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Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing
structured data, particularly in domains where relationships and interactions
between entities are key. By leveraging the inherent graph structure in datasets,
GNNs excel in capturing complex dependencies and patterns that traditional
neural networks might miss. This advantage is especially pronounced in the
field of computational biology, where the intricate connections between
biological entities play a crucial role. In this context, Our work explores
the application of GNNs to single-cell RNA sequencing (scRNA-seq) data,
a domain characterized by complex and heterogeneous relationships. By
extracting ligand-receptor (L-R) associations from LIANA and constructing Cell-
Cell association networks with varying edge homophily ratios, based on L-R
information, we enhance the biological relevance and accuracy of depicting
cellular communication pathways. While standard GNN models like Graph
Convolutional Networks (GCN), GraphSAGE, Graph Attention Networks (GAT),
and MixHop often assume homophily (similar nodes are more likely to be
connected), this assumption does not always hold in biological networks. To
address this, we explore advanced graph neural network methods, such as
H2Graph Convolutional Networks and Gated Bi-Kernel GNNs (GBK-GNN), that
are specifically designed to handle heterophilic data. Our study spans across
six diverse datasets, enabling a thorough comparison between heterophily-
aware GNNs and traditional homophily-assumingmodels, including Multi-Layer
Perceptrons, which disregards graph structure entirely. Our findings highlight
the importance of considering data-specific characteristics in GNN applications,
demonstrating that heterophily-focused methods can effectively decipher the
complex patterns within scRNA-seq data. By integrating multi-omics data,
including gene expression profiles and L-R interactions, we pave the way for
more accurate and insightful analyses in computational biology, offering a more
comprehensive understanding of cellular environments and interactions.
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graph neural networks, single-cell RNA sequencing, cell-cell communication,
heterophily, homophily, cell type prediction

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2025.1547231
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2025.1547231&domain=pdf&date_stamp=2025-05-10
mailto:lrueda@uwindsor.ca
mailto:lrueda@uwindsor.ca
https://doi.org/10.3389/fmolb.2025.1547231
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1547231/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1547231/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1547231/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1547231/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1547231/full
http://orcid.org/0000-0001-7988-2058
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Duan et al. 10.3389/fmolb.2025.1547231

1 Introduction

In the rapidly evolving field of computational biology, the
integration of Graph Neural Networks (GNNs) with single-
cell RNA sequencing (scRNA-seq) data heralds a significant
leap forward. scRNA-seq, known for its unparalleled ability to
illuminate cellular distinctions and tissue compositions, faces
considerable computational hurdles due to its intrinsic complexity
and heterogeneity. Traditional GNN architectures like Graph
Convolutional Networks (GCN) introduced by Kipf and Welling
(Kipf and Welling, 2016), Graph Attention Networks (GAT)
(Veličković et al., 2018), GraphSAGE developed by Hamilton
et al. (Ying et al., 2017), and MixHop, introduced by Abu-El-
Haija et al. (Abu-El-Haija et al., 2019), have demonstrated their
utility across various domains by harnessing network structural
information and individual node characteristics. However, these
models predominantly assume homophily—the tendency for
similar nodes to be more closely connected—an assumption that
does not always hold in the diverse and intricate biological networks
characterized by both homophilic and heterophilic relationships.
The foundational GCN model, as proposed by (Kipf and Welling,
2016), excels under the homophily assumption, where like nodes
are more likely to be connected. Yet, this premise may falter in the
realm of biological networks, where interactions frequently occur
between dissimilar entities, underscoring the necessity for models
adept at managing heterophily. Addressing this gap, Hamilton et al.
(Ying et al., 2017) extended GCNs with GraphSAGE, introducing an
inductive learning framework that enhances adaptability to dynamic
or evolving networks, a critical feature for biological systems
where new cellular states or types continually emerge. Recent
advancements have led to the development of more specialized
GNNs to navigate the nuanced landscape of biological data.H2GCN,
crafted by Zhu et al. (Zhu et al., 2020) specifically for heterophilic
data, employs diverse neighborhood aggregation strategies to
effectively capture the complex interplay of interactions typical
in biological datasets. In a similar vein, the Gated Bi-Kernel GNN
(GBK-GNN), conceived by Du et al. (Du et al., 2022), pioneers a
dual-kernel approach that meticulously processes both homophilic
and heterophilic relationships, significantly augmenting the model’s
interpretive power in deciphering complex biological networks.
Contrasting with these graph-based approaches, Multi-Layer
Perceptrons (MLP), which process node features in isolation from
the graph structure, serve as a fundamental baseline, highlighting
the intrinsic value of relational information in graph-based learning
paradigms.

This study systematically applies and juxtaposes these models
across a spectrum of scRNA-seq datasets, utilizing biologically
informed interaction graphs constructed with LIANA (LIgand-
receptor ANalysis frAmework) (Türei et al., 2022). LIANA
(Türei et al., 2022) provides a framework for inferring Cell-Cell
Communication (CCC) pathways by identifying ligand-receptor
(L-R) interactions based on scRNA-seq data. By integratingmultiple
established methods, LIANA (Türei et al., 2022) generates a cell-cell
adjacency graph where nodes represent individual cells, and edges
signify potential communication pathways based on L-R signaling.
This approach allows us to construct interaction networks that
more accurately reflect the underlying biology, setting the stage
for a meaningful application of advanced GNNs. Through this

endeavor, we aspire to illuminate the strengths and limitations
inherent in each model within the context of computational
biology, thereby furnishing valuable insights into their practical
applicability and steering future research directions in the field.This
exhaustive analysis stands to make a substantial contribution to our
understanding of cellular functionalities and interactions, leveraging
the sophisticated methodologies of advanced GNNs alongside
interaction networks inferred through LIANA (Türei et al., 2022).

1.1 Homophily and heterophily

Homophily andheterophily are concepts in network theory and
graph analysis that describe the trends of edges in a graph to connect
nodes with similar or dissimilar attributes, respectively. Formally,
consider an undirected graph G = (V,E), where V represents the set
of nodes and E ⊆ V×V denotes the set of edges. Each node v ∈ V is
associated with a feature vector xv ∈ ℝd or a categorical label yv ∈ Y ,
where Y is the set of possible classes or categories.

Edge homophily quantifies the propensity of edges to connect
nodes that share similar attributes or labels. Mathematically,
homophily can be measured using the homophily ratio H, defined
as:

H =
|{(u,v) ∈ E ∣ yu = yv} |

|E|
(1)

In Equation 1, H represents the fraction of edges that link
nodes with identical labels. A homophily ratio H > 0.5 indicates a
strong tendency for nodes to connect with similar nodes, reflecting
assortative mixing within the graph.

Both homophily and heterophily are intrinsic properties of
the edges in a graph, as they directly relate to the nature
of connections between node pairs. These concepts are critical
in various graph-based machine learning tasks, such as node
classification, link prediction, and community detection. We
visualized graphs to illustrate homophily using Gephi (Bastian
and Gephi, 2009) shown in Figure 1. In the context of GNN, the
degree of homophily or heterophily influences the effectiveness of
message-passing mechanisms. For instance, in heterophilic graphs,
aggregating features from diverse neighbors may necessitate more
sophisticated aggregation functions or attention mechanisms to
capture the dissimilarity effectively.

1.2 Heterophily-aware methods

Heterophily-aware methods are specialized algorithms within
the domain of graph-based machine learning that are explicitly
designed to effectively handle graphs exhibiting heterophily.
Unlike traditional GNNs that aggregate information primarily
from neighboring nodes N (v), heterophily-aware methods often
incorporate mechanisms such as adaptive aggregation, feature
transformation, or dual-pathway processing to mitigate the negative
impact of aggregating dissimilar node features.

Several advanced heterophily-aware methods have been
proposed to enhance GNN performance on heterophilic graphs.
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FIGURE 1
Visualization of the constructed graphs with five H ratio levels (A) 0–0.2, (B) 0.2–0.4, (C) 0.4–0.6, (D) 0.6–0.8, (E) 0.8–1. At the highest homophily level
(E), the visualization clearly shows sparse clusters of cells, where each cell predominantly connects with others of the same type (same colors),
illustrating strong homophily. As the H ratio decreases towards (A), the distinction between clusters becomes increasingly blurred, leading to a more
mixed and less defined structure in the graphs.

1.2.1 H2GCN
H2GCN (Zhu et al., 2020) is designed to perform effectively

in both homophily and heterophily settings by incorporating three
key designs.

Ego- and Neighbor-Embedding Separation: This design keeps
a node’s embedding distinct from its neighbors’ embeddings,
avoiding oversmoothing in heterophily. Formally, for each node v
at layer k:

r(k)v = COMBINE(r(k−1)v ,AGGR({r
(k−1)
u :u ∈N (v)})) , (2)

where AGGR is the aggregation function for neighbor embeddings,
and COMBINE merges ego and neighbor representations.

Higher-Order Neighborhoods: To capture both local and
global graph structures, H2GCN aggregates information from i-hop
neighborhoods:

r(k)v = COMBINE(AGGR({r(k−1)u :u ∈N1 (v)}) ,

…,

AGGR({r(k−1)u :u ∈Ni (v)})) , (3)

whereNi(v) represents the i-hop neighbors of node v.
Combination of Intermediate Representations: H2GCN

combines outputs from multiple layers to capture information at
different scales:

rfinalv = COMBINE(r(0)v , r
(1)
v ,…, r

(K)
v ) , (4)

where r(K)v is the representation of node embedding after K layers,
and COMBINE concatenates all intermediate representations.

Finally, the classification stage uses the final embedding for
prediction:

ŷv = softmax(rfinalv Wc) , (5)

whereWc is a learnable weightmatrix.These designs enableH2GCN
to adapt effectively to varying levels of homophily and heterophily by
leveraging multi-scale graph information. Equations 2–5 illustrate
how H2GCN (Zhu et al., 2020) balances separation, multi-hop
aggregation, and multi-scale fusion to adapt to varying homophily
and heterophily.

1.2.2 GBK-GNN
GBK-GNN (Du et al., 2022) introduces a sophisticated

mechanism that combines gating and bi-kernel approaches to
effectively model both homophilic and heterophilic relationships
within a graph. The model incorporates two main innovations:
bi-kernel feature transformation and a kernel selection gate
mechanism.

The bi-kernel transformation uses two distinct kernels: one for
modeling homophily (Ws) and the other for heterophily (Wd).
During message passing, the kernels are combined based on a
selection gate, which dynamically determines the contribution
of each kernel for a node pair. Mathematically, the hidden
representation z(l)i of node i at layer l is computed as:

z(l)i = σ(W fz
(l−1)
i +

1
|N (vi) |

∑
vj∈N (vi)
[αijWsz

(l−1)
j

+(1− αij)Wdz
(l−1)
j ] ), (6)

where W f , Ws, and Wd are learnable parameters, αij is the gating
signal computed as:

αij = sigmoid(Gl (z
(l−1)
i ,z
(l−1)
j ;Wg)) , (7)

and Gl(⋅) is a learnable function (e.g., an MLP). The gating
mechanism helps identify whether a node pair exhibits homophily
or heterophily and adjusts the kernel contributions accordingly.

The overall loss function combines the standard classification
loss (Lo) with an additional gate supervision loss (Lg):

L = Lo + λ∑
l
L(l)g , (8)

where λ is a hyperparameter. Equations 6–8 together enable GBK-
GNN to adaptively tune its message-passing behavior across regions
of varying homophily.
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TABLE 1 Statistics for the datasets used in this work.

Dataset # Accession # Tissue sample # Cells # Genes # Cell types

Baron-human1 GSM2230757 Human Pancreatic Islets 1,937 20,125 14

Baron-human2 GSM2230758 Human Pancreatic Islets 1,724 20,125 14

Baron-human3 GSM2230759 Human Pancreatic Islets 3,605 20,125 14

Baron-human4 GSM2230760 Human Pancreatic Islets 1,303 20,125 14

Baron-mouse1 GSM2230761 Mouse Pancreatic Islets 822 14,878 13

Baron-mouse2 GSM2230762 Mouse Pancreatic Islets 1,064 14,878 13

2 Materials and methods

2.1 Datasets

The scRNA-seq data used in this study are publicly available
on Gene Expression Omnibus (GEO) with accession number of
GSE84133. This dataset includes six subsets of pancreatic islets
sampled from four human donors and two mice strains. The
sequencingmethod invoked in the dataset is inDrop, a droplet-based
scRNA-seq that is capable of determining the transcriptomes of over
12,000 individual pancreatic cells (Baron et al., 2016). Table 1 shows
the details of dataset such as the accession number, the type of tissue
sample, the number of cells, the number of genes, and the number of
assigned cell types for analysis. Each dataset underwent a rigorous
preprocessing pipeline, including gene filtering, normalization, and
feature selection. Specifically, we retained the top 2,000 highly
variable genes (HVGs) from the original count matrices to capture
the most biologically informative features while reducing noise and
computational complexity. The selection of 2,000 HVGs ensures
that downstream models receive input features that reflect key
transcriptomic variations across cells while avoiding redundancy
from low-expression genes. Additionally, preprocessing steps such
as removing genes expressed in fewer than 20 cells and normalizing
count distributions were applied to maintain data integrity. These
decisions were guided by best practices in single-cell analysis to
maximize signal while ensuring computational feasibility.

2.2 Proposed method

Given a high-dimensional count matrix from the scRNA-seq
dataset, we aim to predict cell types and compare the prediction
performance of GNNswhen input graphs have various levels of edge
homophily ratio. The homophily ratio (H ratio) is defined as shown
in Equation 9:

hratio =
|{(u,v) : (u,v) ∈ E ∧ yu = yv}|

|E |
, (9)

where E is the set of edges, and yu is the class of node u (Zhu et al.,
2020).We designed a pipeline that analyzes scRNA-seq data, utilizes
the data to construct undirected graphs, and feeds the graphs into
GNN models. The count matrices consist of genes as columns and

cells as rows. The values in the matrices show Unique Molecular
Identifier (UMI)-filtered counts per cell detected in the raw data.
We used LIANA (Türei et al., 2022), a comprehensive toolkit used
for predicting L-R interactions, to calculate the communication
between individual cells. The interaction can be interpreted as the
connectivity of cells to form adjacency matrices. In an adjacency
matrix, A = (aij)N×N, the values aij represent cell connectivity and
N is the number of cells. Based on the matrix A, we constructed an
undirected graph, G = (V,E), where V is a set of vertices that can
be interpreted as cells, and E is a set of paired vertices that can be
interpreted as cell connectivity. Given a set of undirected graphswith
different H ratios, we aim to predict which cell type the unmarked
cells belong to and find out how well the GNN models handle the
graphs with low H ratios.

We proposed a pipeline that consists of threemain steps: 1) Data
preprocessing (Figure 2), 2) Graph construction (Figure 2), and 3)
Model training (Figure 2). Data preprocessing is a critical technique
of organizing and cleaning raw data to make the data suitable for
downstream application andmodel training. After data is processed,
adjacency matrices are calculated along with H ratios, and graphs
are derived from adjacency matrices. In the model training step,
we converted graphs to a framework called Predicting Labels And
Neighbors with Embeddings Transductively Or Inductively from
Data (Planetoid) (Cohen et al., 2016), which has been widely used
as an input data format of GNNs. The details of implementation are
explained in the next sections.

2.3 Data preprocessing

Before delving into the analysis of scRNA-seq data,
preprocessing the data to mitigate the impact of noise present in
the samples is a crucial step. In this regard, we adhered to a standard
preprocessing pipeline commonly employed in scRNA-seq data
analysis. This comprehensive step encompasses quality control,
normalization, and feature selection as illustrated in the initial
stage of the pipeline represented in Figure 2. We utilized Scanpy
(AngererWolf and SCANPY, 2018), a specialized toolkit designed for
the analysis of scRNA-seq data. Scanpy (AngererWolf and SCANPY,
2018) offers a comprehensive suite of functionalities, including
data preprocessing, visualization, clustering, differential expression
analysis, and the simulation of gene regulatory networks. In contrast,
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FIGURE 2
A pipeline for cell type prediction using GNNs. The process begins with data preprocessing, where the original count matrix is normalized, quality
control is performed on cells and genes, and highly variable genes are extracted to produce a preprocessed count matrix. Next, graph construction
identifies L-R interactions, filters significant interactions, and generates a CCC matrix, which is converted into a graph structure with an edge list
formatted as Planetoid data. Finally, various GNN models (e.g., GCN, GraphSAGE, GAT, MixHop, H2GCN, and GBK-GNN) are applied to predict cell
types based on the generated graph.

other platforms such as Seurat (Farrell et al., 2015; Hoffman et al.,
2018; Stuart et al., 2019; Hao et al., 2021; Hao et al., 2023), R-based
Bioconductor (Huber et al., 2015), and Cell Ranger (Zheng et al.,
2017) struggle to handle extremely large datasets, particularly those
exceeding one million cells. Scanpy (AngererWolf and SCANPY,
2018) effectively overcomes these scalability challenges while
maintaining the capability to perform similar analytical tasks.
Additionally, it provides a user-friendly interface that integrates
seamlessly with advanced machine learning libraries.

The evaluation of data quality in scRNA-seq analysis involves
two main components: cell quality control and gene quality control.
Common criteria for assessing cell and gene quality include the
proportion of counts attributed to mitochondrial reads, the number
of total counts per cell, and the number of expressed genes per cell.
The analysis of these criteria involves examining their distributions
to identify outlier peaks, which can be effectively managed
through thresholding. These outlier data points are often associated
with various issues such as dying cells, cells with compromised
membranes, or doublets. For example, cells characterized by a low
number of total counts, a limited number of detected genes, and
a high fraction of mitochondrial counts may suggest cells where
cytoplasmic mRNA has leaked through a broken membrane, with
only conservedmRNAremaining in themitochondria. By observing
the scatter plot of mitochondrial reads percentage in Baron-human,
we removed the cells whose mitochondrial reads are greater than
5%. Conversely, cells with unexpectedly high total counts and a
large number of detected genesmay indicate doublets. As a standard
practice, high total-count thresholds are commonly applied to filter
out potential doublets and other undesirable outliers. In the dataset
Baron-human1, we filtered out 31 cells that have more than 14,000
counts and kept 1,922 cells. As for genes, we filtered out 7,950 genes
that were detected in less than 20 cells and kept 12,175 genes.

Normalization aims to standardize the raw count data to remove
sampling effects by bringing it to a common scale without altering
values or losing information. More specifically, a number of mRNA
molecules in the cells cannot be fully captured, resulting in a
variation in the total counts detected among cells. We used Counts
Per Million (CPM) derived from bulk expression analysis, which
utilizes a normalizationmethod that adjusts count data by applying a
size factor 106 to the total counts per cell.Then, we applied log(1+ x)

transformation to reduce the skewness of the data to approximate
the assumption of many downstream analysis tools that the data are
normally distributed (Theis and Luecken, 2019).

Even after removing genes with a low number of counts during
the QC step, the dimension of feature space in a scRNA-seq dataset
is still beyond 12,000. To mitigate data noise and enhance data
visualization, we utilized feature selection to diminish the dataset’s
dimensionality. During this phase, the dataset undergoes filtering
to retain only informative genes that represent the variability of
the data. Therefore, Highly Variable Genes (HVGs) are frequently
employed for this purpose. We extracted the 2,000 most variable
genes for downstreamanalysis.The featurematrixX consists of 2,000
selected genes, forming the input for model training. The decision
to use 2,000 genes follows standard practice in scRNA-seq analysis,
where highly variable genes are prioritized to improve model
performance while reducing dimensionality. By focusing on the
most informative features, we enhance the model’s ability to discern
meaningful patterns without introducing excessive computational
costs. The labels y used for model training correspond to cell-type
annotations derived from expert-curated datasets.These labels serve
as ground truth for node classification tasks, enabling us to assess
the ability of different GNN architectures to correctly predict cell
identities. Given the heterogeneity in cell types, leveraging these
biologically informed labels allows for a more realistic evaluation of
model performance.

2.4 Graph Construction

To construct graphs, LIANA (Türei et al., 2022) is used
to infer L-R interactions between cells, leveraging cell-type
information from the metadata. It integrates multiple methods
(such as CellPhoneDB (Vento-TormoEfremova et al., 2020), NATMI
(Ramilowski et al., 2015; Denisenko et al., 2020), and others) to
provide a robust analysis of CCC based on transcriptomics data.
We designed a workflow that uses LIANA (Türei et al., 2022) to
load gene expression data and metadata, convert them into Seurat
(Hoffman et al., 2018; Hao et al., 2021; Hao et al., 2023; Farrell et al.,
2015; Stuart et al., 2019) objects, and infer L-R interactions.
Table 2 and Figure 3 present key metrics that evaluate the strength,
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specificity, and statistical significance of each interaction, including
rankings and scores from multiple analytical tools.

The algorithm begins by extracting a set of unique L-
R pairs, denoted as P, to ensure comprehensive inclusion of
potential interaction candidates. Next, the algorithm retrieves the
gene expression data E and sets a predefined threshold T. This
threshold acts as a criterion to distinguish biologically meaningful
expression levels from background noise, providing a foundation
for subsequent analyses. Two matrices, L and R, are initialized
to represent the expression profiles of ligands and receptors,
respectively. L will hold binary indicators of ligand expression
across cells, while R will store binary indicators of receptor
expression, with particular attention paid to receptors that comprise
multiple subunits.

The algorithm then iteratively processes each L-R pair i from the
set P. For each pair, it extracts the ligand l and the receptor r. If the
ligand l is present in the expression data E, its expression across all
cells is compared to the threshold T, and a binary result is stored in
the corresponding row of L.When handling receptors, the algorithm
differentiates between single-subunit andmulti-subunit receptors. If
r is a multi-subunit receptor, it will be split into subunits separated
by an underscore symbol.The algorithm checks whether all subunits
are present in E, and only cells expressing all subunits above the
threshold T are recorded in R[i, :]. If r is a single-subunit receptor
present in E, the expression profile is similarly compared to T and
recorded in R[i, :].

To construct the weighted interaction matrix W, the algorithm
initializes W with zeros, and then iterates over each source cell
s to compute interaction scores. For each source cell, the ligand
expression profile Ls is retrieved, and the interaction score Sj for
every target cell j is calculated. This score is obtained by summing
the products of Ls[i] and R[i, j] across all L-R pairs i, representing
the interaction strength between s and j. The interaction scores
are used to update the corresponding row of W. Afterward, W is
normalized by dividing each element by the maximum value in
the matrix, which standardizes the interaction scores. A threshold
is then applied to retain only the top-weighted interactions, which
highlights significant connections between cells.

To ensure the connectivity of the inferred cell communication
network, the algorithm performs a refinement step to examine each
node i in W and checks for isolated nodes, that have no outgoing
or incoming connections. If such a node is identified, the algorithm
connects it to the cell with the highest interaction weight, ensuring
the network remains biologically plausible and connected. Finally,
the refined adjacencymatrixW, which represents the complete CCC
graph, is returned as the output of the algorithm. This structured
approach ensures that the inferred network captures meaningful
cellular interactions while maintaining connectivity. We computed
the edge homophily ratio (H) for each dataset to quantify the extent
of homophilic versus heterophilic connections.The homophily ratio
serves as a key metric in our study, allowing us to systematically
compare the performance of different models across graphs with
varying structural properties. By incorporating ligand-receptor
interactions inferred using LIANA, we ensured that our graphs
capture biologically meaningful cell-cell communication pathways.
This biologically grounded graph construction differentiates our
approach from conventional GNN benchmarks, which often rely on
artificially defined connectivity patterns.
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procedure CELL-INTERACTION-GRAPH (P,E,T)

   Extract unique L-R pairs P

   Retrieve expression data E and set threshold T

   Initialize L: Ligand expression matrices

   Initialize R: Receptor expression matrices

   for each i ∈ P do

     l← ligand of i, r← receptor of i

     if l ∈ E then

         L[i,:] ← E[l,:] > T

     end if

     if r is multi-subunit then

         Split r into subunits

         if all subunits ∈ E then

           R[i,:] ← cells expressing all subunits

above T

         end if

     else if r ∈ E then

         R[i,:] ← E[r,:] > T

     end if

   end for

   Initialize W← 0: weighted interaction matrix

   for each source cell s do

     Ls← L[,s]

     Sj←∑i(Ls[i] ⋅R[i,j]) ∀j

     Update W[s,:] with Sj

   end for

   Normalize W← W/max (W)

   Apply threshold to top weights in W

   for each i ∈ W do

     if W[i,:] and W[:,i] have no connections then

       Connect i to cell with max weight

     end if

   end for

   return W

end procedure

Algorithm 1. CCC Network Construction.

2.5 Model training

Planetoid (Cohen et al., 2016) is a graph embedding framework
focusing on semi-supervised learning, which provides a paradigm
of the input data for both transductive and inductive models. Since
it has been used as the benchmark for evaluating the performance
of GNNs, as explained in Graph Construction section, we converted
the adjacency matrices to eight objects that can be directly plugged
into inductive GNNmodels.

• X contains the feature vectors of the labeled training instances.
We selected 140 cells as the train instances represented in the
Compressed Sparse Row matrix.
• y contains the one-hot labels of the training instances X.
• allX is a superset of X, which contains the feature vectors of
both labeled and unlabeled training instances.
• ally is a superset of y, which contains labels for instances in allX.

• tX contains the feature vectors of the test instances.We selected
1,000 cells as the test instances represented in the Compressed
Sparse Row matrix.
• ty contains the one-hot labels of the training instances tX.
• graph is a dictionary in the format {index-of-cells [index-of-
neighbor-cells]}.
• test. index contains the indices of test instances in graph
(Cohen et al., 2016).

2.5.1 Train-test splitting strategy
We followed the widely used “Planetoid” split protocol, selecting

140 training cells (10 per class) while reserving 1,000 cells for testing.
This approach aligns with prior transductive GNN benchmarks and
reflects real-world single-cell scenarios, where labeled annotations
are scarce.The test set sizewas chosen to ensure statistical robustness
while maintaining a consistent evaluation protocol across datasets.
In addition to the Planetoid-style split (140 training cells), we
conducted experiments using an 80/20 train-test split, where 80%
of the available cells were used for training and 20% for testing.This
comparison allowed us to evaluate the impact of training set size on
model performance and assess the adaptability of heterophily-aware
GNNs to different training regimes. Extended results using an 80/20
split are available in Supplementary Table S2.

2.5.2 Hyperparameter selection
To ensure optimal model performance, we performed

hyperparameter tuning for all models. We utilized grid
search and empirical tuning to determine the best learning
rate, dropout rate, weight decay, and architecture-specific
parameters. Supplementary Table S1 in the supplementarymaterials
provides a summary of the hyperparameters used for each model.
For instance, we found that GBK-GNN performed best with a
learning rate of 0.001, while MixHop required a higher dropout
rate (0.7) to prevent overfitting. Additionally, deeper architectures
such as H2GCN and GBK-GNN required extended training epochs
(up to 2000) to converge. These choices were made based on prior
literature and iterative experiments to balance model accuracy and
computational efficiency.

2.5.3 Multiple seed experiments and
reproducibility

To ensure the robustness and stability of our findings, we
evaluatedmodel performance acrossmultiple random initializations
by running each experiment with 30 different random seeds
(see Supplementary Tables S3–S10). This approach allows us
to assess the stability of our conclusions and provides insight
into how heterophily-aware Graph Neural Networks (GNNs)
perform in diverse biological settings. Boxplots illustrating
accuracy distributions across different seeds were generated,
as shown in Figure 4.

3 Results

3.1 Impact of random seed variability

To ensure that performance comparisons are not biased by
a specific train-test partition, we trained each model across 30
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FIGURE 3
(A) Heatmap showing the frequency of L-R interactions between sender (rows) and receiver (columns) cell types. Each cell represents the interaction
frequency, with darker shades of pink indicating higher interaction frequencies. This analysis highlights the communication dynamics among various
cell types, such as acinar, activated stellate, and endothelial cells. (B) Dot plot illustrating specific L-R interactions for each source cell type (rows) and
their target cell types (columns). The size of the dots represents the specificity of the interaction, while the color indicates the expression magnitude,
providing a detailed overview of prominent L-R pairs and their interaction patterns.

different random seeds. Figure 4 presents boxplots illustrating
accuracy distributions, confirming that heterophily-aware models
consistently outperform baseline GNNs with minimal variance
across different random initializations. These results emphasize the
importance of evaluatingmodels under diverse sampling conditions
to assess their true robustness.

3.2 Effectiveness of heterophily-aware
models

Table 4 summarizes the classification accuracy across datasets
with different homophily ratios (H). GBK-GNN consistently
outperforms other models, particularly in low-H settings,
demonstrating its robustness in heterophilic graphs. These findings
highlight the necessity of specialized architectures for analyzing
biological networks, where interactions frequently occur between
dissimilar entities. For performance comparison, we selected a set
of baseline models comprising MLP, GCN, GraphSAGE, GAT, and
MixHop, along with two advanced models designed specifically for
heterophily: H2GCN and GBK-GNN. To ensure consistency and
reproducibility, we utilized the original source code from publicly
accessible GitHub repositories. All default parameters, such as the
number of epochs and the train-test split ratio, were retained for
each model during the evaluation process.

We evaluated the computational efficiency of GNN models
by comparing training time per epoch, inference time, and
memory usage (Table 3). GCN and MLP were the most efficient,
requiring minimal computational resources, making them ideal
for large-scale applications with hardware constraints. In contrast,
GBK-GNN and H2GCN, while achieving higher accuracy,
had longer training times due to their complex architectures.

GraphSAGE and GAT provided a balanced trade-off between
efficiency and performance, making them suitable for resource-
aware applications.

The comparison of GNN models and MLP performance across
various datasets, as presented in Table 4, highlights key insights
into the adaptability of heterophily-aware methods for real-world
datasets with high heterophily (low H ratio). Since most datasets in
this study exhibit high heterophily, we utilized the Baron-human1
and Baron-human2 datasets to construct two additional graphs
usingUMAP (McInnes et al., 2018)with a highH ratio. By specifying
a neighborhood size and distance metric, we generated a fuzzy
simplicial set represented as a sparse matrix corresponding to the
input data. This process included estimating geodesic distances for
each data point, constructing fuzzy simplicial sets for individual
points, and combining these sets into a global representation via
a fuzzy union (McInnes et al., 2018). Through this methodology,
we derived graphs with varying distance metrics and neighborhood
sizes, achieving H ratios of 0.83 and 0.88, as shown in Table 4.

4 Discussion

4.1 Heterophily-aware methods

• H2GCN: H2GCN underperforms compared to other
models on most datasets with high heterophily, and
this can be partially attributed to the structural
characteristics of the datasets, such as the number of
edges and nodes. For instance, in datasets Baron-human3
(|V | = 3,592, |E | = 2,214,355, h = 0.22) and Baron-human4
(|V | = 1,251, |E | = 276,193, h = 0.21), the model achieves
relatively low accuracies of 0.412 and 0.400, respectively.These

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1547231
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Duan et al. 10.3389/fmolb.2025.1547231

FIGURE 4
Boxplots illustrating the accuracy distribution of different graph neural network (GNN) models across 30 random seed runs for multiple datasets. Each
subplot corresponds to a different dataset, and within each plot, the boxplots represent the performance variability of different models. The x-axis
denotes the evaluated models, while the y-axis represents classification accuracy. Wider interquartile ranges and the presence of outliers indicate
models with higher sensitivity to seed initialization. Models demonstrating tight boxplots exhibit greater stability across different training runs. These
results highlight the importance of evaluating performance over multiple seeds to ensure the reproducibility and robustness of conclusions.

TABLE 3 Computational efficiency of each GNNmodel on the Baron-human one dataset for 2000 epochs. The complexity is expressed in Big O
notation, where e denotes the number of edges, n the number of nodes, d the dimensionality of node embeddings, L the number of layers, h the number
of hops considered (for hop-based models like H2GCN), k the number of adjacency matrices (in MixHop), and ha the number of attention heads (specific
to GAT). This notation highlights how resource usage scales with various network and graph parameters, with RAM usage reflecting space complexity
and execution time capturing both training and validation durations.

Metric

Modelmets

GBKGNN H2GCN GraphSAGE GCN MixHop GAT MLP

Execution Time
(HH:MM:SS)

00:09:40 00:04:39 00:10:48 00:06:13 00:04:05 00:03:16 00:05:48

RAM Usage (GB) 2.3 2.4 2.4 2.1 2.4 1.8 2.1

GPU Usage (GB) 37.6 5.7 1.6 7.2 1.5 2.9 9.7

RAM Usage
Complexity

O(e) O(e) O(e) O(e ⋅ d) O(e) O(e) O(n ⋅ d)

Execution Time
Complexity

O(L(e ⋅ d)) O(L(h ⋅ e ⋅ d)) O(L(n ⋅ d2)) O(L(n ⋅ d2)) O(L(k ⋅ e ⋅ d)) O(L(e ⋅ d ⋅ ha)) O(L(n ⋅ d2))

Inference Time
Complexity

O(L(e ⋅ d)) O(L(h ⋅ e ⋅ d)) O(L(n ⋅ d2)) O(L(n ⋅ d2)) O(L(k ⋅ e ⋅ d)) O(L(e ⋅ d ⋅ ha)) O(L(n ⋅ d2))

datasets have large numbers of edges relative to the number
of nodes, resulting in high average node degrees. In high
heterophily settings, this dense connectivity can lead to noise
in the neighborhood aggregation process, as connected nodes
are more likely to belong to different classes. H2GCN’s design,
which relies on higher-order neighborhoods and aggregating
information from multiple hops, may worsen this issue by

propagating irrelevant or conflicting information in such
environments.

Additionally, the sparse graph structure in smaller datasets
such as Baron-mouse2 (|V | = 913, |E | = 216,151, h = 0.27) further
contributes to H2GCN’s limitations, where it achieves an accuracy
of 0.486. Sparse connectivity can limit the availability of meaningful
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TABLE 4 Accuracy comparison of models across various scRNA-seq datasets. Best model per dataset highlighted in gray.

Model

Datasetmets

Baron-
human1

Baron-
human2

Baron-
human3

Baron-
human4

Baron-
mouse1

Baron-
mouse2

Baron-
human1
UMAP

Baron-
human2
UMAP

Hom. ratio h 0.15 0.26 0.22 0.21 0.26 0.27 0.83 0.88

#Nodes |V | 1,904 1,713 3,592 1,251 761 913 1,904 1,713

#Edges |E | 510,456 515,956 2,214,355 276,193 106,559 216,151 122,088 186,250

#Classes |Y | 14 14 14 14 13 13 14 14

GBK-GNN 0.781 0.765 0.724 0.743 0.756 0.691 0.812 0.823

H2GCN 0.430 0.459 0.412 0.400 0.664 0.486 0.808 0.814

GraphSAGE 0.462 0.467 0.419 0.472 0.464 0.455 0.500 0.509

GCN 0.439 0.405 0.437 0.442 0.465 0.458 0.808 0.797

MixHop 0.474 0.446 0.457 0.431 0.453 0.446 0.810 0.804

 GAT 0.446 0.424 0.453 0.427 0.475 0.422 0.749 0.756

MLP 0.439 0.554 0.483 0.536 0.512 0.476 0.694 0.709

node relationships for effective aggregation, particularly in highly
heterophilic settings where even the few existing edges are less
likely to connect nodes of the same class. These attributes
of the datasets—dense or sparse edge distributions and high
heterophily—reduce the effectiveness of H2GCN’s reliance on
structural features and its neighborhood propagation mechanism,
leading to its underperformance compared tomodels better equipped
to handle heterophilic graphs, such as GBK-GNN.

• GBK-GNN: GBK-GNN demonstrates consistently strong
performance across datasets, outperforming other models
in both heterophilic and UMAP-modified settings. For
example, on Baron-human3 (h = 0.22) and Baron-human4
(h = 0.21), GBK-GNN achieves accuracies of 0.724 and 0.743,
significantly higher than those of H2GCN. On the graphs
constructed by UMAP with h = 0.83 and h = 0.88, GBK-
GNN further excels with accuracies of 0.812 and 0.823.
This robust performance highlights GBK-GNN’s ability to
effectively capture both local and global graph structures,
making it well-suited for datasets with varying levels of
heterophily.

4.2 Performance comparison with
homophily-assuming methods

• Models like GCN, GraphSAGE, and GAT, which typically
assume homophily, show a noticeable increase in performance
at higher H ratios but fall short in low H ratio scenarios. On
Baron-human3 (h = 0.22) and Baron-human4 (h = 0.21), these
models achieve relatively low accuracies, with GraphSAGE
scoring 0.419 and 0.437, GCN achieving 0.412 and 0.437,

MixHop at 0.457 and 0.443, and GAT at 0.427 and 0.435.
These results reveal their struggle to effectively learn node
representations in heterophilic graphs where connected nodes
often belong to different classes. GraphSAGE’s reliance on
aggregating information from immediate neighbors leads to
noise propagation in such settings, while GCN and GAT
similarly depend on local neighborhood aggregation, making
them less robust to the lack of homophilic structure. MixHop,
which leverages higher-order neighborhood information,
shows slightly better performance but still suffers from
propagating conflicting signals in dense heterophilic graphs.
These models generally assume that neighboring nodes share
similar labels, which limits their ability to distinguish between
dissimilar nodes in highly heterophilic graphs, contributing to
their relatively low performance.
• The MLP model shows competitive performance on some
heterophilic datasets, such as Baron-human2 (h = 0.26) with
an accuracy of 0.554, but struggles on others like Baron-
human3 (h = 0.22) with an accuracy of 0.483. Unlike graph-
based models, MLP does not rely on graph structure and
instead focuses solely on the node features for prediction.
This independence from graph connectivity makes MLP less
susceptible to the noise introduced by heterophilic edges,
allowing it to perform well on datasets where node features
are more informative. This result reflects MLP’s reliance on
feature quality over structural insights, making it less robust in
scenarios where the graph structure is essential for capturing
relationships between nodes.

In summary, GBK-GNN consistently outperforms traditional
homophily-assuming GNNs and H2GCN in handling datasets
with high heterophily, demonstrating robustness and adaptability
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FIGURE 5
(A) Network graph illustrating cell-cell interactions as derived from the CellCall pipeline. Nodes represent individual cells, color-coded by their assigned
cell type, and edges indicate interactions. Verified L-R interactions are shown in red, while gray edges represent adjacency-only connections. The
graph highlights the overlap between adjacency-based cell relationships and those validated through significant signaling pathways. (B) Hierarchical
clustering heatmap illustrating the connection scores between cells as inferred by LIANA. Rows and columns represent individual cells, with color
intensity indicating the strength of the connection, where darker blue shades correspond to higher connection scores. Overlap annotations (“Yes” or
“No”) indicate whether the connections were verified by CellCall.

to diverse graph structures. H2GCN performed poorly due to
its reliance on higher-order neighborhood aggregation, which
amplifies noise in densely connected heterophilic graphs and
struggles with sparse connectivity in smaller datasets. The bi-
kernel mechanism and gate selection in GBK-GNN enables it to
dynamically adapt to varying levels of homophily and heterophily,
achieving significantly higher accuracies across diverse datasets.
These findings underline GBK-GNN’s effectiveness for complex
real-world applications, such as computational biology, where
graph structures are heterogeneous and the homophily assumption
often fails.

4.3 Biological assessment

Computational methods such as LIANA (Türei et al., 2022)
predict cell-cell connections by identifying L-R interactions, but
these predictions need to be biologically verified to ensure
their reliability and relevance. CellCall (Zhang et al., 2021)
is an advanced computational tool designed to illuminate and
validate intercellular communications within scRNA-seq datasets.
By integrating gene expression profiles with known L-R interactions,
CellCall (Zhang et al., 2021) systematically infers and assesses the
significance of CCC pathways, thereby providing valuable insights
into the complex biological interactions that underpin various
physiological and pathological processes.The workflow commences
with the preparation of expression data and correspondingmetadata
extracted from a Seurat (Farrell et al., 2015; Hoffman et al., 2018;
Stuart et al., 2019; Hao et al., 2021; Hao et al., 2023) object, a widely
adopted framework for single-cell analysis.This data is subsequently

encapsulated within a CellCall (Zhang et al., 2021) object, which
serves as the foundation for further analyses.

The core functionality of CellCall (Zhang et al., 2021)
involves the profiling of intercellular communications through the
TransCommuProfile function, which applies statistical thresholds
to identify significant L-R interactions based on correlation and p-
value criteria. Following this, the method employs hypergeometric
testing to determine the enrichment of specific signaling pathways
within the identified interactions, thereby highlighting biologically
relevant communication routes.

To validate the inferred cell-cell pairs, CellCall (Zhang et al.,
2021) cross-references the significant signaling pathways with
an adjacency matrix of direct cell interactions, quantifying the
overlap and thereby assessing the reliability of the predicted
communications. This comprehensive approach not only identifies
potential CCC but also substantiates them through statistical
validation, ensuring that the findings are both robust and
biologically meaningful. We selected the Baron-human1 dataset
as an example, and 72% of the cell-cell connections in the
adjacency matrix are part of the significant signaling pathways. The
visualized results are in Figure 5. To further validate the biological
significance of our predicted cell-cell interactions, we mapped a
subset of ligand-receptor pairs onto Reactome pathways, illustrating
their involvement in well-characterized signaling cascades.
Supplementary Figure S3 highlights key interactions, including
the SEMA4D-CD72 pair, which plays a role in B cell receptor
(BCR) signaling. SEMA4D, a membrane-bound semaphorin
expressed on T cells, binds to CD72 on B cells, modulating B
cell activation and costimulatory signaling. The highlighted edges
in Supplementary Figure S3 illustrate this interaction within the
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broader immune signaling network. Additionally, we filtered
and ranked ligand-receptor pairs using NicheNet, prioritizing
interactions with high signaling relevance. Supplementary Figure S1
presents a bar plot summarizing the signaling weights of key ligand-
receptor pairs, where higher values indicate stronger biological
significance. This ranking provides a quantitative assessment
of interaction strength, helping identify the most functionally
relevant connections. Finally, we visualized the ligand-receptor
interaction network in Supplementary Figure S2, where nodes
represent ligands and receptors, and edge width reflects signaling
strength. This network analysis provides an integrated view of
cell-cell communication pathways, emphasizing key interactions
with strong biological relevance. These findings reinforce the
applicability of heterophily-aware GNNs in modeling complex
biological interactions and suggest their potential for broader
transcriptomic studies. While this study focuses on pancreatic islet
datasets, our methodology is broadly applicable to other single-cell
transcriptomic datasets, including immune cells, brain tissue, and
tumor microenvironments, where cell-cell communication plays a
crucial role. Future work will assess the robustness of heterophily-
aware GNNs across diverse biological contexts. Additionally, we
constructed graphs based solely on ligand-receptor interactions,
which provide a biologically meaningful foundation; however,
integrating other interaction patterns, such as transcription
factor-target gene relationships and metabolic dependencies,
could further enhance predictive performance. Expanding graph
construction strategies and testing the models on more diverse
datasets will strengthen the applicability and biological relevance of
our approach.

5 Conclusion

This study underscores the transformative potential of
heterophily-aware GNNs in the analysis of scRNA-seq data within
computational biology. Traditional GNN models operate under the
homophily assumption—where nodes with similar characteristics
are more likely to be interconnected. However, our investigation
reveals that biological networks often exhibit high heterophily,
where dissimilar nodes frequently interact, challenging the efficacy
of these conventional models.

To address this complexity, we employed LIANA (Türei et al.,
2022) to construct biologically informed interaction graphs based on
L-R pairs. LIANA (Türei et al., 2022) integrates multiple established
methods to infer cell-cell communication pathways, generating
adjacency matrices that more accurately reflect the underlying
biological interactions.This robust graph construction facilitated the
application of advanced GNNmodels such as GBK-GNN (Du et al.,
2022) and H2GCN (Zhu et al., 2020), specifically designed to handle
heterophilic relationships.

The experimental results demonstrate that heterophily-
aware models, particularly GBK-GNN, significantly outperform
traditional GNNs and even non-graph-based models like MLP
across various scRNA-seq datasets. GBK-GNN’s dual-kernel
mechanism and dynamic gating system enable it to effectively
differentiate and integrate both homophilic and heterophilic
connections, leading to superior predictive performance. In
contrast, models like H2GCN (Zhu et al., 2020), despite being

designed for heterophilic data, underperform in densely or sparsely
connected biological graphs due to their reliance on higher-order
neighborhood aggregations, which introduce noise and reduce
model accuracy.

Further validating our findings, biological assessment
using CellCall (Zhang et al., 2021) confirmed the reliability of the
inferred cell-cell communication pathways. CellCall’s integration
of L-R interactions with transcription factor activities revealed
that a substantial proportion of predicted interactions align with
known biological mechanisms, reinforcing the biological relevance
of our graph constructions and GNN predictions. This validation
highlights the capability of heterophily-aware GNNs to not only
excel in computational performance but also provide meaningful
biological insights, thereby bridging the gap between machine
learning and biomedical research.

In conclusion, our study not only reaffirms the critical role of
GNNs in analyzing structured biological data but also emphasizes
the necessity of integrating domain-specific frameworks like LIANA
(Türei et al., 2022) and CellCall (Zhang et al., 2021) to enhance
biological interpretability. As biological datasets continue to grow
in complexity and scale, adopting models that account for the
inherent heterogeneity of biological interactions will be essential.
By incorporating statistical reproducibility analyses and leveraging
biologically informed graphs, our study strengthens the role of
heterophily-aware GNNs in computational biology. Future work
will explore extending these methods to larger-scale datasets and
real-time single-cell analyses.

Data availability statement

The datasets presented in this study can be found in online
repositories.The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordancewith the national legislation and
the institutional requirements.

Author contributions

LD: Writing – original draft, Writing – review and editing. MH:
Writing – original draft, Writing – review and editing. AN: Writing
– original draft,Writing – review and editing. LR:Writing – original
draft, Writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This research was
supported by the Natural Sciences and Engineering Research

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1547231
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Duan et al. 10.3389/fmolb.2025.1547231

Council of Canada (NSERC) and the School of Computer Science,
University of Windsor.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

Theauthor(s) declare thatGenerativeAIwas used in the creation
of this manuscript. Generative AI was used to assist in drafting
and refining text, ensuring clarity, precision, and alignment with
submission requirements. No AI-generated content was used for
data analysis, interpretation, or generation of results. The final

manuscript has been reviewed and approved by all authors to ensure
accuracy and integrity.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.2025.
1547231/full#supplementary-material

References

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyunyan,
H., et al. (2019). “Higher-order graph convolutional architectures via sparsified
neighborhood mixing,” in Proceedings of the 36th international conference on machine
learning, 2481–2490.

AngererWolf, P. T. F., and Scanpy, F. (2018). SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19 (1), 15. doi:10.1186/s13059-017-1382-0

Baron, M., Veres, A., Wolock, S., Faust, A., Gaujoux, R., Vetere, A., et al. (2016). A
single-cell transcriptomic map of the human and mouse pancreas reveals inter- and
intra-cell population structure. Cell Syst. 3(4), 346–360. doi:10.1016/j.cels.2016.08.011

Bastian, H. S. J. M., and Gephi, M. (2009). “An open source software for exploring
and manipulating networks,” in Proceedings of the third international AAAI conference
on weblogs and social media (San Jose, California, USA: AAAI Press), 361–362.

Cohen, W. W., Salakhutdinov, R., and Yang, Z. (2016). “Revisiting semi-supervised
learning with graph embeddings,” in Proceedings of the 33rd international Conference on
machine learning, ICML’16 (New York, NY, USA: JMLR.org), 40–48.

Denisenko, E., Ong, H. T., Ramilowski, J. A., and Forrest, A. R. R. (2020). Predicting
cell-to-cell communication networks using NATMI. Nat. Commun. 11 (1), 5011.
doi:10.1038/s41467-020-18873-z

Du, L., Shi, X., Fu, Q., Ma, X., Liu, H., Han, S., et al. (2022). “Gbk-gnn: Gated
bi-kernel graph neural networks for modeling both homophily and heterophily,”
in Proceedings of the ACM Web Conference 2022 (New York, NY, United States:
Association forComputing Machinery), 1550–1558. doi:10.1145/3485447.3512201

Farrell, J. A., Gennert, D., Schier, A. F., Regev, A., and Satija, R. (2015). Spatial
reconstruction of single-cell gene expression data. Nat. Biotechnol. 33 (5), 495–502.
doi:10.1038/nbt.3192

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck III, W. M., ZhengHao, S. Y., Butler, A.,
et al. (2021). Integrated analysis ofmultimodal single-cell data.Cell 184, 3573–3587.e29.
doi:10.1016/j.cell.2021.04.048

Hao, Y., Stuart, T., Kowalski, M. H., Choudhary, S., Hoffman, P. Y., Hartman, A., et al.
(2023). Dictionary learning for integrative, multimodal and scalable single-cell analysis.
Nat. Biotechnol. 42, 293–304. doi:10.1038/s41587-023-01767-y

Hoffman, P., Smibert, P., Papalexi, E.-S. R., and Butler, A. (2018). Integrating single-
cell transcriptomic data across different conditions, technologies, and species. Nat.
Biotechnol. 36 (5), 411–420. doi:10.1038/nbt.4096

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Welling, M., Carvalho, B. S.,
et al. (2015). Orchestrating high-throughput genomic analysis with bioconductor.Natu.
Method. 12 (2), 115–122.

Kipf, T. N., and Welling, M. (2016). “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Representations.
doi:10.48550/arXiv.1609.02907

McInnes, M., Healy, J., Saul, N., and Großberger, L. (2018). Umap: Uniformmanifold
approximation and projection for dimension reduction. J. Open. Sou. Soft. 3 (29), 861

Ramilowski, J. A., Goldberg, T.,Harshbarger, J., Kloppmann, E., Lizio,M., Satagopam,
V. P., et al. (2015). A draft network of ligand-receptor-mediated multicellular signalling
in human. Nat. Commun. 6, 7866. doi:10.1038/ncomms8866

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck III, W. M.,
et al. (2019). Comprehensive integration of single-cell data. Cell 177 (1), 1888–1902.
doi:10.1016/j.cell.2019.05.031

Theis, F. J., and Luecken, M. D. (2019). Current best practices in single-cell rna-seq
analysis: a tutorial.Mol. Syst. Biol. 15 (6), e8746. doi:10.15252/msb.20188746

Türei, D., Garrido-Rodriguez, M., others Dimitrov, D., Burmedi, P. L., Nagai,
J. S., Boys, C., et al. (2022). Comparison of methods and resources for cell-cell
communication inference from single-cell rna-seq data. Nat. Commun. 13 (1), 3224.
doi:10.1038/s41467-022-30755-0

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al. (2018).
“Graph attention networks,” in International conference on learning representations,
1–11.

Vento-TormoEfremova, R.-T. S.V.-T. R., Cellphonedb, M., and Vento-Tormo, R.
(2020). CellPhoneDB: inferring cell-cell communication from combined expression
of multi-subunit ligand-receptor complexes. Nat. Protoc. 15 (5), 1484–1506.
doi:10.1038/s41596-020-0292-x

Ying, R., Leskovec, J., and Hamilton, W. L. (2017). “Inductive representation
learning on large graphs,” in Advances in neural information processing systems,
1024–1034.

Zhang, Y., Liu, T., Hu, X., Wang, M., Wang, J., Zou, B., et al. (2021). CellCall:
integrating paired ligand-receptor and transcription factor activities for cell-cell
communication. Nucleic Acids Res. 49 (15), 8520–8534. doi:10.1093/nar/gkab638

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., et al.
(2017). Massively parallel digital transcriptional profiling of single cells. Nat. Commun.
8, 14049. doi:10.1038/ncomms14049

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D., et al. (2020). “Beyond
homophily in graph neural networks: current limitations and effective designs,” in
Proceedings of the 34th international conference on neural information processing systems
(Red Hook, NY, United States: Curran Associates Inc).

Frontiers in Molecular Biosciences 13 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1547231
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1547231/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1547231/full#supplementary-material
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1038/s41467-020-18873-z
https://doi.org/10.1145/3485447.3512201
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s41587-023-01767-y
https://doi.org/10.1038/nbt.4096
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1038/ncomms8866
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1038/s41467-022-30755-0
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1093/nar/gkab638
https://doi.org/10.1038/ncomms14049
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

	1 Introduction
	1.1 Homophily and heterophily
	1.2 Heterophily-aware methods
	1.2.1 H2GCN
	1.2.2 GBK-GNN


	2 Materials and methods
	2.1 Datasets
	2.2 Proposed method
	2.3 Data preprocessing
	2.4 Graph Construction
	2.5 Model training
	2.5.1 Train-test splitting strategy
	2.5.2 Hyperparameter selection
	2.5.3 Multiple seed experiments and reproducibility


	3 Results
	3.1 Impact of random seed variability
	3.2 Effectiveness of heterophily-aware models

	4 Discussion
	4.1 Heterophily-aware methods
	4.2 Performance comparison with homophily-assuming methods
	4.3 Biological assessment

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

