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China, 2Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic
Medicine, Peking Union Medical College, Beijing, China, 3Department of Laboratory Medicine, Beijing
Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of
Medical Sciences, Beijing, China

Background: Acute coronary syndrome (ACS) is a cardiovascular disease
caused by acute myocardial ischemia. The aim of this study was to use urine
metabolomics to explore potential biomarkers for the diagnosis of ACS and the
changes in metabolites during the development of this disease.

Methods: Urine samples were collected from 81 healthy controls and 130 ACS
patients (103 UA and 27 AMI). Metabolomics based on liquid chromatography-
mass spectrometry (LC-MS) was used to analyze urine samples. Statistical
analysis and functional annotation were applied to identify potential metabolite
panels and altered metabolic pathways between ACS patients and healthy
controls, unstable angina (UA), and acute myocardial infarction (AMI) patients.

Results: There were significant differences in metabolic profiles among the UA,
AMI and control groups. A total of 512 differential metabolites were identified in
this study. Functional annotation revealed that changes in arginine biosynthesis,
cysteine and methionine metabolism, galactose metabolism, sulfur metabolism
and steroid hormone biosynthesis pathways occur in ACS. In addition, a panel
composed of guanidineacetic acid, S-adenosylmethionine, oxindole was able
to distinguish ACS patients from healthy controls. The AUC values were 0.8339
(UA VS HCs) and 0.8617 (AMI VS HCs). Moreover, DL-homocystine has the
ability to distinguish between UA and AMI, and the area under the ROC curve is
0.8789. Themetabolites whose levels increased with disease severity the disease
were involved mainly in cysteine and methionine metabolism and the galactose
metabolism pathway. Metabolites that decrease with disease severity are related
mainly to tryptophan metabolism.

Conclusion: The results of this study suggest that urinary metabolomics
studies can reveal differences between ACS patients and healthy controls,
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which may help in understanding its mechanisms and the discovery of related
biomarkers.
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acute coronary syndrome, biomarker, metabolomics, urine, non-targeted

1 Introduction

Acute coronary syndrome (ACS) is a complex clinical syndrome
caused by acutemyocardial ischemia and is one of the leading causes
of death worldwide (Surendran et al., 2021). The main subtypes
of ACS include unstable angina (UA), non-ST-segment elevation
myocardial infarction (NSTEMI) and ST-segment elevation
myocardial infarction (STEMI) (Reed et al., 2017). Rupture or
erosion of unstable atherosclerotic plaques, inflammatory responses,
and acute intracoronary thrombosis are thought to be the primary
pathologic basis for most patients with ACS (Bergmark et al.,
2022; Crea and Libby, 2017; Davies and Thomas, 1984; Wolf
and Ley, 2019; Crea and Liuzzo, 2013). Currently, the various
subtypes of ACS need to be differentiated by combining clinical
presentation, ECG and markers of myocardial injury (Bhatt et al.,
2022). However, biomarkers such as troponin may be elevated in
other diseases (Karády et al., 2021), and the identification of different
subtypes requires continuous testing of ECG and myocardial
injury markers (Westermann et al., 2017).

With the development of high-throughput metabolomics
techniques, plasma metabolomics has been used to study acute
coronarysyndromes.Plasmametaboliteshavebeenusedasbiomarkers
for a variety of diseases, including cancer, autoimmune diseases, and
cardiovascular disease (Vallejo et al., 2009; Liu et al., 2023). In 2014
Laborde et al. (2014) applied gas chromatography-mass spectrometry
(GC-MC) techniques to analyze peripheral plasma frompatients with
non-ST-segment elevation ACS and healthy controls and identified
15 metabolites. Potential biomarkers consisting of 5-OH-tryptophan,
2-OH-butyric acid, and 3-OH-butyric acid were identified in the
validation group as indicators of oxidative stress and hypoxia in
cardiomyocytes. Late Fan et al. (2016) collected plasma samples from
2,324patientswith coronary heart disease (CHD) from4 independent
centers formetabolomic analysis, and changes inmetabolic pathways,
such as phospholipid catabolism and the tricarboxylic acid cycle, were
detected in the disease group.

Urine is a proximal biological fluid, and urine-based proteomics
and metabolomics have also been widely used in biomarker
discovery and clinical applications (Thomas et al., 2016). As early

Abbreviations: ACS, Acute coronary syndrome; LC-MS, liquid
chromatography-mass spectrometry; UA, unstable angina; AMI, acute
myocardial infarction; STEMI, ST-segment elevation myocardial infarction;
NSTEMI, non-ST-segment elevation myocardial infarction; GC-MC, gas
chromatography-mass spectrometry; UPLC/MS, Ultra-performance liquid
chromatography/mass spectrometry; QC, Quality control; PCA, principal
component analysis; OPLS-DA, orthogonal Partial least squares discriminant
analysis; TC, total cholesterol; LDL, low-density lipoprotein cholesterol;
HDL, High density lipoprotein; AST, Aspartate aminotransferase; MyO,
Myoglobin; CK-MB, creatine kinase-MB; Cr, Creatinine; BUN, Blood Urea
Nitrogen; AS, atherosclerosis; Cys, cysteine; GAMT, guanidinoacetate N-
methyltransferase; SAH, S-adenosylhomocysteine; AUC, Area Under Curve;
ROC, Receiver Operating Characteristic Curve.

as 2014, Martin-Lorenzo et al. (2015) reported that the urine
metabolites 1-methylhydantoin, and 2-hydroxyphenilacetic acid were
downregulated in patients with ACS upon admission and returned
to normal upon discharge, these findings could be used as potential
biomarkers for the diagnosis of ACS. In 2018 Wang et al. (2018)
appliedultra-performance liquidchromatography/mass spectrometry
(UPLC/MS) technique to the urine of ACS patients and healthy
controls, and 20 biomarkers and 9metabolic pathwayswere obtained.

Previous studies have shown that it is feasible to understand
changes in diseased organisms through metabolomic analysis of
body fluids. However, most of the related articles have focused on
the blood metabolome of patients with acute coronary syndrome,
and fewer studies have focused on urine to further explore the
physiopathological changes in acute coronary syndrome. There are
several advantages to using urine for metabolomics analysis. First,
urine is noninvasive, does not require venipuncture, avoids pain,
infection, or bleeding risk, and is especially suitable for patients
receiving anticoagulant therapy and coagulopathy. Second, it
increases the feasibility of continuousmonitoring, allowing frequent
sampling to facilitate dynamic observation of disease changes and
real-time tracking of metabolic changes after myocardial ischemia
or reperfusion (Sarafidis et al., 2017). Finally, the cost of urine
collection tubes and storage equipment is usually low (Borgatta et al.,
2021), and urine does not require anticoagulation, centrifugation or
complex processing, which can be completed by the patient, which
is suitable for remote, resource-poor areas or delayed detection.

In this study, we used LC-MS to analyze urine samples from
130 patients with acute coronary syndrome (103 UA and 27 AMI)
and 81 healthy patients. Patients with acute myocardial infarction
(AMI) can be systematically subdivided into ST-segment elevation
myocardial infarction and non-ST-segment elevation myocardial
infarction (Reed et al., 2017; Deckers, 2013). Therefore, the AMI
patients in this study consisted of 19 NSTEMI patients and 8
STEMI patients. First urine samples from 69 UA patients and 17
AMI patients and 54 healthy patients were analyzed to identify
differences between different subtypes of ACS patients and healthy
patients, which were used to define potential metabolic biomarkers
to diagnose ACS. AMI is associated with more myocardial damage
than is UA, and the risk of short-term death is significantly greater
than that of UA (Anonymous, 2000). Moreover, UA that is not
treated in a timely manner may progress to AMI (Fu et al., 2023).
All of these findings indicate the urgent need to distinguishUA from
AMI early to select different treatment strategies. In order to better
distinguish between UA and AMI, we also analyzed the changes in
urine metabolites in age and sex matched UA and AMI patients.
Finally, we explored the changes ofmetabolites and relatedmetabolic
pathways during the course of disease development, providing
clues to the physiological and pathological mechanisms involved
in disease progression. An overview of the research workflow
is shown in Figure 1.
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FIGURE 1
The workflow of this study.

2 Methods

2.1 Sample collection for LC-MS/MS
analysis

The study included 211 participants, 130 ACS patients (103 UA,
27 AMI), and 81 healthy controls. After matched with gender and
age, we randomly divided the samples into a discovery group and
a validation group (discovery group: validation group = 2:1). The
discovery group included 86 ACS patients (69 UA, 17 AMI) and
54HCs. The validation group included 44 ACS patients (34 UA, 10
AMI) and 27 HCs. The clinical characteristics of the patients in the
discovery and validation groups are shown in Table 1.

All patients in this study were diagnosed with ACS by coronary
angiography. The diagnosis criteria for STEMI include: persistent
chest pain; ECG ST segment arch upward elevation; and troponin
cTnT or cTnI positivity. The clinical diagnostic criteria for UA and
NSTEMI are as follows: no ST segment elevation on ECG; elevated
CKMB; a negative troponin cTnT or cTcI is UA, and a positive
troponin cTnT or cTcI is NSTEMI (Byrne et al., 2024). Patients with
atypical chest discomfort also underwent coronary angiography, and
patients without stenosis and other major diseases were healthy
controls. Patients with malignant tumors, autoimmune diseases,
infectious diseases or severe renal insufficiency were excluded.

This study was approved by the Ethics Committee of
the China-Japan Union Hospital of Jilin University (approval
number:2023072604), and all the subjects provided informed
consent before participating in this study. Urine samples were
collected after the first urination in the morning after admission.
The samples were centrifuged for 10 min at 3,000×g at 4°C within

6 h after collection. The supernatants were separated and stored at
−80°C until analysis.

2.2 Sample preparation for LC-MS/MS
analysis

For urine metabolomics, acetonitrile (200 µL) was added to
each urine sample (200 µL), which was then rotated for 30 s and
centrifuged at 14,000 × g for 10 min. Then, thesupernatant was
vacuum dried, and the vacuum drying mixture was redissolved in
200 µL of 2% acetonitrile. Finally, the urinemetabolites were further
separated from the macromolecules via an ultracentrifugation filter
(Millipore Amcon Ultra (MA)) with a truncated molecular weight
of 10 kDa and transferred to an automatic injector.

The quality control (QC) samples were mixed urine samples. All
samples from different analysis groups weremixed with 1 µL each as
QC samples and are therefore globally representative.The samemass
spectrometry method was used for the QC and other urine samples.
Throughout the analysis, QC samples are injected once every ten
samples to provide data against which the overall method stability
and reproducibility can be assessed.

2.3 Online HPLC and LC-MS/MS for
metabolomics

Ultrahigh performance LC-MS analysis of the urine samples
was performed using the Waters ACQUITY Stage liquid
chromatography system and an Orbitrap Fusion Lumos Hybrid
mass spectrometer (Thermo Fisher Science, Massachusetts, United
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States). The metabolite separation column used was a Waters HSS
C18 (3.0 × 100 mm, 1.7 μm) with gradient elution at a flow rate
of 0.5 mL/min. The column temperature was set to 50°C. Mobile
phase A was 0.1% formic acid aqueous solution, and mobile phase
B was acetonitrile. The mass spectrometer works in positive ion
mode, with a scanning speed of 100–1,000 m/z and a resolution
of 60k. The automatic gain control (AGC) target was 1 × 106 and
the maximum injection time was 100 ms. Then, the QC samples
were subjected to UPLC-targeted MS/MS analysis to identify the
differential metabolites. The resolution was 15 K, the AGC target
was 5 × 105, the maximum information transfer time was 50 ms,
and the isolation window width was 3 m/z. Depending on the target
for each collisional dissociation (HCD) fragmentwith higher energy,
20, 40, and 60 are set as the optimal collision energies.

2.4 Statistical analysis and data processing

Progenesis QI (Waters, Milford, MA) software is used for raw
data normalization and recognition (Zhang et al., 2016). The raw
data normalization process includes the calculation of scalar factors
using ratiometric data in log space, along with a median and
mean absolute deviation outlier filtering approach. Moreover the
recognition process includes sample comparison, peak selection,
peak grouping, deconvolution and final information output.Massive
list data files are exported from QI. The detailed workflow
for Progenesis QI raw data normalization, data processing and
metabolite identification is given in Supplementary Material S1, S2.
Missing value evaluation, logarithm transformation, Pareto scaling
and other preprocessing are performed in MetaboAnalyst 6.0
(https://www.metaboanalyst.ca), where variables in the sampleswith
50% or more missing values are excluded, the missing values within
the group are filled with the KNN method, and the missing values
between the groups are filled with the minimum value. Principal
component analysis (PCA) and orthogonal partial least squares
discriminant analysis (OPLS-DA) were performed using SIMCA
14.1 (Umetrics, Sweden) software. To avoid overfitting the model,
200 permutations were used to verify the OPLS-DA model. Non-
parametric tests (Wilcoxon RAKSUM test) were used to evaluate
the significance of disease-related variables. The Benjamini method
was used to estimate the probability of false positives, and explain
multiple test comparisons, and the FDR cutoff value was 0.05. The
selection criteria for differential metabolites were a p-value <0.05
(nonparameter Wilcoxon rank-sum test) and a fold change≥1.5.
The appropriate metabolite group was selected in the training
group, the logistic regression algorithm was used to construct the
corresponding ROC curve of the metabolite group, and its accuracy
was verified in the verification group. Metabolite annotation and
pathway Analysis can be performed in the MetaboAnalyst 6.0
platform. The obtained spectra were imported into Progensis QI
and significantly different metabolites were further identifiedon the
basis of compound ID, adduct, formula, fraction, mass error (Ppm),
isotopic similarity, theoretical isotopic distribution, m/z values
and MS/MS fragments matched to databases (HMDB, Metlin and
mzCloud). A range of scores from 0 to 60 was used to quantify the
reliability of each identity. The threshold was set at 35.0. Metabolite
pathway analysis and enrichment analysis were performed using the
metabolomics visualization web tool MetaboAnalyst 6.0.

3 Results

3.1 Subjects

A total of 211 samples were analyzed in this study, including 130
patients with ACS (103 UA, 27 AMI) and 81 healthy controls. The
211 samples were matched with gender and age before randomly
divided into discovery group (69 UA,17 AMI, 54 HCs) and a
validation group (34 UA,10 AMI, 27 HCs). All groups werematched
in terms of age and sex, and smoking status was not statistical
differences. As shown in Table 1, for some traditional cardiovascular
risk factors, such as hypertension, diabetes and hyperlipidemia,
UA and AMI were more common than in HCs (p < 0.05). The
levels of Myo, I (TnI) and CK-MB myocardial injury markers
in AMI patients were higher than UA patients (p < 0.05). UA
patients had higher levels of total cholesterol (TC) and low-density
lipoprotein cholesterol (LDL) than HC patients (p < 0.05). High
density lipoprotein (HDL) levels were lower in patients with AMI
than in patients with metastatic disease UA and HCs (p < 0.05).
Aspartate aminotransferase (AST) levels increased as the disease
progressed (p < 0.05). These results indicate that with increasing
disease severity, the inflammatory response and metabolic system
are disrupted.

3.2 Quality control

In this study, QC samples are injected once every ten samples.
QC correlation can be used to evaluate the reproducibility of
instrumental analysis. A total of nine QC samples were injected.The
correlation analysis of the QC samples (Supplementary Figure S1)
revealed r values (correlation coefficients) close to 1, demonstrating
the quality of the QC data and the reproducibility of the
instrumental analysis. Therefore, the intergroup differences in the
experiment mainly originated from metabolic changes between
samples, excluding the influence of other factors. The median of
metabolite CV was 0.29.

3.3 Differential analysis of ACS
metabolomics in urine metabolomics

LC-MS-based analysis revealed that the urine samples yielded
1169 metabolite features (Supplementary Table S1). Multivariate
statistical analysis model was used to screen potential biomarkers
of UA, AMI and HCs. Principal component analysis (PCA)
(Figures 2A, D, G) and orthogonal partial least squares analysis
(OPLS-DA) models (Supplementary Figures S2A–C) for both UA
and AMI vs. HCs and UA vs. AMI showed a significant clustering
trend between the two groups, demonstrating that there are
differences among the three groups. The permutation test was
used to verify the stability of the regulatory model proposed
in this study (Supplementary Figures S2D–F). By adjusting the
pvalue <0.05 (nonparameter Wilcoxon rank-sum test) and fold
change≥1.5 as the criteria for identifying differential metabolites,
a total of 330 (UA vs. HCs), 365 (AMI vs. HCs) and 99
(UA vs. AMI) significantly different metabolites were identified
(Figures 2B, E, H; Supplementary Table S1). Pathway analysis of the
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TABLE 1 Baseline characteristics of the population.

HC (n = 81) UA (n = 103) AMI (n = 27) p

Age (years)+ 61.77 ± 14.33 63.64 ± 9.55 63.37 ± 13.04 0.525

Male& 47 (50.62) 49 (47.57) 18 (66.67) 0.138

Smoking 28 (34.57) 33 (32.04) 11 (40.74) 0.697

Hypertension& 0 (0.00) 49 (47.57) 10 (37.04) <0.001ab

Diabetes mellitus& 0 (0.00) 24 (23.30) 11 (40.74) <0.021abc

Hyperlipidemia& 0 (0.00) 5 (4.85) 3 (11.11) 0.020ab

Laboratory data

Myo (ng/mL)∗ NA 48.86 (28.15–58.80) 116.38 (42.40–100.00) <0.001c

I (TnI) (ng/mL)∗ NA 0.10 (0.10–0.10) 2.20 (0.01–0.85) 0.008c

CK-MB (ng/mL)∗ NA 6.26 (2.00–5.83) 16.77 (2.00–17.70) 0.003c

BUN (mmol/L)∗ 5.51 (4.51–6.30) 5.80 (4.81–7.26) 5.68 (4.38–6.63) 0.153

Scr (μmol/L)∗ 70.00 (61.84–82.29) 70.80 (59.27–85.25) 79.30 (67.90–91.70) 0.252

Glucose (mmol/L)∗ 5.42 (5.10–5.79) 5.59 (5.08–6.14) 6.06 (5.15–7.56) 0.017bc

AST (U/L)∗ 24.57 (19.88–29.85) 21.69 (17.24–25.98) 31.33 (20.34–65.68) <0.001bc

ALT (U/L)∗ 20.67 (14.18–28.62) 18.08 (12.10–27.81) 20.71 (13.18–45.48) 0.396

TG (mmol/L)∗ 1.42 (1.04–1.88) 1.39 (0.98–2.13) 1.52 (1.07–2.32) 0.209

TC (mmol/L)∗ 5.35 (4.69–6.05) 4.70 (3.72–5.49) 4.71 (3.81–5.77) 0.001a

HDL-C (mmol/L)∗ 1.41 (1.20–1.60) 1.15 (0.94–1.33) 0.99 (0.87–1.12) <0.001abc

LDL-C (mmol/L)∗ 3.08 (2.59–3.67) 2.84 (2.14–3.40) 3.02 (2.33–4.14) 0.061

+Mean ± SD,∗median (IQR),&n (%), ap < 0.05 for equality between HC and UA patients. bp < 0.05 for equality between HC and AMI patients. cp< 0.05 for equality between the UA and
AMI patients.

differential metabolites revealed that the differential metabolites in
the UA group were associated mainly with galactose metabolism
and steroid hormone biosynthesis (Figure 2C). The differential
metabolites in the AMI group were associated mainly with
the amino acid metabolism pathway (Figure 2F). The metabolic
pathways of cysteine and methionine metabolism and sulfur
metabolism changed betweenUA andAMI (Figure 2I). Both groups
presented with disturbances in purine metabolism and porphyrin
metabolism pathways.

Figure 3A shows the Mfuzz cluster analysis of 512 differential
urinary metabolites in the three groups. Among the six clusters
(Supplementary Table S2), most of the metabolites in clusters 2
(94) and 6 (163) decreased with ACS progression and were
enriched mainly in retinol metabolism, tryptophan metabolism
and amino acid metabolism. Metabolites in clusters 4 (73) and
5 (87) were positively correlated with ACS progression, and
were enriched mainly in galactose metabolism, and cysteine
and methionine metabolism (Figure 3B). To further explore the
relationships between differential metabolites and ACS phenotypes,
we performed Pearson correlation analyses of ACS-related clinical

indicators such as myoglobin (MyO), troponin I (cTnl), creatine
kinase-MB(CK-MB), aspartate aminotransferase (AST), blood urea
nitrogen (BUN),and creatinine (Cr) with differential metabolites
(Figure 3C; Supplementary Table S3). The results showed that S-
adenosylmethionine was positively correlated with troponinI I
(cTnl) and negatively correlated with BUN and Cr. Homocysteine
has been identified as an independent risk factor for vascular
disease, and s -adenosylhomocysteine, a precursor of homocysteine,
may also be a sensitive risk indicator, which may be associated
with myocardial damage, and therefore positively correlated with
I (cTnl) (Kerins et al., 2001; Elshorbagy et al., 2013). Correlation
analysis also revealed that CITROPTEN was negatively correlated
with MyO, troponin, CK-MB, and AST. CITROPTEN can inhibit
the proliferation and migration of vascular smooth muscle cells
by binding to receptors on smooth muscle cells, which are
associated with arterial remodeling, thus, CITROPTEN may be
associated with angiogenesis and myocardial remodeling after
myocardial injury (Pham et al., 2024). 4-Hydrocinnamic acid,
bilirubin and DL-homocysteine are positively correlated with MyO,
troponin, CK-MB, and AST.
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FIGURE 2
Differential analysis of ACS metabolomics in urine. [(A–C) UA vs. HC. (D–F) AMI vs. HC. (G–I) UA vs. AMI.] (A, D, G) PCA score plot for the discovery
group. (B, E, H) The volcano plots of the identified metabolites. (C, F, I) Pathway analysis of differential features.

3.4 Diagnostic biomarkers to identify ACS

A total of 182 differential metabolites were found in both
the UA and AMI groups compared with HCs. Among them, 60
endogenous differential metabolites were identified, and from the
pathway analysis and MS/MS analysis, we defined three differential
metabolites, guanidineacetic acid, S-adenosylmethionine, oxindole,
as potential biomarkers (Supplementary Figure S3). Predictive
models were obtained on the basis of exploratory analysis ofreceiver
operating characteristic (ROC) curves and logistic regression
algorithms. The results revealed that the area under the ROC area of
the panel consisting of guanidineacetic acid, S-adenosylmethionine,
oxindole was 0.8339 (UA patients vs. HCs) and 0.8617 (AMI
patients vs. HCs) (Figures 4A, C; Table 2). The model was then

validated with validation sample cohorts (34 UA, 10 AMI and
27 HCs) and area under the curve (AUC) values of 0.8312 and
0.9481 were obtained (Figures 4B, D;Table 2). Box plots show the
expression of these three metabolites in the control, UA and AMI
groups, with consistent expression in the discovery and validation
groups (Figure 4G; Table 2). Moreover, we found that among the
differential metabolites, DL-homocystine has a very good capacity
for AMI and UA, which was validated in the validation group by
exploratory analysis of ROC curves with an area under the curve
of 0.8789, which was validated in the validation group with an
AUC value of 1 (Figures 4E, F; Table 2). Box plots show that the
expression of DL-homocystine in the control, UA and AMI groups
was consistent with that in the discovery and validation groups
(Figure 4H; Table 2).
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FIGURE 3
Changes in metabolites during disease progression and correlations between clinical indicators (A) Mfuzz correlation analysis of metabolites associated
with different degrees of ACS. The color bar represents the Z -score change from 0 to 1. (B) Heatmap of differential metabolites in clusters 2,6,4, and 5
in the MFUZZ analysis. (C) Correlation analysis between metabolomic profiles and the ACS phenotype.

4 Discussion

In this study, we applied the LC-MS technique to perform
metabolomic analysis of urine from patients with ACS and healthy
controls. Through the comparison of UA, AMI and health, we
found that ACSs were associated mainly with ACSs were associated
mainly with arginine biosynthesis, cysteine and methionine
metabolism, galactose metabolism, sulfur metabolism, steroid
hormone biosynthesis and other pathway changes (Figure 5). A
panel of guanidineacetic acid, S-adenosylmethionine, oxindole
could distinguish ACS patients from healthy controls. Moreover,
we also found that DL-homocystine has the ability to distinguish
between UA and AMI. With respect to MFUZZ, we found that
the metabolites whose levels increased with disease severity were
involved mainly in cysteine and methionine metabolism, and
galactose metabolic pathways. Metabolites whose abundance
decreases with disease severity are associated mainly with
tryptophan metabolism.

4.1 Differences in urine metabolomics in
patients with ACS

Tryptophan metabolism, cysteine and methionine metabolism,
arginine biosynthesis, steroid hormone biosynthesis, and galactose
metabolism are associated with the development of ACS. These
metabolic pathways are closely linked to the development of
the disease (Surendran et al., 2021).

Fatty acid and glucose metabolism is known to be required
for ATP to reach the heart. In addition, ATP can also come
from galactose, a small number of ketone bodies and amino
acids (Doenst et al., 2013). Previous studies have shown found
that metabolomic analysis of different biological samples of AMI
revealed changes in fatty acid and galactose metabolism (Wu et al.,
2020a), which was consistent with our results. Studies have also
shown that under normal circumstances, galactose is converted into
glucose to participate in human metabolism, but when galactose is
excessive, it metabolizes ROS, thereby inducing oxidative stress and
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FIGURE 4
Biomarkers that distinguish ACS from HC, AMI from UA [(A, B) UA vs. HC. (C, D) AMI vs. HC. (E, F) UA vs. AMI.] (A, C, E) ROC cure of candidate
biomarkers and predictive panel in the discovery group. (B, D, F) ROC curves of the candidate biomarkers and the predictive panel in the validation
group. (G, H) Boxplots showing the expression of the candidate biomarkers for ACS vs. HCs and AMI vs. UA in the panel.

inflammation, and regulating cell proliferation and apoptosis (Qi
and Tester, 2019; Shi et al., 2024).

Sulfur REDOX signaling has long been considered a key
mechanism in the development of heart disease (Go and Jones,
2013). Cardiomyocytes have a good antioxidant system, which is
mostly based on cysteine (Cys) (Nishimura et al., 2022). H2S can
be used as an endogenous neuromodulator and vascular relaxant
(Abe and Kimura, 1996; Li et al., 2011). Moreover, the discovery
of supersulfide and its biochemical properties have raised the
possibility that it has cardioprotective effects as a molecular entity
(Nishimura et al., 2024). This corresponds to the downregulation
of sulphur metabolism when myocardial hypoxia occurred in our
study. Myocardial damage occurs when the blood supply to the
heart is briefly blocked by ischemia and then restored (Elrod et al.,
2007). Rapid oxygen reentry induces an increase in mitochondrial
ROS, leading to cardiac cell death and tissue damage (Osipov et al.,
2009). Experimental studies have shown that sulfur metabolites

can improve myocardial hypertrophy by reducing oxidative stress
depending on the PI3K-Akt signaling pathway (Li et al., 2018;
Luan et al., 2012; Kondo et al., 2013). These findings indicate
that sulfur metabolites have the most protective effect on the
myocardium. In our study, the decreased expression of sulfur
metabolites during UA exposure may indicate the occurrence of
oxidative stress and eventual damage the myocardium.

4.2 Differences in urine metabolomics
between UA and AMI patients

Through urine metabolomics analysis of ACS, it was found that
the expression of metabolites in the steroid hormone biosynthesis
pathway gradually decreased with increasing disease severity.
Previous studies have also shown that low levels of estrogen, or
testosterone, can increase the risk of atherosclerosis and coronary
heart disease. This finding is consistent with our results. Moreover,
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TABLE 2 Performance of the candidate biomarker panel for ACS.

Exposure AUC Sensitivity Specificity

UA VS HC (Discovery group)

Panel 0.8339 (0.7591–0.9086) 0.7826 (0.6718–0.8636) 0.8148 (0.6916–0.8962)

Guanidineacetic acid 0.7638 (0.6766–0.8511) 0.6522 (0.5345–0.7538) 0.8148 (0.6916–0.8962)

S-Adenosylmethionine 0.8017 (0.7213–0.8820) 0.8551 (0.7534–0.9193) 0.7037 (0.5717–0.8086)

Oxindole 0.6881 (0.5927–0.7835) 0.8406 (0.7367–0.9086) 0.5000 (0.3711–0.6289)

UA VS HC (Validation group)

Panel 0.8312 (0.7310–0.9313) 0.6471 (0.4791–0.7851) 0.9259 (0.7663–0.9868)

Guanidineacetic acid 0.7484 (0.6244–0.8723) 0.5884 (0.4222–0.7363) 0.8519 (0.6752–0.9408)

S-Adenosylmethionine 0.7810 (0.6668–0.8953) 0.5882 (0.4222–0.7363) 0.8889 (0.7194–0.9615)

Oxindole 0.7309 (0.6031–0.8588) 0.7647 (0.6000–0.8756) 0.6296 (0.4423–0.7847)

AMI VS HC (Discovery group)

Panel 0.8617 (0.7656–0.9577) 0.7059 (0.4687–0.8672) 0.8889 (0.7781–0.9481)

Guanidineacetic acid 0.8137 (0.6914–0.9361) 0.8235 (0.5897–0.9381) 0.8148 (0.6916–0.8962)

S-Adenosylmethionine 0.6993 (0.5494–0.8493) 0.7050 (0.4687–0.8672) 0.7037 (0.5717–0.8086)

Oxindole 0.7636 (0.6420–0.8852) 0.7647 (0.5274–0.9044) 0.6852 (0.5526–0.7932)

AMI VS HC (Validation group)

Panel 0.9481 (0.8603–1.000) 0.9000 (0.5958–0.9949) 0.9259 (0.7663–0.9868)

Guanidineacetic acid 0.9444 (0.8658–1.000) 0.9000 (0.5958–0.9949) 0.9630 (0.8172–0.9981)

S-Adenosylmethionine 0.8185 (0.6672–0.9699) 0.8000 (0.4902–0.9645) 0.7407 (0.5532–0.8683)

Oxindole 0.8148 (0.6644–0.9652) 0.8000 (0.4902–0.9645) 0.7407 (0.5532–0.8683)

UA VS AMI (Discovery group)

DL-Homocystine 0.8789 (0.7505–1.000) 0.7647 (0.5274–0.9044) 0.9412 (0.7302–0.9970)

UA VS AMI (Validation group)

DL-Homocystine 1.000 (1.000–1.000) 1.0000 (0.7225–1.0000) 0.9000 (0.5958–0.9949)

Panel∗: combination of Guanidineacetic acid, S-Adenosylmethionine, Oxindole.

Hu et al. (2011), Akishita et al. (2010), and Malkin et al.
(2003). The testosterone levels in the UA and AMI groups were
significantly lower than those in the SAP group. The level of
testosterone in the AMI group was significantly lower than that
in the UA group. These experimental results further confirmed
that with increasing disease severity, the expression of steroid
hormone-related metabolites decreases. Decreased testosterone
levels are associated with increased systemic vascular resistance,
decreased heart rate variability, and decreased baroreflex sensitivity
(Chen et al., 2014). It can also induce coronary artery relaxation
(Chen et al., 2014). In addition, researchers have confirmed that

hormone levels are related to the severity of heart ischemia and
hypoxia (Bell et al., 2011). Estrogen is inversely associated with
heart attack size, and estrogen use significantly reduces heart attack
size in men (Ostadal and Ostadal, 2014).

Our results also revealed that the tryptophan metabolism
pathway changed when ACS occurred. In 2019, jia et al. used
UPLC-QTOF-MS to conduct metabolomics analysis of rat serum
after MI and reported that phospholipid metabolism, sphingolipid
metabolism and linoleic acid metabolism increased, and that
tryptophanmetabolismdecreased, whichwas the same as our results
(Jia et al., 2019). Tryptophan metabolites, as important regulators

Frontiers in Molecular Biosciences 09 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1547476
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Liu et al. 10.3389/fmolb.2025.1547476

FIGURE 5
Metabolic pathways of disorders associated with the pathogenesis of ACS.

of immune and inflammatory responses, have been shown to play
a key role in cardiovascular disease (Nitz et al., 2019). Studies have
also shown that tryptophan metabolites downstream of kynurenine
are associated with an increased risk of AMI in patients with stable
angina pectoris (Pedersen et al., 2015). Moreover, the infarct size
of rats treated with the tryptophan metabolites kynurenine and
kynurenicuric acid was significantly smaller (Bakhta et al., 2020).
These results indicated that tryptophan metabolites were negatively
correlated with myocardial infarction size, which was consistent
with the finding that the expression of tryptophan metabolites
decreased gradually with the development of the disease.

4.3 Potential biomarkers for the diagnosis
of ACS

In our study, a panel of three urinary metabolites showed good
performance in distinguishing patients with ACS from controls.
Guanidineacetic acid can be methylated by guanidinoacetate N-
methyltransferase (GAMT), which uses S-adenosylmethionine as
a methyl donor to produce creatine (Nouioua et al., 2013).
Schneider et al. (2008) reported that GAMT is an essential enzyme

for creatine biosynthesis and that mice lacking this enzyme cannot
synthesize creatine. Creatine plays an important role in buffering
and transferring high-energy phosphate bonds in the heart, and
creatine deficiency can impair heart function. Guanidinoacetic acid
is the raw material of creatine synthesis, so it is speculated that a
reduction in guanidinoacetic acid leads to a reduction in creatine,
which is harmful to the myocardium. Lorenzo et al. reported that the
metabolic pathways of arginine and proline are altered in patients
with atherosclerosis and ACS, and can be used as new monitoring
tools (Martin-Lorenzo et al., 2015). Loss of nitric oxide is one of
the mechanisms of endothelial dysfunction, and providing more
substrates for endothalium-specific nitric oxide synthase (eNOS) is
the mechanism by which the vascular endothelium increases nitric
oxide synthesis (Nicholls et al., 2007). However, arginine is an
important substrate of this enzyme, and the level of guanidineacetic
acid gradually decreases as acute coronary syndrome exacerbates,
resulting in changes in arginine metabolism. A reduction in arginine
and its metabolites leads to the loss of nitric oxide, resulting in injury
to endothelial function, and leading to the aggravation of ACS disease
(Schulman et al., 2006; Bekpinar et al., 2011; Molek et al., 2021).

In addition, S-adenosylmethionine and DL-homocystine can
also distinguish ACS and its subtypes. Previous studies have
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shown that homocysteine is a risk factor for atherosclerotic
thrombosis (Becker et al., 2003), a cardiovascular disease risk factor
(Zawada et al., 2014). Homocysteine, S-adenosylmethionine, S-
adenosylhomocysteine (SAH), DL-homocystine, and methionine
are involved in the cysteine and methionine metabolic pathways.
Homocysteine is derived from methionine metabolism and
SAM dependent transmethylation (Hartz and Schalinske, 2006).
Nam et al. (2017) found that the concentration of SAM and the
SAM/SAH ratio gradually decreased in a time-dependent manner
in the metabolomic analysis of mouse hearts after MI, which
was similar to the increase in SAM expression during UA and
the decrease in DL-homocystine during AMI. The expression
of SAM decreased, whereas the expression of DL-homocystine
increased. Experiments have shown that aftermyocardial infarction,
the levels of the SAM dependency methyltransferases Coq3 and
Coq5 gradually decrease. Coq3 and Coq5 participate in the COQ
biosynthetic pathway (Loehrer et al., 2001). Downregulation
of COQ in cardiac tissue after myocardial ischemia can affect
aerobic cell respiration and lead to insufficient ATP production
in cardiomyocytes (Langsjoen et al., 1994). Puddu (2018) found
that homocysteine (Hcy) associated acute myocardial infarction
risk may reflect lipid metabolism disturbances. Moreover, when
homocysteine levels are elevated, there may be a risk of impaired
endothelial function, which increases the possibility of thrombosis,
and oxidative stress and inflammatory stimulation can lead to
coronary artery calcification, which leads to the occurrence of
acute coronary syndrome (Martí-Carvajal et al., 2015). Elevated
homocysteine levels are be closely related to inflammatory
responses. Homocysteine can exacerbate the inflammatory process
by activating Th1 and Th17 cells and promoting the release of
pro-inflammatory cytokines (Sitdikova and Hermann, 2023). In
ACS patients, homocysteine levels are positively correlated with a
variety of inflammatory markers, such as white blood cell count,
neutrophil count, C-reactive protein (CRP), monocyte count, and
interleukin-6. This inflammatory response not only aggravates the
severity of coronary artery disease, but also may cause plaque
instability and increase the risk of thrombosis (Jin et al., 2025).
Homocysteine can promote the generation of ROS, which can
cause cell dysfunction by damaging cell membranes, proteins and
DNA (Liu et al., 2024). In addition, elevated levels of homocysteine
can induce endoplasmic reticulum stress, which then activates the
apoptotic pathway, leading to damage of to vascular endothelial
cells and smooth muscle cells (Calim et al., 2020). Most importantly,
homocysteine is able to activate the inflammatory response and
further aggravate oxidative stress. This process plays a key role in
the progression of atherosclerosis (Pushpakumar et al., 2014). DL-
homocystine is the oxidation product of homocysteine. From the
above discussion, we know that oxidative stress is a key factor in
the pathophysiological process of UA and AMI. When the level
of Hcy gradually increases during disease progression, the level of
DL-homocystine, the oxidative product of Hcy, may significantly
increase under oxidative stress. As shown in Figure 5,we mapped
metabolic pathways on the basis of the altered metabolic pathways
identified in the present study.

Through our metabolomic study of urine in from ACS, we
found that the metabolite oleic Acid is altered during the course
of the disease. Yin et al. (2017) and Gundogdu et al. performed
metabolomic analysis of patients with ACS using plasma and serum

samples, and also detected changes in oleic Acid. Zhu et al. (2018)
used the metabolomics method revealed find that C16-sphingosine
in plasma was altered in AMI patients, which was the same as our
experimental results. In addition, metabolites such as 5′-adenylic
acid (Cebo et al., 2022), decanoylcarnitine (Zhou et al., 2024),
and 5-hydroxyindoleacid (Wu et al., 2020b) have been found to
be altered in blood metabolomics studies of ACS. These findings
suggest that metabolomic studies of urine can reveal changes in
metabolites. AndUrine has the advantages of being noninvasive and
easy to obtain and store. However, it is undeniable that combining
urine and blood results will cover a more comprehensive range
of metabolite, significantly improving the depth and breadth of
metabolic research. There are also similar problems in the technical
aspects of metabolomics. In this study, UPLC-MS technology was
used for metabolomics analysis. There are a variety of techniques for
metabolomics, including NMR, and GC-MS. Compared with GC-
MS and LC-MS, NMR is a pioneer platform for metabolomics, with
advantages such as high repeatability and suitability for quantitative
analysis with fewer sample requirements (Sengupta and Weljie,
2019), while LC-MS can detect metabolites without the limitations
of volatility and thermal instability, and sample preparation is
simpler than GC-MS, does not require derivatization, and is more
sensitive (Li et al., 2019). Khan et al. (2020) also revealed the changes
in L-homocysteine levels via the application of HRM technology for
metabolomic analysis of the blood of AMI patients. Hypoxanthine,
urea, etc. were found to have altered metabolites in our study,
which was also found in previous experiments based on HRM
(Deng et al., 2018; Ali et al., 2016). Therefore, the metabolites
found by different techniques were partially the same, but the multi-
technique association made the results more abundant.

There are several limitations to this study. First, with respect
to the effects of bacteria on urine metabolomics, we have chose to
midstream urine to reduce microbial contamination of the urethral
opening during urine collection. At the same time, the collected
urine samples were centrifuged (3,000×g, 10 min) to remove the
microorganisms and cell debris in the urine, and the supernatant
urine was taken for short-term storage at - 80°C. The above
methods can effectively reduce the influence of microorganisms
on urine metabolomics and improve the accuracy and reliability
of the study results. However, some potential factors produced
by microorganisms can affect metabolome analysis. Metabolites
produced by bacteria directly alter the composition of urine
metabolites, and bacteria may consume certain metabolites in
the urine, resulting in changes in the concentrations of these
metabolites in the urine (Zheng et al., 2024; Yang et al., 2023;
Queremel Milani and Jialal, 2025). The intestinal flora affects the
body’s systemic metabolism through metabolites (such as short-
chain fatty acids and indole compounds), and thus affects urine
metabolomics (Dong et al., 2023). In future studies, 16S rRNA
sequencing could be used to determine whether bacterial infections
are present, and the effects of the gut flora on metabolites
throughout the body should be further studied. In addition, our
study sample came from a center primarily used for non-targeted
LC-MS/MS analysis, and the differential metabolites found provide
preliminary results for potential candidate biomarkers. Therefore,
multi-center samples can be collected in future experiments, and
targeted metabolomics can be used to further verify experimental
results while non-targeted high-throughput screening of differential
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metabolites. Furthermore, in our study, only the urine of patients
with ACS was analyzed by LC-MS/MS. In future experiments,
we will apply a variety of metabolomics technologies to analyze
biological fluids together to further strengthen the research results.
Finally, the functions andmechanisms of the differential metabolites
identified in these experiments are still unclear and can be explored
through biochemical research methods such as in vivo and in vitro.

5 Conclusion

In this study, we used LC-MS to define the metabolome
of urine samples from ACS patients and healthy controls. The
results show that the urinary metabolome can distinguish patients
with ACS from healthy controls and reveal changes in metabolic
expression levels over the course of the disease. In addition, the
panel of metabolites identified can be used as potential diagnostic
biomarkers to distinguish ACS patients from healthy controls. This
study may provide a new perspective for the differential diagnosis
and monitoring of ACS.
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