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Objective: Cholangiocarcinoma (CCA) is a highly aggressive malignancy, and
early diagnosis remains challenging. Metabolic biomarkers are increasingly
recognized as promising tools for the early detection of cancer. However, a
comprehensive exploration of metabolic alterations in CCA, especially from a
global metabolic perspective, has yet to be fully realized. To identify reliable
metabolic markers for the early diagnosis of CCA and to explore its potential
pathogenesis through an in-depth analysis of global metabolism.

Methods: Serum samples from 30 CCA patients and 31 healthy individuals were
analyzed using an unbiased UPLC-Q-TOF-MS based metabolomics approach.
Principal component analysis (PCA) and orthogonal projections to latent
structures discriminant analysis (OPLS-DA) were applied to identify potential
biomarkers. High-resolutionMS/MS and available standards were used to further
confirm the identifiedmetabolites. A systematic metabolic pathway analysis was
conducted to interpret the biological roles of these biomarkers and explore their
relevance to CCA progression.

Results: A total of 25 marker metabolites were identified, including
lysophosphatidylcholines (LysoPCs), phosphatidylcholines (PCs), organic acids,
sphinganine, and ketoleucine. These metabolites effectively distinguished CCA
patients from healthy controls, with an AUC of 0.995 for increased biomarkers
and 0.992 for decreased biomarkers in positive mode. In negative mode, the
AUC for increased and decreased biomarkers was 0.899 and 0.976, respectively.
The metabolic pathway analysis revealed critical biological functions linked to
these biomarkers, offering insights into the molecular mechanisms underlying
CCA initiation and progression.

Conclusion: This study identifies novel metabolic biomarkers for the
early diagnosis of CCA and provides a deeper understanding of the
metabolic alterations associated with the disease. These findings could
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contribute to the development of diagnostic strategies and therapeutic
interventions for CCA.

KEYWORDS

cholangiocarcinoma, diagnosis, unbiased serum metabolomics, UPLC-Q-ToF-MS,
biomarker screen and identification

1 Introduction

Cholangiocarcinoma (CCA) is a rare and heterogeneous
malignancy of the biliary system, originating from the epithelial cells
lining the bile duct (Banales et al., 2020). CCA is currently the second
most prevalent primary liver cancer after hepatocellular carcinoma
(Banales et al., 2016) and is classified into three subtypes based
on anatomical location: intrahepatic (iCCA), perihilar (pCCA),
and distal (dCCA) (Sulpice et al., 2013). Although CCA remains
relatively uncommon, its clinical incidence has been steadily
increasing over recent decades, reaching an annual rate of 0.3–6
cases per 100,000 individuals (Guilhamon et al., 2013). Traditional
diagnostic methods are hindered by a lack of sensitive and specific
tests. While magnetic resonance imaging, computed tomography,
and endoscopic ultrasound offer useful diagnostic insights in select
patients, these techniques are often invasive, time-consuming, and
costly. Early diagnosis remains challenging, with ultrasonography
and endoscopic retrograde cholangiography still being the primary
tools for CCA detection (Intuyod et al., 2019), yet these methods
often fail to identify the tumor at its earliest stages, contributing to
the disease’s high mortality rates (Wang et al., 2013; Lindner et al.,
2015). Although nonspecific biomarkers such as carbohydrate
antigen 199 (CA199) (Liang et al., 2015) and carcinoembryonic
antigen (CEA) (Loosen et al., 2017) are used in diagnosis, their levels
are also elevated in hepatocellular carcinoma, cholangitis, and other
hepatobiliary diseases, complicating their reliability as diagnostic
markers for CCA (Macias et al., 2018; Chen et al., 2002). Therefore,
there is an urgent need for the identification of specific biomarkers
to facilitate early detection, improve prognosis, and guide treatment
strategies for CCA.

Metabolomics, a powerful analytical approach developed after
genomics, transcriptomics, and proteomics (Saito and Matsuda,
2010), is emerging as a promising tool for biomarker discovery.
By qualitatively and quantitatively analyzing small-molecule
endogenous metabolites in biological samples, metabolomics
identifies correlations between metabolic alterations and
pathological changes (Suhre et al., 2011). This technique allows
for comprehensive analysis of metabolites in various biological
matrices, such as serum, urine, feces, and tissues, to pinpoint
disease-specific biomarkers (Chua et al., 2013). It offers the
advantage of detecting subtle biomarker changes, providing
early warnings of disease onset, and reflecting the progression
and severity of the disease (Pintus et al., 2017). Consequently,
metabolomics is particularly well-suited for tumor diagnosis
(Yang et al., 2018), biomarker discovery (Burton and Ma, 2019),
and prognostic evaluation (Buck et al., 2017), owing to its
high-throughput, systematic, and holistic nature. Recent studies
have demonstrated the utility of metabolomics in CCA. Alsaleh
et al. identified distinct metabolic profiles in urinary samples
from healthy controls versus individuals with CCA, with altered

acylcarnitine levels identified through orthogonal projections to
latent structures discriminant analysis (OPLS-DA) (Alsaleh et al.,
2019). Among them, ultra-performance liquid chromatography
coupled with quadrupole time-of-flight mass spectrometry (UPLC-
Q-TOF-MS) offers high sensitivity, resolution, and accuracy in
detecting a broad range of metabolites in biological samples.
The ability of UPLC-Q-TOF-MS to comprehensively profile
metabolic changes makes it particularly suitable for identifying
potential biomarkers for CCA from blood samples, which are
easily accessible and minimally invasive compared to tissue or
bile specimens. They also observed changes in the abundance of
phospholipids in serum metabolites, particularly in patients with
liver disease, including CCA, as detected by unsupervised principal
component analysis (PCA), although no significant differences
were found between profiles from CCA patients and those with
benign biliary strictures (Alsaleh et al., 2020). Additionally,
Banales et al. proposed a combined PCA and OPLS analysis to
differentiate between iCCA and hepatocellular carcinoma (HCC),
enabling accurate tumor classification based on biopsy-proven
diagnoses (Banales et al., 2019).

In this study, serum metabolite profiles of CCA patients and
healthy controls were analyzed using ultraperformance liquid
chromatography-quadrupole-time-of-flight mass spectrometry
(UPLC-Q-TOF-MS) based metabolomics. Serum was chosen over
urine as the biological sample of interest because clinical urine
samples require 24-hour collection periods for reliable metabolite
quantification, resulting inmore complex postprocessing (Ren et al.,
2021). Furthermore, serum provides a more representative snapshot
ofmetabolic activity and offers richer chemical information,making
it a preferred sample type in metabolomics research (Sun et al.,
2013). Through systematic statistical analysis, this study aims
to gain insights into the metabolic alterations associated with
CCA, advancing the identification of specific biomarkers for early
diagnosis and enhancing our understanding of disease progression
at the metabolic level.

2 Materials and methods

2.1 Reagents and chemicals

Acetonitrile (ACN, LC-MS grade) andmethanol (LC-MS grade)
were procured from Merck (Darmstadt, Germany). Formic acid
(FA, LC-MS grade) was sourced from ACS (Anaqua Chemicals
Supply, United States), and ultrapure water used in this study
was obtained via an EPED-E2-10 TF system (Nanjing, China). The
lysophosphatidylcholine (LysoPC) standard, LysoPC(16:0/0:0), was
obtained from AvantiPolar Lipids (Alabaster, AL, United States).
Other standards, including D-glucuronic acid, 2-hydroxybutyric
acid, ketoleucine, alpha-ketoisovaleric acid, and glyceric acid, were
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supplied by Shanghai Macklin Biochemical Technology Co., Ltd.
(Shanghai, China).

2.2 Clinical sample collection

This study enrolled CCA patients from the First Affiliated
Hospital of Anhui Medical University between October 2020 and
March 2021, while healthy controls were recruited from medical
examiners. The study utilized discarded specimens, originally
collected for clinical purposes and deemed surplus to diagnostic
or treatment procedures, for analysis. These specimens posed no
additional risk to participants, as strict ethical guidelines and
data protection protocols were followed during anonymization
and handling. Ethical approval (Approval No.: PJ2024-11-35)
was granted, ensuring compliance with ethical standards and
safeguarding participant confidentiality. CCA patients included in
the study had been clinically diagnosed with CCA for at least
6 months and were confirmed by two independent pathologists.The
healthy control group was matched to the CCA patients by age
and gender. All physiological indicators were derived from 8-hour
fasting blood samples (Table 1), which included: (i) liver function
indicators such as ALT, AST, ALP, GGT, TBIL, DBIL, and UREA,
and (ii) tumor markers, including AFP, CEA, CA-125, and CA199.

2.3 Sample preparation

Frozen serum samples were thawed on ice, and 100 μL of serum
wasmixedwith 400 μL of ACN, followed by vortexing for 1 min.The
samples were then centrifuged at 13,000 rpm for 10 min to remove
proteins. The resulting supernatant was aliquoted into 400 μL
portions and freeze-dried. After freeze-drying, the product was
reconstituted in 100 μL of H2O/ACN and centrifuged at 13,000 rpm
for 10 min at 4°C.The supernatant was then filtered through a 0.22-
μm-thick GHP membrane (PALL Corporation, United States) prior
to UPLC-MS analysis.

2.4 UPLC-Q-TOF-MS condition

Chromatographic separation was carried out using an Agilent
1290 UPLC system with an Acquity BEH C18 column (100 mm ×
2.1 mm, 1.7 μm) at a column temperature of 45°C. The injection
volume was set to 5 μL, and the flow rate was fixed at 0.5 mL/min.
A gradient mobile phase was employed, and the time schedule is
provided in Supplementary Table S1. Mobile phase A consisted of
0.1% FA in H2O, and mobile phase B was 0.1% FA in ACN. MS
detection was performed using a Q-TOF mass spectrometer with
the following settings: drying gas temperature at 350°C; drying gas
flow at 10 L/min; nebulizer pressure at 30 psig; capillary voltage
set at 3,500 V for positive mode and 3,000 V for negative mode;
fragmentor voltage at 125 V; skimmer voltage at 65 V; and octopole
RF voltage at 750 V. The collision energies for targeted MS/MS
analysis were set at 20 and 40 eV, respectively. Mass spectra were
acquired in the m/z range of 50–1,200, with a scan rate of one
spectrum per second. For accurate mass measurement, continuous
calibration was performed using reference solutions with reference

TABLE 1 Demographic and clinical characteristics of CCA patients.

Characteristics Control (n = 31) CCA (n = 30)

Sex (F/M) 12/19 11/19

Age, years 56 ± 7 63 ± 10

Age, range 50–85 47–89

ALT (IU/L) 26.00 ± 10.21 150.62 ± 182.35

AST (IU/L) 20.42 ± 6.18 106.03 ± 118.45

ALP (IU/L) 78.80 ± 21.21 351.40 ± 279.26

GGT (IU/L) 28.20 ± 24.84 421.40 ± 500.29

TBIL (mg/dL) 14.18 ± 4.43 157.78 ± 148.29

DBIL (mg/dL) 4.61 ± 1.53 270.29 ± 745.84

Urea (ng/mL) 5.08 ± 1.13 8.90 ± 14.97

AFP (ng/mL) 3.02 ± 1.77 3.21 ± 2.43

CEA (ng/mL) 1.87 ± 1.10 7.28 ± 7.38

CA-125 (IU/mL) 11.8 ± 5.0 46.40 ± 72.17

CA-199 (IU/mL) 10.37 ± 5.77 876.65 ± 1,474.62

masses of m/z 121.0509 and 922.0098 (positive mode) or m/z
112.9856 and 1,033.9881 (negative mode).

2.5 Data processing and analysis

OPLS-DA was employed as a common method to identify
potential marker metabolites in serum. In this study, metabolites
were considered markers if their variable importance in projection
(VIP) score exceeded 1.0 and their P-value was less than 0.05, with
a t-test used to assess reliability. The total ion chromatographic
data obtained from Q-TOF analysis were converted into. mzML
files using ProteoWizard software and processed with Progenesis QI
v2.0 software (Waters, Newcastle, United Kingdom). Representative
sample data were selected for automatic alignment with other
datasets using Progenesis QI. Following this, adduct ions were
deconvoluted, and ion abundance was calculated based on a
threshold level. All detected features were matched against a
serum metabolite database, using a mass tolerance of 10 ppm
(serum metabolite online database, https://hmdb.ca/). Raw data
obtained from UPLC-Q-TOF-MS were first processed for noise
reduction and baseline correction to improve data quality. Then,
peak alignment and integration were carried out to quantify
the compounds. To ensure comparability of data across samples,
normalization methods like mean normalization or total ion count
(TIC) normalization were applied. Scaling was also performed
using approaches such as standardization (Z - score) and min -
max scaling, which helped to avoid the dominance of variables with
different units or scales in the analysis. Heatmap was plotted by
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FIGURE 1
Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) of cholangiocarcinoma (CCA) and normal
serum samples. (A) PCA analysis was conducted on combined data to visualize the overall distribution of CCA and normal serum samples. (B) OPLS-DA
analysis of CCA and normal serum samples in the positive ion mode. (C) OPLS-DA analysis of CCA and normal serum samples in the negative ion
mode. The quality control (QC) samples are indicated for quality assurance in the analysis. CCA: cholangiocarcinoma; QC: quality control; n = 30 for
CCA and n = 31 for normal serum samples.

https://www.bioinformatics.com.cn (last accessed on 10 December
2024), an online platform for data analysis and visualization.
Receiver operating characteristic (ROC) analysis was performed
using SPSS 24.0 software to evaluate the accuracy of the statistical
results. Additionally, differential metabolites were analyzed for
pathway enrichment using MetaboAnalyst, and the metabolite
pathway network was visualized using MetScape.The criteria for
selecting marker metabolites in both groups included a VIP value
greater than 1.0 and a P-value less than 0.05.

3 Results

Initially, we conducted a retrospective analysis of patient clinical
data and subsequently present the fundamental characteristics of
the collected samples in Table 1. The results indicate that there

were no statistically significant differences observed in the variables
of gender. However, a significant difference was found in levels
alanine aminotransferase (ALT), and alanine aminotransferase
(AST), alkaline phosphatase (ALP), gamma glutamyl transferase
(GGT), total bilirubin (TBIL), direct bilirubin (DBIL), Urea, AFP,
CEA and CA-199 between Control and CCA samples. between the
two groups.

3.1 PCA of CCA and normal sera

In this study, total ion chromatograms were collected in both
positive and negative ion modes for normal and CCA samples,
and a nontargeted metabolic approach was applied. High-quality
data are essential for robust metabolomics analysis. Quality control
(QC) samples were included to assess the repeatability and stability
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TABLE 2 Discriminant serummetabolites between CCA and normal samples.

No. RT (min) m/z Adducts Formula Description MS/MS fragments Trend VIP

1 9.96 520.3399 M + H C26H50NO7P LysoPC (18:2/0:0) 258.1085 [M-FA18:2 + H]+, 184.0728
[phosphocholine]+, 104.1071 [choline]+

↑ 12.45

2 10.23 714.5409 M + H C40H76NO7P PC (P-18:1/14:1) 506.3520 [M-FA14:1 + H]+, 450.2861
[M-(P-18:1) + H]+

184.0717 [phosphocholine]+, 104.1088
[choline]+

↓ 3.89

3 10.18 518.3227 M + H C26H48NO7P LysoPC (18:3/0:0) 258.1104 [M-FA18:3 + H]+, 184.0725
[phosphocholine]+, 104.1067 [choline]+

↑ 3.82

4 9.90 568.3413 M + H C30H50NO7P LysoPC (22:6/0:0) 184.0731 [phosphocholine]+, 104.1064
[choline]+

↑ 3.48

5 11.70 546.355 M + H C28H52NO7P LysoPC (20:3/0:0) 184.0720 [phosphocholine]+, 104.1065
[choline]+

↑ 3.35

6 10.38 480.3442 M + H C24H50NO6P LysoPC (P-16:0/0:0) 258.1121 [M-(P-16:0)+H]+, 184.0728
[phosphocholine]+, 104.1077 [choline]+

↓ 3.02

7 9.90 494.3264 M + H C24H48NO7P LysoPC (16:1/0:0) 258.1106 [M-FA16:1 + H]+, 184.0723
[phosphocholine]+, 104.1067 [choline]+

↑ 2.80

8 9.83 542.3254 M + H C28H48NO7P LysoPC (20:5/0:0) 258.1064 [M-FA20:5 + H]+, 184.0739
[phosphocholine]+, 104.1067 [choline]+

↑ 2.74

9a 11.71 496.3409 M + H C24H50NO7P LysoPC (16:0/0:0) 258.1097 [M-FA16:0 + H]+, 184.0728
[phosphocholine]+, 104.1069 [choline]+

↑ 2.19

10a 8.35 466.3163 M + H C26H43NO6 Glycohyocholic acid 448.3075 [M-H2O + H]+, 430.2976 [M-2H2O
+ H]+

412.2844 [M-3H2O + H]+

↑ 2.12

11a 9.70 302.3062 M + H C18H39NO2 Sphinganine 284.2939 [M-H2O + H]+ ↓ 2.11

12 11.71 522.3555 M + H C26H52NO7P LysoPC (18:1/0:0) 258.1102 [M-FA16:1 + H]+, 184.0730
[phosphocholine]+, 104.1073 [choline]+

↑ 1.98

13 11.71 508.3763 M + H C26H54NO6P LysoPC (P-18:0/0:0) 258.1120 [M-(P-18:0)+H]+, 184.0731
[phosphocholine]+, 104.1074 [choline]+

↓ 1.59

14 10.41 506.3606 M + H C26H52NO6P LysoPC (P-18:1/0:0) 184.0721 [phosphocholine]+, 104.1081
[choline]+

↓ 1.46

15 11.68 808.5839 M + H C46H82NO8P PC (18:1/20:4) 544.3319 [M-FA18:1 + H]+, 522.3462
[M-FA20:4 + H]+

184.0751 [phosphocholine]+, 104.1113
[choline]+

↓ 1.35

16 10.43 548.3725 M + H C28H54NO7P LysoPC (20:2/0:0) 184.0731 [phosphocholine]+, 104.1083
[choline]+

↑ 1.15

17 7.15 514.2942 M − H C26H46NO7P LysoPC (18:4/0:0) 499.2749 [M-CH3-H]-, 257.1945 [FA18:4-H]- ↑ 5.83

18a 0.52 193.0362 M − H C6H10O7 D-glucuronic acid 149.0457 [M-CO2-H]- ↑ 3.11

19a 0.97 103.0402 M − H C4H8O3 2-Hydroxybutyric acid 84.0217 [M-H2O-H]-, 58.0425 [M-CO2-H]- ↑ 3.04

20a 3.10 129.0559 M − H C6H10O3 Ketoleucine 114.0342 [M-CH3-H]-, 85.0688 [M-CO2-H]- ↓ 2.76

(Continued on the following page)
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TABLE 2 (Continued) Discriminant serummetabolites between CCA and normal samples.

No. RT (min) m/z Adducts Formula Description MS/MS fragments Trend VIP

21 2.40 117.0558 M − H C5H10O3 2-Hydroxy-3-methylbutyric acid 102.0330 [M-CH3-H]-, 99.0413
[M-H2O-H]-

73.0644 [M-CO2-H]-

↑ 1.67

22 0.52 145.0623 M − H C5H10N2O3 Ureidoisobutyric acid 130.0383 [M-CH3-H]-, 85.0290
[M-(NH2)2CO-H]-

↑ 1.23

23a 1.62 115.0397 M − H C5H8O3 alpha-Ketoisovaleric acid 100.0152 [M-CH3-H]-, 71.0488
[M-CO2-H]-

↓ 1.21

24 9.72 764.5619 M − H C44H80NO7P PC(O-16:1/20:4) 749.5405 [M-CH3-H]-, 303.2342
[FA20:4-H]-

↓ 1.09

25a 0.57 105.0195 M − H C3H6O4 Glyceric acid 87.0098 [M-H2O-H]-, 61.0300
[M-CO2-H]-

↓ 1.08

LysoPC: lysophosphatidylcholine; PC: phosphatidylcholine.
aIdentification of the compound was confirmed by its pure standard. “↑” means a significantly higher level of metabolites in the CCA, group than in the normal group, whereas “↓”represents a
significantly lower level of metabolites.

of the analytical method. The PCA score plot (Figure 1A) showed
tight clustering of the QC samples, indicating the reliability of
the experimental setup. Clear separation was observed between
the diseased and normal groups, suggesting that CCA significantly
disrupts the metabolic profile in the serum of affected patients.
Furthermore, OPLS-DA was used for supervised analysis of group
differences, as shown in Figures 1B,C. Both positive and negative ion
mode scores indicated that this method was stable and had strong
predictive capability. Predicted candidate biomarkerswere identified
and listed in Table 2 (16 candidate biomarkers in positivemode, nine
in negative mode).

3.2 Metabolite disorder in serum with CCA

The serum differential metabolites were identified by matching
their exact molecular masses and MS/MS spectra with the HMDB
database (Figure 2). As examples, the fragmentation patterns of
four representative marker metabolites are summarized in Figure 2.
The abundant phosphocholine ion at m/z 184.0726 and choline
ion at m/z 104.1067 are diagnostic fragments used to confirm the
presence of phosphatidylcholine. The characteristic fragment ion
at m/z 258.1106, generated by the cleavage of a fatty acyl chain,
suggests the loss of the FA 16:1 group in LysoPC (16:1/0:0; No. 7).
The successive neutral loss of H2O observed in the MS/MS spectra
corresponds to the hydroxyl group in glycohyocholic acid (No. 10).
For ketoleucine (No. 20) and alpha-ketoisovaleric acid (No. 23), the
sequential neutral loss of CH3 and CO2 indicates their methyl and
carboxyl structures. Based on these fragmentation patterns, a total
of 25 marker metabolites were identified (Table 2).

The heatmap (Figure 3) displays the relative concentrations
of various biomarkers (e.g., LysoPC, Sphinganine, Glycocholic
acid) in both groups. Red indicates higher concentration levels,
while blue indicates lower concentration levels. Compared with
the control group, 15 metabolites in the CCA group showed
significant increases, including most LysoPCs and five organic
acids: glycohyocholic acid, D-glucuronic acid, 2-hydroxybutyric

acid, 2-hydroxy-3-methylbutyric acid, and ureidoisobutyric acid. In
contrast, 10 metabolites were significantly decreased in the CCA
group, including the remaining LysoPCs, phosphatidylcholines
(PCs), sphinganine, ketoleucine, and two organic acids, alpha-
ketoisovaleric acid and glyceric acid. The comparison of the MS
signal intensities for eachmarkermetabolite is presented in Figure 3.

To further validate the accuracy of the differential metabolites, a
combined-indexROCcurve analysiswas conducted,which provides
amore precise demonstration of the impact of statistical metabolites
onCCA.As shown in Figure 4, the AUC for increased and decreased
biomarkers in positivemodewas 0.995 and 0.992, respectively, while
the AUC for increased and decreased biomarkers in negative mode
was 0.899 and 0.976, respectively. It was observed that, except for the
metabolites with reduced content (identified in the negative mode),
which exhibited a certain accuracy (AUC in the range of 0.7–0.9),
all other screened metabolites showed higher diagnostic accuracy
for CCA (AUC >0.9). These results indicate that the ROC analysis
demonstrated a satisfactory accuracy for the metabolites identified
in our study.

To further elucidate the biological functions of these altered
metabolites, a systematicmetabolic pathway analysis was performed
using KEGG pathway enrichment and topological analysis based on
pathway impact values (P-values). A total of seven pathways were
identified, including the phosphatidylinositol signaling system,
sphingolipid metabolism, L-leucine metabolism, D-glycerate
metabolism, and glycerophospholipid metabolism (Figure 5).

4 Discussion

Metabolic reprogramming emerges as a central driver
of cholangiocarcinoma (CCA) progression through dynamic
crosstalk within the tumor microenvironment (TME). Our
integrated metabolomic and functional analyses reveal that TME
remodeling in CCA is orchestrated by multifaceted metabolite
interactions. Complementing these findings, phospholipid
dysregulation—evidenced by reduced phosphatidylcholine (PC)
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FIGURE 2
MS/MS spectra of four representative marker metabolites. (A) LysoPC (16:1/0:0) (No. 7 in Table 2); (B) Glycohyocholic acid (No. 10 in Table 2); (C)
Ketoleucine (No. 20 in Table 2); (D) alpha-Ketoisovaleric acid (No. 23 in Table 2).

and elevated lysophosphatidylcholine (LysoPC)—promotes
carcinogenic ROS/DNAdamage and aberrant lysophosphatidic acid
(LPA) signaling, while perturbations in bile acid, sphingolipid, and
amino acid metabolism (e.g., glycohyocholic acid accumulation,
sphingosine depletion, ketoleucine reduction) collectively
underscore CCA’s reliance on metabolic rewiring for immune
evasion and proliferation. These insights align with the hallmarks
of cancer framework and highlight actionable nodes for therapeutic
intervention targeting metabolic vulnerabilities in CCA.

4.1 Phospholipid metabolism

Cell proliferation is a fundamental requirement for
tumorigenesis, which in turn necessitates increased metabolic

activities such as elevated glycolysis and lipid synthesis
(DeBerardinis et al., 2008). Phosphatidylcholine (PC) is the
most abundant phospholipid in mammalian cells, comprising
approximately 40%–50% of the total cellular phospholipids
(van der Veen et al., 2017). PC predominantly resides in the outer
leaflet of the cellmembrane (Devaux, 1991). Changes in PC levels are
associated with various liver diseases, including nonalcoholic fatty
liver disease (Maev et al., 2020), liver failure (Li et al., 2021), and liver
cancer (Cotte et al., 2019). LysoPC, a downstream product of PC, is
also implicated in cancer progression and recurrence (Banales et al.,
2020). In bile duct cells, LysoPC influences the expression of β-
galactosidase, a marker of cellular senescence, enhances reactive
oxygen species production, and induces DNA damage, which may
lead to carcinogenesis (Shimizu et al., 2015). Furthermore, LysoPC
has been identified as a biomarker for several cancers. For example,
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FIGURE 3
Heatmap showing the metabolic profiling of cholangiocarcinoma (CCA) and normal serum samples based on different biomarkers. The metabolic data
were visualized using a heatmap, with red indicating higher concentrations of specific metabolites and blue representing lower concentrations. The
tumor group (CCA) and the control group (normal serum) exhibit significant metabolic differences, particularly in lipid metabolism (e.g., LysoPC,
Glycocholic acid) and amino acid metabolism (e.g., Sphinganine, 2-Hydroxybutyric acid). CCA: cholangiocarcinoma.

lower levels of LysoPC(16:0/0:0) have been observed in ovarian
cancer (Kim et al., 2014) and colorectal cancer (Zhao et al., 2007).
LysoPC (16:0/0:0) has also been used as a biomarker for intrahepatic
CCA (Kim et al., 2017). In our study, we observed that serum
levels of PC were lower in CCA patients compared to the normal
group, while LysoPC levels showed a marked increase (Figure 3).
The liver plays a crucial role in maintaining lipid and lipoprotein
homeostasis. CCA disrupts hepatic lipid metabolism, while cancer

cells require an abundant supply of lipids for proliferation, resulting
in a decrease in serum PC levels. Conversely, LysoPC is generated
through the hydrolysis of PC by phospholipase A2. Normal
LysoPC metabolism produces lysophosphatidic acid (LPA), a
potent cellular signaling molecule that acts as a strong mitogen.
Thus, the altered LysoPC metabolism observed in the serum of
CCA patients reflects an abnormal lipid metabolism associated
with the disease.
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FIGURE 4
Combined indexes: ROC curves of differential marker metabolites in CCA patients’ serum. (a1) Increased levels of biomarkers (MS positive mode); (a2)
decreased levels of biomarkers (MS positive mode); (b1) increased levels of biomarkers (MS negative mode); (b2) decreased levels of biomarkers (MS
positive mode). ROC: receiver operating characteristic; AUC: area under the curve.

4.2 Bile acid metabolism

Bile acids are critical biomolecules involved in vertebrate
metabolism, contributing to processes such as the regulation
of cholesterol homeostasis (Dalton et al., 2021), promotion
of lipid and fat-soluble vitamin metabolism (Di Ciaula et al.,
2017), and antibacterial defense (Park et al., 2021). Given their
involvement in key signaling pathways regulating cell proliferation
and apoptosis (Duboc et al., 2014), elevated bile acid levels
have been linked to CCA (Neale et al., 1971), and an increase
in serum bile acid concentrations is commonly associated with
liver cancer (Thomas et al., 2021). In this study, we observed
elevated levels of glycohyocholic acid, which may be indicative of
CCA-induced disruption of hepatic bile acid homeostasis. Although
increased bile acid concentrations are also seen in other liver
diseases, glycohyocholic acid may not serve as a specific biomarker
for CCA due to its broader association with various liver conditions.

4.3 Sphingomyelin metabolism

Sphingomyelin is a major component of the cell membrane
and plays a vital role in cell growth, senescence, and apoptosis
(Hori et al., 2021). Sphingosine, a product of sphingolipid
metabolism, is converted into sphingosine-1-phosphate (S1P)
through phosphorylation. S1P has been shown to be involved in
a wide array of physiological processes, including cell proliferation,
differentiation, and apoptosis (Li et al., 2015). Additionally,
sphingosine has been implicated in the regulation of various
pathological processes, including inflammation and cancer
(Nagahashi et al., 2018). The abnormal metabolism of sphingosine
in the liver is frequently associated with the progression of liver
cancer (Xie et al., 2017), owing to the pivotal role of sphingomyelin
in hepatocyte lipid metabolism (Miura et al., 2021). However, the
exact mechanisms through which sphingosine contributes to cancer
development remain unclear. Nonetheless, Uranbileg et al. reported
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FIGURE 5
Global network of the remarkably perturbed metabolic pathways in CCA by MetScape analysis. Red hexagons represent the identified differentially
expressed metabolites, and pink hexagons were the involved metabolites that have not been identified in this study.

that sphingosine kinase (SK), the enzyme responsible for degrading
sphingosine, plays a crucial role in the proliferation and migration
of cancer cells, leading to a reduction in serum sphingosine levels in
cancer patients (Uranbileg et al., 2016). Our study also found that
serum sphingosine levels were decreased inCCApatients, consistent
with the findings in previous reports.

4.4 Amino acids and other metabolites

Amino acids serve as the building blocks for protein synthesis
and are integral to cancer metabolism (Lieu et al., 2020). The
literature suggests that branched-chain amino acids may play
a role in the treatment of advanced HCC (O’Connell, 2013).
Leucine, in particular, has been shown to influence cell growth
and signaling pathways in HCC cell lines and is used as a
supplement to inhibit tumor cell proliferation (Hassan et al.,
2021). In our study, serum metabolite analysis revealed abnormal
metabolism of several organic acids and amino acids in CCA
patients. Notably, a reduction in ketoleucine levels in the serum of
CCA patients was linked to tumor cell proliferation. D-glucuronic
acid, which can be converted by chondroitin–glucuronate C5-
epimerase—a tumor rejection antigen expressed in various cancer
tissues (Mizukoshi et al., 2012)—was found to be elevated in
CCA patients’ serum due to increased expression of this enzyme.
Disruptions in the metabolism of branched-chain fatty acids,
metabolites of amino acids, have also been observed in lung cancer

studies (Zablocka-Slowinska et al., 2018). In this work, increased
serum levels of 2-hydroxybutyric acid in CCA patients, compared
with the healthy group, may contribute to oxidative stress in these
patients (Gall et al., 2010). This increase in 2-hydroxybutyric acid
could be a by-product of enhanced hepatic glutathione synthesis,
a response to oxidative stress (Zeng et al., 2014). Additionally,
glyceric acid, an intermediate in serine degradation, was found
to be reduced in the serum of CCA patients. Glyceric acid is
phosphorylated to form 3-phosphoglycerate, which plays a critical
role in glycolysis, an important energy pathway for tumor cells
(Jiang et al., 2018). Consistent with this, reduced glyceric acid
levels have been reported in the blood of breast cancer patients
(Nishiumi et al., 2010). Furthermore, ureidoisobutyric acid, typically
associated with pyrimidinemetabolism, was found to be abnormally
elevated in the serum of CCA patients. The continuous supply of
pyrimidines is essential for cancer cell survival (Siddiqui and Ceppi,
2020), and the observed increase in ureidoisobutyric acid reflects the
growing demand for pyrimidines in proliferating cancer cells.

5 Conclusion

In this study, an unbiased metabolomics approach using UPLC-
Q-TOF-MS was employed to identify serum metabolites in CCA
patients and healthy controls. Through statistical analysis, 25
markermetabolites with significant alterations were identified in the
serum of CCA patients. Of these, 15 metabolites were significantly
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elevated, while 10 were significantly decreased. Notably, metabolic
disruptions were observed in glycerophospholipid metabolism,
sphingolipid metabolism, and L-leucine metabolism pathways,
among others.These metabolites could effectively differentiate CCA
patients from healthy individuals. The AUC for increased and
decreased biomarkers in positive mode were 0.995 and 0.992,
respectively, while the AUC for increased and decreased biomarkers
in negative mode were 0.899 and 0.976.These findings highlight the
potential of these metabolites as diagnostic biomarkers for CCA.
This study serves as a foundation for further research, encouraging
the collection of additional samples and comparisons of serum
metabolites across different patient groups to identify and validate
specific biomarkers for CCA.
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