformaldehyde, 0.2% Triton X-100, and 1%
skim milk before incubation with primary antibodies (3-4 h) and
secondary antibodies (30 min) at room temperature (Omran and
Loges, 2009). Individuals were analyzed using antibodies against
component proteins for the ODAs (DNAHS5) and the nexin-dynein
regulatory complex (GASS8) of the ciliary axoneme (Omran and
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TABLE 1 Targeted genetic panel used for PCD in Marmara University.

10.3389/fmolb.2025.1547152

Normal Outer dynein Inner dynein Outer and Central Absent or
ultractructure arm arm and inner dynein apparatus reduced cilia
axonemal arm and radial
organization spoke
DNAHI1 DNAH5 CCDC39 DNAAFI RSPH9 FOXJ1
GAS2L2 DNAII CCDC40 DNAAF2 RSPH4A
DNAI2 DNAAF3 HYDIN
DNALI DNAAF4 SPEF2
NMES DNAAF5
DNAH9 CCDCI03
LRRC6

Loges, 2009). Monoclonal Mouse anti-DNAH5 and polyclonal rabbit
anti-GAS8 (HPA041311) primary antibodies were used for double
labeling at a 1:500 dilution (Omran and Loges, 2009). Mouse
monoclonal anti-DNAH5 antibody was generated as previously
described (Omran et al., 2008). Goat Anti-mouse Alexa Fluor 488
and anti-rabbit Alexa Fluor 546 secondary antibodies were used
as 1:1000 dilution. To visualize cell nuclei, DNA was stained with
Hoechst 33342 (Sigma). High-resolution fluorescence images were
were taken using a Zeiss Axiovert 200 equiped with ApoTome.2
using a PlanApo 63X/1.4NA oil objective. Images were taken using
a AxionCam?712 mono and processed with ZEN2 Blue software.
Figures were prepared with Adobe Creative Suite 4 (Omran and
Loges, 2009; Dougherty et al., 2016).

2.3 High-speed video microscopy analysis

After IF staining was completed in Miinster, HSVM analyses
were performed as an additional diagnostic tool at Marmara
University between January 2023 and March 2023. Nasal epithelial
cells were obtained by using the nasal brushing technique from
patients (Dougherty et al., 2016). Participants were recruited if they
had not taken nasal steroids or decongestants for at least 4 weeks
and had not developed symptoms of acute respiratory tract infection
for at least 4 weeks. Ciliated cells placed in a pre-warmed culture
medium (RPMI 1640-Medium) at a temperature of 37°C!7. The
cells were subsequently equilibrated to the optimal temperature
of 37°C on a heater plate (Tpi-TSX, Tokai, Japan). The frequency
of ciliary movement was measured using HSVM with the Sisson-
Ammons Video Analysis software (SAVA, MI, United States). The
measurements were taken with an inverted phase-contrast Nikon
Eclipse TS100 microscope (Nikon, Japan) equipped with a x40
objective and linked to a digital high-speed video camera (Basler
acA1300-200um, Germany). The digital image sampling was set at
640 x 480 pixels and a frame rate of 120-150 frames per second
(fps) for a duration of one minute, with intervals of 15 s. The ciliary
beat was analyzed from both top and side views using real-time
and slow-motion replay (Raidt et al., 2014). Ciliary beat patterns
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(CBP) were defined as “normal, virtually immotile, stiff beating
with a reduced amplitude, circular gyrating motion” and ciliary beat
frequency were measured (Raidt et al., 2014). The results obtained
in HSVM could not be confirmed through air-liquid interface (ALI)
culture as it is not available at our center.

2.4 Statistical analysis

® ®
Statistical analysis was conducted using IBM  SPSS  Statistics

Version 20 software. For descriptive analysis, normally distributed
data were expressed as mean + SD, while non-normally distributed
data were expressed as median [interquartile range (IQR)].
Statistical significance was set at p < 0.05.

3 Results

Nineteen PCD-affected individuals were included in this study.
The median age (25th-75th percentile) was 15 years (10-20 years)
with 12 (63.2%) individuals being male (Table 2).

We performed IF analysis in controls and PCD-affected
individuals targeting DNAHS5 (structural component of ODAs) and
GAS8 (structural component of N-DRCs). In unaffected controls,
DNAH5 and GAS8 localize to the axonemal length. However, we
detected an abnormal localization of DNAHS5 in five cases (Table 2).
DNAHS5 was completely absent in three cases (15.7%) (CB, OG,
and OY) who shared clinical characteristics: neonatal respiratory
distress, chronic rhinitis, recurrent otitis and sinusitis. All had
immotile cilia on HSVM. CB and OG presented with situs inversus
totalis and BE, while OY lacked these. Genetic analysis revealed
no pathogenic variants in CB and OG, whereas OY carried a
heterozygous DNAHS5 splice variant (¢.9106-1G>A). Nasal NO levels
varied, with CB showing lower values (38.94) compared to OG
(108.23 nL/min).

In only one case (IK) (5.3%), IF staining showed proximal
distribution of DNAH5 in the ciliary axoneme. This patient, in
contrast to numerous PCD cases, did not exhibit chronic rhinitis,
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recurrent otitis, sinusitis, or situs inversus totalis; however, the
patient presented with a history of neonatal respiratory distress and
BE. Nasal NO levels were low (30.68 nL/min), genetic analysis did

HSVM
findings
(37°)
Abnormal
beat pattern
Abnormal
beat pattern

not identify a pathogenic variant, and HSVM findings demonstrated
immotile cilia.

One individual (HAA) (5.3%) showed cells without cilia in
IF staining. This patient presented with a history of neonatal

DNAH5
and GASS8

respiratory distress, chronic rhinitis, and recurrent otitis and
sinusitis. In contrast to typical PCD cases, the patient did not
exhibit situs inversus totalis or BE, and nasal NO levels were

staining

for

Normal
Normal

relatively elevated (90.27 nL/min). Initial genetic analysis did
not detect any pathogenic variants. Subsequently, whole exome
sequencing (WES) was performed. However, after the patient
submitted a sample for IF staining, WES analysis was completed,

Variant analyses

revealing a biallelic pathogenic CCNO variant (c.248_252dup
p (Gly85Cysfs*11). Figure I illustrates examples of the absence
or abnormal localization of DNAHS5 in four individuals with
confirmed PCD.

In two individuals (AG and TS), IF results were normal despite

No known
mutation
No known
mutation

low nasal NO and an abnormal beat pattern observed through
HSVM (Table 2). One individual with situs inversus (BMT), a
PICADAR score of 10, and an abnormal beat pattern detected by
HSVM also had normal IF results (Table 2). WES analysis was
performed at the time of IF sampling for AG; however, the results

PICADAR Genetic

10

were not yet available. Following IF analysis, a homozygous RSPH4A
¢.1105G>C (p.Ala369Pro) pathogenic variant was identified.

After the implementation of HSVM in our center in
collaboration with Miinster, the remaining patients were recalled

otitis and

Recurrent
sinusitis

for HSVM assessment. WES analysis were planned for cases with
abnormal HSVM results, low nasal NO measurements, and a
PICADAR score above 5.

All individuals with abnormal IF analysis had a PICADAR score
| i greater than 7. The cilia of all individuals with abnormal IF were

(%)
=
=
<

s

immotile according to HSVM.
Parental consanguinity was observed in 100% of the individuals,
and all had neonatal respiratory distress. Table 2 summarizes the

L
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o
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<
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v

(@)

o
[<

clinical and demographic features, along with HSVM findings, of the

BE
+

NA, not available; Cons, consanguinity; nRDS, neonatal respiratory distress syndrome; BE, bronchiectasis.

patients with abnormal IF results.

4 Discussion

inversus

In this study, we successfully diagnosed PCD using IF analysis
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g § ) tools, including genetic testing, HSVM, and nasal NO measurement.
4 2 z g b The addition of IF analysis significantly enhanced our diagnostic
o capabilities. Furthermore, through international collaboration,
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7 HSVM has been introduced at our institution, resulting in notable
& 8 | : advancements in the diagnosis of PCD.

£ o At our center, current practice involves using nasal NO
=

v <D\ measurements and genetic testing to evaluate suspected PCD cases.
?3» E Genetic panels now offer broader gene coverage and are more cost-
;E 2 = o effective than WES (Platt et al., 2021). Our panel includes the 22
S 8 f'>i. % § most frequently observed PCD-related genes; however, limitations
~ ersist, such as incomplete genetic diagnoses due to unknown
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a E x genes, variants of uncertain significance, or single heterozygous
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variants not included in the panel. As a result, many individuals
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DNAH5

DNAHS5

DNAHS5

DNAH5

FIGURE 1

Outer dynein arm defects by IF. Respiratory cilia double-labeled with antibodies directed against DNAHS5 (green) and GAS8 (red) show colocalization of
DNAHS5 with GAS8 along the cilia from healthy controls. In cells of three PCD-affected individuals CB, OY and OG, DNAHS is absent from the ciliary
axonemes and is proximal in one individual IK. Nuclei were stained with Hoechst33342 (blue). Scale bars represent 10 um.
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with highly suggestive clinical features remain without genetic
confirmation of PCD.

Diagnosing PCD remains complex and challenging due to
the absence of disease-specific symptoms, screening tests, and a
single gold-standard diagnostic method. Additionally, PCD centers
are rare, and the lack of a standardized diagnostic algorithm
further complicates diagnosis and awareness efforts (Behan et al.,
2016a; Rubbo and Lucas, 2017). Current guidelines recommend a
combination of diagnostic tools, but algorithms vary significantly
between regions (Shapiro et al, 2018; Lucas et al, 2017). For
instance, the ERS recommends HSVM as the first diagnostic
test, while the ATS suggests extended genetic panel testing
(Shapiro et al., 2018; Lucas et al., 2017). In our country, limited
diagnostic resources have resulted in an approach similar to the
ATS algorithm, where genetic testing follows nasal NO screening.
However, genetic analysis is often time-consuming and limited in
scope. To address these limitations, we introduced HSVM into our
diagnostic repertoire through international collaboration with the
University of Miinster.

International collaborations have demonstrated effectiveness in
diagnosing and managing rare or complex conditions in resource-
limited settings. Such partnerships have facilitated the diagnosis
of inherited thrombocytopenias in Argentina and improved
the understanding of barriers to pediatric cancer diagnosis in
Western Kenya (Glembotsky et al., 20125 Severance et al.,, 2022).
However, examples of collaboration for PCD diagnosis remain
limited (Rumman et al, 2023). Our study aimed to address
diagnostic uncertainties for individuals with inconclusive results
through IF analysis, enabling identification of underlying causes
in a subset of cases. Moreover, our institution has successfully
integrated HSVM into its diagnostic protocol. Similar to our
findings, Rumman etal. reported that 68 of 464 clinically
suspected PCD patients were diagnosed through international
collaboration (Rumman et al., 2023).

Previous studies have reported cases of PCD where patients
exhibited normal IF results despite a definitive diagnosis
(Biebach et al., 2022; Shapiro and Leigh, 2017). Additionally, IF
analysis may be insufficient for diagnosing PCD individuals with
central pair (CP) defects, as the absence of the CP-associated SPEF2
protein has been noted in HYDIN mutant cells (Cindric et al,
2020). In our study, three individuals with high clinical suspicion
of PCD had abnormal nasal NO levels and HSVM findings but
normal IF results. This discrepancy may arise from genes associated
with normal ultrastructure or the need for additional staining with
specific IF antibodies. Although IF analysis is widely used to confirm
the absence of proteins caused by genetic mutations, its diagnostic
efficacy is constrained by the availability of validated antibodies and
its reported low sensitivity in PCD diagnosis (Shoemark et al., 2017;
Baz-Redon et al., 2020). Furthermore, as novel genes and proteins
associated with PCD continue to be identified, the IF antibody panel
will require expansion (Knowles and Leigh, 2017).

To determine the likelihood of PCD, researchers have proposed
various predictive tools (Martinu et al,, 2021). Among these, the
PICADAR score has emerged as a widely utilized tool, particularly
in low-resource settings (Behan et al., 2016b; Rubin, 1988). A
PICADAR score of 10 corresponds to a probability of 92.6% for
PCD, while a score >5 demonstrates good sensitivity and specificity
for clinically suspected cases (Behan et al., 2016b). However, the
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optimal cut-off may vary; one study suggested a score of 2 as the
best discriminative value (Rademacher et al., 2017). In a Japanese
cohort, most patients had PICADAR scores <5, indicating that
individuals with chronic wet cough, even with low scores, should
still be evaluated for PCD (Chiyonobu et al., 2022). In our cohort, all
five individuals had PICADAR scores >7. Notably, all three patients
with normal IF results had PICADAR scores of 26 and low nasal
NO levels. Further studies involving larger populations are needed
to better assess the sensitivity and specificity of the PICADAR score.

The primary limitation of this study is its small sample
size. Additionally, the absence of a reliable reference standard
for assessing IF accuracy presents a significant challenge.
utilized the ERS Task
Force criteria to classify confirmed and highly probable
PCD cases (Lucas et al., 2017).

In conclusion, this study underscores the critical role of

For benchmarking purposes, we

international collaboration in diagnosing rare diseases like PCD,
which often require expertise available only in specialized centers.
IF analysis is not routinely available at our institution; however,
collaboration with the University of Miinster enabled us to diagnose
individuals in whom conventional methods were inconclusive. Such
partnerships between resource-limited settings and specialized
centers can significantly enhance diagnostic capabilities, particularly
when disease prevalence is lower than anticipated. Furthermore,
establishing international registry systems that include data
from developing countries will contribute to improved diagnosis
and management of PCD. Collaboration and shared expertise
are key to addressing the diagnostic challenges associated
with rare diseases.
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