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Identification of potential
diagnostic markers and
molecular mechanisms of
asthma and ulcerative colitis
based on bioinformatics and
machine learning
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Traditional Chinese Medicine, Chengdu, China

Backgrounds: Asthma and ulcerative colitis (UC) are chronic inflammatory
diseases linked through the “gut-lung axis,” but their sharedmechanisms remain
unclear. This study aims to identify common biomarkers and pathways between
asthma and UC using bioinformatics.

Methods: Gene expression data for asthma and UC were retrieved from
the GEO database, and differentially expressed genes (DEGs) were analyzed.
Weighted Gene Coexpression Network Analysis (WGCNA) identified UC-
associated gene modules. Shared genes between asthma and UC were derived
by intersecting DEGs with UC-associated modules, followed by functional
enrichment and protein-protein interaction (PPI) analysis. Machine learning
identified hub genes, validated through external datasets using ROC curves,
nomograms, and boxplots. Gene Set Enrichment Analysis (GSEA) explored
pathway alterations, while immune infiltration patterns were analyzed using
the CIBERSORT algorithm. Molecular docking (MD) was performed to predict
therapeutic compounds, followed by molecular dynamics simulations on the
top-ranked docked complex to assess its binding stability.

Results: A total of 41 shared genes were identified, linked to inflammatory
and immune pathways, including TNF, IL-17, and chemokine signaling.
Four key hub genes—NOS2, TCN1, CHI3L1, and TIMP1—were validated as
diagnostic biomarkers. Immune infiltration analysis showed strong correlations
with multiple immune cells. Molecular docking identified several potential
therapeutic compounds, with PD 98059, beclomethasone, and isoproterenol
validated as promising candidates. The stability of the TIMP1-Beclomethasone
complex was determined through molecular dynamics simulations.

Conclusion: This study highlights NOS2, TCN1, CHI3L1, and TIMP1 as potential
biomarkers and therapeutic targets for asthma and UC, providing insights into
shared mechanisms and new strategies for diagnosis and treatment.
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GRAPHICAL ABSTRACT

1 Introduction

Asthma is a chronic inflammatory airway disease marked by
symptoms such as wheezing, nocturnal cough, shortness of breath,

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; UC,
Ulcerative colitis; GEO, Gene Expression Omnibus; GO, Gene Ontology;
WGCNA, Weighted gene co-expression network analysis; PPI, protein
protein interaction; KNN, K-Nearest Neighbor; GBM, Grandient Boosting
Machine; GLM, Generalized Linear Models; DT, Decision Tree; RF, Random
Forest model; SVM, Support Vector Machine; XGB, eXtreme Gradient
Boosting model; ROC, receiver operating characteristic; LASSO, Least
absolute shrinkage and selection operator; NNET, Neural network.

chest tightness, and reduced expiratory volume (Lin et al., 2019).
It results from the interaction between genetic and environmental
factors. The disease is characterized by immune dysregulation,
chronic inflammation, tissue remodelling, and heightened tissue
sensitivity, all of which vary dynamically across individuals (Agache
and Akdis, 2019). Asthma affects around 10% of children and
adolescents and 6%–7% of adults, impacting over 300 million
people globally (Stern et al., 2020). Its high morbidity, mortality,
and economic burden pose significant public health challenges
worldwide (von Mutius and Smits, 2020). The primary pathogenic
mechanism of asthma is typically driven by immune-inflammatory
responses mediated by type 2 helper T Cells (Th2) and type 2 innate
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lymphoid cells (ILC2), and is regulated by type 2 cytokines such as
interleukins (IL)-4, IL-5, and IL-13,and includes both allergic and
non-allergic eosinophilic phenotypes (Carriera et al., 2025).

Ulcerative colitis (UC) is a chronic inflammatory bowel
disease characterized by symptoms like recurrent diarrhea, bloody
stools with mucus, and abdominal pain (Wang et al., 2021). Its
development involves a combination of genetic factors, impaired
epithelial barriers, immune system irregularities, and environmental
influences (Ungaro et al., 2017). The global incidence of UC is
rising, with approximately 20% of patients experiencing acute flare-
ups during treatment. These flare-ups are often associated with
extraintestinal symptoms, significantly affecting patients’ quality of
life, social wellbeing, andmental health. Various cell types, including
antigen-presenting cells (dendritic cells and macrophages), T
helper cells, regulatory T Cells, and natural killer T Cells,
play a crucial role in the pathogenesis of UC by modulating,
inhibiting, and maintaining inflammation. Innate lymphoid cells
(ILCs) may serve as key drivers in the disease mechanism, leading
to numerous potential new therapeutic targets. Similarly, pro-
inflammatory cytokines such as tumor necrosis factor-alpha (TNF-
α), interleukins (IL)-1, IL-6, IL-9, IL-13, and IL-33 play significant
roles in the pathogenesis of UC (Ungaro et al., 2017; Tatiya-
Aphiradee et al., 2018).

The exact causes of asthma and ulcerative colitis (UC) remain
unclear, but both share common genetic and environmental risk
factors (Kisiel et al., 2023). Both diseases, as chronic inflammatory
conditions, operate through distinct immune pathways, resulting in
the sustained activation of inflammatory responses (Carriera et al.,
2025). Emerging research highlights a link between the gut and
lungs, known as the “gut-lung axis,” which plays a key role in
immune regulation (Dang and Marsland, 2019). Although the
mechanisms by which gut microbiota influence lung microbiota
are not fully understood, there is evidence of overlapping
pathological changes between intestinal and respiratory diseases,
suggesting intestinal inflammation can lead to lung inflammation
(Tulic et al., 2016). Studies also indicate a bidirectional relationship
between gut microbiota and lung inflammation, where changes
in gut microbes and their metabolites can influence respiratory
disease progression via immune pathways (Kim et al., 2024).
This interaction is linked to the higher incidence of airway
conditions like asthma in patients with chronic gastrointestinal
disorders. Similarly, inflammatory mediators from the lungs can
impact gastrointestinal health (Marsland et al., 2015). Therefore,
it has a good prospect for the specific prevention and treatment
of ulcerative colitis and asthma through the intervention of
intestinal flora, gut lung axis and immune inflammatory pathway
(Wang et al., 2023).

Currently, sensitive and specific biomarkers for clinical use
are lacking, highlighting the need to identify marker genes
linked to asthma and ulcerative colitis (UC) for improved early
diagnosis and treatment (Zergham et al., 2020). Recent advances
in bioinformatics enabled us to retrieve gene expression data
for asthma and UC from the Gene Expression Omnibus (GEO)
database. We then used weighted gene co-expression network
analysis (WGCNA) and machine learning to identify potential key
genes shared by both diseases. Common biological pathways were
explored through GO and KEGG analysis, followed by validation
to ensure the reliability of hub genes. Additionally, we examined

immune infiltration patterns in asthma and UC, providing valuable
insights for diagnosing, tracking, and targeting therapies for these
conditions.

2 Materials and methods

2.1 Microarray dataset download

We first retrieved raw gene expression data and clinical
information from the GEO database (http://www.ncbi.nlm.nih.
gov/geo). RNA-Seq profiles for “asthma” and “ulcerative colitis” were
searched, selecting datasets with at least 15 samples per group.
Ultimately, we downloaded the asthma datasets (GSE43696 and
GSE63142) and UC datasets (GSE87466 and GSE92415).

2.2 Analysis of differentially expressed
genes (DEGs)

We used the limma package in R to normalize and annotate
gene expression data. Differentially expressed genes (DEGs) were
identified between asthma and normal groups and between UC and
normal groups, with thresholds of |log2 FC| ≥ 0.5 or one and p-
adjust <0.05. The “ggplot2” “agglomerate” “dplyr” and “pheatmap”
R packages were employed to generate volcano and heat maps for
visualizing the DEGs.

2.3 Building and analyzing weighted gene
Co-expression networks (WGCNA)

We used the WGCNA R package to construct co-expression
networks for asthma and UC DEGs in relation to clinical
characteristics. Prior to analysis, hierarchical clustering was
conducted with the hclust function in R to remove outliers.
The “picksoftthreshold” function in WGCNA was then used
to select an optimal soft power β (ranging from 1 to 20) for
network construction based on a scale-free topology. Modules
were identified through topological overlap matrix analysis, with
module assignments indicated by colours and module eigengenes
(me). The module with the highest correlation was selected as
the UC-related module. Using an online Venn diagram tool,
we identified common genes by overlapping the UC-related
modules.

2.4 Functional enrichment analysis

To explore the biological significance and pathway involvement
of differentially expressed genes (DEGs), we conducted GO and
KEGG enrichment analyses using the Metascape platform. The GO
analysis categorizes genes into biological processes (BP), cellular
components (CC), and molecular functions (MF), while KEGG
focuses on pathway-level bioinformatics analysis.
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2.5 Construction of PPI network and
identification of hub genes

Using the common DEGs, a PPI network was built via the
STRING database to analyze gene interactions, with a confidence
score set above 0.4. The network was visualized in Cytoscape, and
core functional genes were identified using the Maximum Clique
Centrality (MCC) plugin.

2.6 Identification of characteristic genes
and construction and verification of ROC
curve

Expression data from NAFLD and HCC were used to
build prediction models, including K-Nearest Neighbor (KNN),
Gradient Boosting Machine (GBM), Generalized Linear Model
(GLM), Decision Tree (DT), Random Forest (RF), Support
Vector Machine (SVM), Least absolute shrinkage and selection
operator (LASSO), Neural network (NNET), and eXtreme Gradient
Boosting model (XGB). Model performance was evaluated using
prediction functions, and key genes were selected by analyzing
inverse cumulative distribution, residual box plots, and ROC
curves.

2.7 Validation and construction of
diagnostic model

A nomogram was constructed from cross genes identified
by nine machine learning algorithms using the “RMS” package
in R. The calibration curve assessed the nomogram’s predictive
ability, while ROC analysis of candidate genes calculated the AUC
to evaluate the prediction accuracy for asthma combined with
UC. Hub gene expression levels were compared between case
and control samples, and results were visualized with a block
diagram.

2.8 Gene set enrichment analysis (GSEA) of
biomarkers

To explore potential regulatory pathways and biological
functions of common key DEGs in the GSE43696 and GSE87466
datasets, GSEA was conducted using the “GSEA” R package, with an
adjusted p-value <0.05 as the significance threshold.

2.9 Analysis of immune cell infiltration

Immune cell infiltration was analyzed using the CIBERSORT
deconvolution algorithm to estimate the proportions of 22 immune
cells in asthma and UC samples based on immune-related
gene expression. Spearman correlation was applied to assess the
relationships between immune cells and key genes, with statistical
significance set at p < 0.05.

2.10 Prediction of candidate drugs for hub
genes

Based on biomarkers associated with asthma and ulcerative
colitis, we utilized the DGIdb database (https://www.dgidb.org/) to
predict potential therapeutic drugs. According to the interaction
scores, we selected the top 10 drugs as promising candidates for
disease treatment.

2.11 Molecular docking

3D structures of hub gene proteins (PDB format) were
downloaded from the RCSB Protein Database (http://www.pdb.
org/) and small molecule structures (SDF format) from PubChem
(https://pubchem.ncbi.nlm.nih.gov/). The SDF files were converted
to PDB format using OpenBabel. Proteins and compounds in PDB
format were imported into AutoDock 1.5.7 for water removal and
hydrogen addition, then saved as pdbqt files for docking. The
docking affinities (kcal/mol) were calculated, with lower values
indicating stronger binding. Small molecules with binding energies
< −5 kcal/mol were selected for further analysis. Molecular docking
results were visualized using PyMOL.

2.12 Molecular dynamics simulation

Based on the molecular docking results, the protein-ligand
complex with the highest docking affinity was selected formolecular
dynamics (MD) simulations.MD simulations were performed using
Gromacs 2022 software, with the GAFF force field applied to
the small molecule, and the AMBER14SB force field and TIP3P
water model used for the protein. The protein and ligand files
were merged to construct the simulation system for the complex.
Simulations were conducted under isothermal-isobaric conditions
with periodic boundary conditions. At 298 K, 100 ps NVT and NPT
equilibration simulations were first carried out, followed by a 100 ns
MD simulation with conformations saved every 10 ps? After the
simulation, the trajectories were analyzed using VMD and PyMOL.

3 Results

3.1 Identification of differential genes

In the GSE43696 asthma dataset, 513 DEGs were identified,
including 201 upregulated and 312 downregulated genes. In
the GSE87466 UC dataset, 1,097 DEGs were found, with 729
upregulated and 368 downregulated genes. The DEGs from both
datasets were visualized using volcano plots and heat maps
(Figures 1A, B) (Supplementary Table S1).

3.2 WGCNA identifies key module genes in
UC samples

To identify key genes associated with the UC phenotype, we
constructed a gene co-expression network using the WGCNA
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FIGURE 1
(A, B) The heat map and volcano map of differentially expressed genes in GSE43696 and GSE87466 datasets, respectively (A) Expression characteristics
of differentially expressed genes (DEGs) in patients with asthma (B) Expression characteristics of differentially expressed genes (DEGs) in patients with
ulcerative colitis (UC). In the DEGs Heatmap, green and blue indicate mRNA upregulation and downregulation, respectively. The darker the colour, the
higher the expression level. Normal is a healthy control group, and asthma and UC are disease groups.

algorithm. After removing abnormal samples, we generated a
clustering dendrogram for UC and control groups (Figure 2A).
A soft threshold of 16 (R2 = 0.9) was chosen to build a scale-
free network (Figure 2B). We merged modules based on a cut-off
value, resulting in seven co-expression modules (Figure 2C). The
“Turquoise” module, containing 1,235 genes, showed the strongest
clinical relevance to SAP (COR = 0.73, P = 7 × 10−9) and was
identified as the most valuable module in relation to UC phenotype
(Figure 2D). Relevant shared genes were obtained by crossing the
UC module genes obtained by WGCNA with 513 DEGs obtained
from the gse43696 dataset of asthma and 1,097 DEGs obtained
from the gse87466 dataset of UC, as shown in the Venn diagram in
Figure 2E (Supplementary Table S2).

3.3 Functional enrichment analysis

We conducted GO biological process enrichment and KEGG
pathway analysis to identify common regulatory mechanisms

between asthma and UC. Using the Metascape platform, we
performed 232 GO and 15 KEGG enrichment analyses. This
revealed 195 BPs, 23 MFs, and 14 CCs through GO enrichment. In
Go analysis, most DEGs are mainly involved in human immune
response inflammatory response(BP); side of membrane、external
side of plasmamembrane(CC); Cytokine activity, CXCR chemokine
receptor binding (MF) (Figures 3A–C). KEGG enrichment analysis
showed that most DEGs were mainly enriched in cytokine receptor
interaction, TNF signaling pathway, chemokine signaling pathway
and IL-17 signaling pathway (Figure 3D).

3.4 PPI network construction and hub
gene identification

To explore protein-protein interactions and identify hub genes
in asthma and UC, we constructed a PPI network using the
STRING database. After removing isolated nodes, the network
contained 24 nodes and 55 edges (Figure 3E). Using the MCC
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FIGURE 2
Construction of UC weighted gene coexpression network (A) clustering dendrogram of samples (B) Determine the soft threshold power (β), including
the scale-free fitting index of various soft threshold powers (left) and the average connectivity of various soft threshold powers (right) (C) The
dendrogram and seven modules of all DEGs clustered based on the dissimilarity measure (1-tom) are displayed in corresponding colours (D)
Correlation coefficient between gene module and UC occurrence (E) Venn diagram of 41 cross genes of UC-related genes identified by overlapping
DEGs and WGCNA.

plugin in Cytoscape, we identified the core functional genes: IL6,
CXCL13, CCR6, CXCL3, CXCL6, TIMP1, CD22, SOCS3, CHI3L1,
and FAM20A (Figure 3F) (Supplementary Table S3).

3.5 Selection and validation results of
machine learning models

We used the DEGs data of asthma and UC to construct the
results of SVM, RF, XGB, KNN, LASSO,NNET,DT, GBM, andGLM
machine learning prediction models respectively. In the asthma
model, according to the residual box diagram, inverse cumulative
distribution diagram and ROC curve (Figures 4A–C), GBMmethod
has the highest area under the ROC curve, the lowest residual
value and the lowest inverse cumulative value. Therefore, the GBM
method was considered to be the most accurate and was selected
as the best model for further analysis. Similarly, the GLM method
is considered to be the most accurate method in the UC model
(Figures 4E–G).GBMandGLMmodels provided importance scores
for the selected signature genes, as shown in Figures 4D, H, revealing
10 signature genes. Nomogramswere constructed using the 10 genes
with the highest importance scores. Then, the genes selected by
the two methods were crossed, and finally, the key genes involved

in the progression of asthma to UC (CXCL13, NOS2, TCN1,
CHI3L1 and TIMP1) were obtained. To validate the efficacy of
core hub genes, we validated five candidate hub genes in two other
validation datasets (GSE63142 for asthma and GSE92415 for UC).
The results showed that only four genes (NOS2, TCN1, CHI3L1,
TIMP1) showed statistically significant differences in expression
in the data sets validated by asthma and UC compared with the
control group (Figures 5A, D). In order to enhance clinical utility,
nomograms containing five biomarkers were generated to predict
the progression of asthma and UC, respectively (Figures 5B, E).
The calibration curve showed that the difference between the
actual value and the predicted value of risk was small, which
indicated that the nomogram had a high diagnostic value. In
the validation set, five biomarkers showed significant differences
(Figures 5C, F) (Supplementary Table S4).

3.6 GSEA analysis

To better understand the impact of biomarkers on asthma
and UC progression, we performed GSEA. In asthma, significant
enrichment was observed in the cytokine receptor interaction,
chemokine signaling, NK cell-mediated cytotoxicity, JAK-STAT,
and Toll-like receptor pathways (Figure 6A). In UC, significant
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FIGURE 3
Go and KEGG pathway enrichment analysis of DEGs (A–C) The 10 most significant of go analysis. BP, CC and MF (D) The 10 most significant of KEGG
analysis (E) The PPI network consists of cross-targets of 24 genes (F) The cytohubba plugin was used to access the 10 genes with the most significant
associations.

enrichment was found in the cytokine receptor interaction,
chemokine signaling, Fc epsilon RI, RIG-I-like receptor, NOD-
like receptor, and leukocyte transendothelial migration pathways,
compared to controls (Figure 6B). Notably, immune pathways like
cytokine receptor interaction and chemokine signaling are shared
between asthma and UC (Supplementary Table S5).

3.7 Analysis of immune cell infiltration

Since the intersecting genes of asthma and UC are primarily
involved in inflammation and immune regulation, we used the
CIBERSORT algorithm to analyze immune cell infiltration in the
AMI and IHF datasets. The immune cells and biomarkers with
significant correlation were screened by R-value (p < 0.05). Asthma
data results show that NOS2 is resting with Mast cells (R = 0.26,
p = 0.014), TIMP1 is resting with Plasma cells (R = 0.27, p =
0.011), CHI3L1 is resting with Neutrophils (R = 0.38, p = 0.00029)
is positively correlated (Figures 7B, D, E). CHI3L1 is associated with
Mast cells resting (R = −0.54, p = 5.6e-08), TCN1 and Macrophages
M2 (R = −0.33, p = 0.002), TCN1 and B Cells memory (R =
−0.29, p = 0.0063), TIMP1 were negatively correlated with B Cells
memory (R = −0.27, p = 0.012) (Figures 7A, C, F, G). The UC
data results show that CHI3L1 is associated with Neutrophils (R
= 0.69, p = 1.8e-13), NOS2 and Macrophages M1 (R = 0.44,
p = 2.3e-05), TCN1 and Neutrophils (R = 0.58, p = 2.9e-09),

TIMP1 were positively correlated with Neutrophils (R = 0.7, p
= 2.6e-14) (Figures 7I–L). CHI3L1 and Macrophages M2 (R =
−0.52, p = 3.6e-07), NOS2 and B Cells memory (R = −0.36, p
= 0.00071), TIMP1 and Macrophages M2 (R = −0.54, p = 9e-
08) showed a negative correlation (Figures 7M–O). Asthma results
showed (Figure 7H) that the expression of CHI3L1 was positively
correlated with Monocytes, Macrophages M0 and Neutrophils,
while on the contrary, CHI3L1 was negatively correlated with
Plasma cells and Mast cells resting. The expression of NOS2
was positively correlated with Mast cells resting and negatively
correlated with T Cells CD4 memory resting and B Cells memory.
The expression of TCN1 was positively correlated with Dendritic
cells activated and negatively correlated with Macrophages M2,
Dendritic cells resting, B Cells memory and T Cells CD4
naive. TIMP1 was negatively correlated with Plasma cells and T
Cells CD8, B Cells memory, T Cells CD4 naive, Macrophages
M2 and Dendritic cells resting. The results of UC (Figure 7P)
showed that the expression of CHI3L1 was positively correlated
with Neutrophils and Macrophages M0 and negatively correlated
with Mast cells resting and Macrophages M2. The expression
of NOS2 was positively correlated with T Cells CD4 memory
activated and Macrophages M1, and negatively correlated with T
Cells regulatory (Tregs) and NK cells activated. The expression
of TCN1 was positively correlated with T Cells CD4 memory
activated and Neutrophils and negatively correlated with Mast cells
resting and Macrophages M2. TIMP1 is positively correlated with
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FIGURE 4
(A) Block diagram of nine machine learning model residuals in asthma (B) Inverse cumulative distribution of residuals of nine machine learning models
in asthma (C) ROC of nine machine learning models in asthma (D) Feature importance histogram of nine machine learning models in asthma (E) Block
diagram of nine machine learning model residuals in ulcerative colitis (F) Inverse cumulative distribution of nine machine learning model residuals in
ulcerative colitis (G) ROC of nine machine learning models in ulcerative colitis (H) Feature importance histogram of nine machine learning models in
ulcerative colitis.

Macrophages M0 and Neutrophils. It is negatively correlated with
Mast cells resting and Macrophages M2. In conclusion, Asthma
and UC patients have varying degrees of multiple immune cell
infiltrations that may be potential regulatory points for treatment
(Supplementary Table S6).

3.8 Candidate drug prediction

This study employed the DGIdb database to predict
potential intervention drugs. Table 1 presents the top 10
compounds based on adjusted p-values. PD 98059 (PD
98059 CTD 00003206), beclomethasone (beclomethasone
CTD 00005468), and isoproterenol (isoproterenol CTD
00006175) are three important drugs associated with key
targets.

3.9 Molecular docking

To assess the affinity of candidate drugs for their targets and
predict their therapeutic potential for asthma andUC,we conducted

molecular docking. The drugs PD 98059, beclomethasone and
isoproterenol were respectively docked with the core targets
NOS2, TCN1, CHI3L1 and TIMP1. Using AutoDock Vina
v.1.5.7, we identified binding sites and interactions, generating
binding energies for each drug-target interaction (Figures 8A, B).
The drugs interacted with their protein targets via hydrogen
bonds and electrostatic forces. Beclomethasone showed the
lowest binding energy with TIMP1 (−8.5 kcal/mol), indicating
a highly stable binding. The detailed information of the
molecular docking results mentioned above can be found in
Supplementary Table S7.

3.10 Molecular dynamics simulation

In this study, molecular dynamics simulations were performed
to further confirm the stability of the ligand-receptor binding,
specifically to verify the binding affinity between TIMP1 and
Beclomethasone. RMSD (Root Mean Square Deviation) is an
indicator used to assess the stability of protein-ligand complexes.
The smaller the RMSD, the less the overall structural change
of the complex, indicating greater stability. Figure 9A illustrates
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FIGURE 5
(A) Analysis of hub genes in the GSE63142 dataset using the ROC curve (B) Nomogram and a calibration curve of five biomarkers of asthma (C)
Expression of asthma-related hub genes in the GSE63142 dataset (D) The hub genes in the GSE92415 dataset were analyzed using ROC curves (E)
Nomogram and a calibration curve of five biomarkers of UC (F) Expression of UC-related hub genes in the GSE63142 dataset.
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FIGURE 6
Gene set enrichment analysis (A) GSEA results of chi3l1, NOS2, TCN1, TIMP1 in the asthma dataset (B) GSEA results of chi3l1, NOS2, TCN1, and TIMP1 in
the UC dataset.
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FIGURE 7
Immune cell infiltration analysis. Ashma data correlation analysis (A)
Correlation analysis between the expression of CHI3L1 and Mast cells
resting (B) Correlation analysis between NOS2 expression and Mast
cells resting (C) Correlation analysis of TCN1 expression and
Macrophages M2 (D) Correlation analysis between TIMP1 expression
and Plasma cells (E) Correlation analysis between the expression of
CHI3L1 and Neutrophils (F) Correlation analysis of TCN1 expression
and B Cells memory (G) Correlation analysis between TIMP1
expression and B Cells memory (H) The correlation diagram of the
association between immune cells and NOS2, TCN1, CHI3L1, and
TIMP1 in asthma. Correlation analysis of UC data (I) Correlation
analysis of CHI3L1 expression and Neutrophils (J) Correlation analysis
between NOS2 expression and Macrophages M1 (K) Correlation
analysis between the expression of TCN1 and Neutrophils (Harb et al.,
2020). (L) Correlation analysis of TIMP1 expression and Neutrophils.
(M) Correlation analysis between the expression of CHI3L1 and
Macrophages M2 (N) Correlation analysis between NOS2 expression
and B Cells memory (O) Correlation analysis of TIMP1 expression and
Macrophages M2 (P) Correlation diagram of the association of
immune cells with NOS2, TCN1, CHI3L1, and TIMP1 in UC.

TABLE 1 Candidate drug predicted using DGIdb.

Drug names P-value Adjusted
P-value

Genes

PD 98059 CTD
00003206

8.80E-06 0.001600693 NOS2; CHI3L1;
TIMP1

2,4-Diisocyanato-
1-methylbenzene
CTD 00006908

1.39E-05 0.001600693 NOS2; TIMP1

DIALLYL
DISULFIDE CTD
00001321

2.58E-05 0.001600693 NOS2; TIMP1

Gadodiamide
hydrate CTD
00002623

2.70E-05 0.001600693 NOS2; TIMP1

beclomethasone
CTD 00005468

6.60E-05 0.00313045 NOS2; TIMP1

isoproterenol
CTD 00006175

9.20E-05 0.003632299 NOS2; TIMP1

chitosamine CTD
00006030

1.09E-04 0.003691714 NOS2; CHI3L1

Diallyl trisulfide
CTD 00001934

1.25E-04 0.003698062 NOS2; TIMP1

Dinoprostone
CTD 00007049

2.38E-04 0.006268338 NOS2; TIMP1

Isotretinoin HL60
UP

2.73E-04 0.006468926 CHI3L1; TIMP1

the RMSD values of the three systems over time. At 30 ns, all
systems reached a stable state: the TIMP1-Beclomethasone complex
maintained an RMSD of 0.35 nm, and from 30 to 100 ns, the
RMSD remained stable with minimal fluctuation, suggesting a
very stable binding between TIMP1 and Beclomethasone, and a
strong binding state. The fluctuation of amino acid residues in
the protein after small molecule binding is reflected by RMSF
(Root Mean Square Fluctuation). The results (Figure 9B) indicate
minimal conformational changes in the amino acids during the
simulation process. Rg (Radius of Gyration) analysis was employed
to characterize the compactness and stability of the structure during
the dynamic simulation. This parameter reflects the distribution
of molecular atoms relative to the center of mass and serves
as an important measure of the overall compactness of the
protein-small molecule complex. As shown in Figure 9C, the Rg
of the complex ranged from 2.050 to 2.100, indicating that the
complex is structurally stable and compact. To investigate the
hydrogen bond characteristics at the binding site, the number
of hydrogen bonds between the ligand and the protein was
calculated. Figure 9D shows that the number of hydrogen bonds
between the small molecule and the protein fluctuated mainly
between 0 and 2.
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FIGURE 8
Molecular Docking (A) Matrix Heatmap of docking binding energy: the redder the colour, the more important the node is (B) Docking results of
available protein-small molecules. Beclomethasone docked TIMP1 and CHI3L1, isoproterenol docked CHI3L1, and PD 98059 docked CHI3L1.

4 Discussion

Recently, bioinformatics andmachine learning have beenwidely
used to identify key genes, biomarkers, signaling pathways, and
therapeutic targets, aiding in the comprehensive understanding of
diseases (Huang et al., 2024). Asthma and ulcerative colitis are
chronic immune-mediated inflammatory diseases of the respiratory
and gastrointestinal systems, respectively. Over recent decades,
their incidence and prevalence have risen globally, placing a

significant burden on individuals, populations, and healthcare
systems (Kuenzig et al., 2017). The potential link between these two
conditions has garnered increasing attention (Zou et al., 2023).

Functional enrichment analysis revealed that the key
genes of Asthma-UC are primarily involved in immune
response, inflammation, and cytokine activity. These genes
are associated with pathways such as cytokine receptor
interaction, TNF signaling, chemokine signaling, and IL-17
signaling.
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FIGURE 9
Molecular dynamics simulation results of the TIMP1-Beclomethasone complex (A) RMSD of the complex, protein, and small-molecule ligand (B) RMSF
of the protein within the complex (C) Radius of Gyration (Rg) of the complex (D) Number of hydrogen bonds (Hbond number) in the complex.

TNF-α is crucial in the pathogenesis of asthma and may
serve as a candidate gene for the condition (Huang et al.,
2014), with its overproduction contributing to acute and
chronic inflammation, including asthma (Richmond et al.,
2015). In addition, immune cells produce proinflammatory
cytokines, which play a crucial role in the pathogenesis
of UC. Among them, cytokines such as TNF serve as
key immune mediators, contributing to persistent immune
dysregulation and intestinal inflammation (Kobayashi et al.,
2020; Suzuki et al., 2014). TNF-α, produced by immune cells
in the gut of UC patients, is linked to Th17 differentiation
and regulates innate and adaptive immunity (Nakase et al.,
2022). Over recent decades, TNF-α monoclonal antibodies, like
infliximab, have shown therapeutic effectiveness in UC treatment
(Guo and Wang, 2023).

IL-17E (IL-25) is key to regulating type 2 immune responses
and driving inflammatory conditions like allergic asthma through
IL-17RA and IL-17RB receptors (Wilson et al., 2022). Research
highlights IL-17A’s pivotal role in severe asthma, with elevated IL-
17 levels observed in sputum and bronchial biopsies from such
patients (Manni et al., 2014; Chesné et al., 2014). In amurine asthma
model, NF-κB activation in epithelial cells was linked to increased
neutrophilia, eosinophilia, and IL-17 production (Pantano et al.,
2008). Novielo et al. highlighted the critical role of the IL-23/IL-
17 axis in UC pathogenesis (Noviello et al., 2021). Monoclonal
antibody treatments targeting IL-17A have been shown to trigger
or worsen UC, highlighting IL-17’s role in preserving intestinal
homeostasis and regulating innate inflammation (Fauny et al., 2020).
Notably, IL-17 cytokines are upregulated at inflammation sites

and synergize with TNF-α to amplify the inflammatory response
(Camargo et al., 2023).

In our study, 10 biomarkers (IL6, CXCL13, CCR6,CXCL3,
CXCL6, TIMP1, CD22, SOCS3, CHI3L1, and FAM20A) were
identified as the top ranked hub targets. IL-6 functions as
both a pro-inflammatory marker and an active contributor to
asthma pathogenesis, potentially driving lung function decline in
untreated patients (Rincon and Irvin, 2012). Elevated intestinal
levels of the inflammatory cytokine IL-6 are positively correlated
with the activity and severity of ulcerative colitis (Cui et al.,
2023). CXCL13 is a potent B Cell chemokine that is released in
high concentrations in the airways of asthmatics and plays an
important role in allergic inflammation (Baay-Guzman et al., 2012).
Targeting CXCL13 + T Cells or CXCL13 itself may help reduce
the production of pathogenic B Cells, thereby alleviating colonic
inflammation (Uzzan et al., 2022). Cxcl3 is a well-known potent
neutrophil chemokine and a potent mediator of smooth muscle
cell migration in normal and asthmatic airways (Al-Alwan et al.,
2013). Relevant experiments showed that the expression of CXCL3
in colon tissue of UC rats was elevated 28-fold, which may
play a key role in the pathogenesis of inflammation-based UC
(Boshagh et al., 2019).

GSEA analysis showed that NOS2, TCN1, CHI3L1 and
TIMP1 were jointly involved in cytokine receptor interaction
in asthma and ulcerative colitis chemokine signaling pathway.
CCL6 deficiency significantly reduces ovalbumin-induced airway
eosinophilia, mucus hypersecretion, and Th2 responses, with
the CCL6-CCR1 axis serving as a key regulator in asthma
pathogenesis and a promising therapeutic target (Du et al.,
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2021). Additionally, CCL6 plays a crucial role in immune cell
recruitment and intestinal inflammation (Cao et al., 2016).
Similarly, CXCL8, a well-studied proinflammatory chemokine,
is linked to inflammation-driven diseases like asthma and
inflammatory bowel disease through its dysregulated signaling
(Ha et al., 2017).

Heparanase (HPSE) is an essential enzyme that degrades
the extracellular matrix (ECM) and basement membrane (BM),
playing a crucial role in infectious and autoimmune inflammatory
processes (Jin and Cui, 2018). HPSE promotes the recruitment
of eosinophils to the lungs in response to allergens by degrading
heparan sulfate and releasing cytokines bound to it. Relevant
experiments have shown that pharmacological inhibition of
heparanase suppresses bronchial hyperresponsiveness (BHR)
(Morris et al., 2015). Studies have also observed that the
deficiency of HPSE reduces dendritic cell numbers in the lungs
and selectively eliminates Th2 cell-mediated immune responses
that induce asthma, providing potential new therapeutic targets
for anti-inflammatory drugs to treat asthma and other allergic
diseases (Poon et al., 2014). During chronic inflammation in
the colon, such as in UC, HPSE degrades heparan sulfate
(HS) chains, disrupting the integrity of the ECM and BM,
thus promoting the directional migration of inflammatory
cells and releasing bioactive factors from the ECM and cell
surfaces. Additionally, HPSE can mediate the release of cytokines
such as TNF-α and IL-6 from macrophages, exacerbating
intestinal inflammation, inducing tumorigenesis, and promoting
angiogenesis (Waterman et al., 2007; Lerner et al., 2011;
Hermano et al., 2012; Cui et al., 2021).

LRP8, through its influence on the Wnt signaling pathway
(Fang et al., 2022), may contribute to the pathogenesis of
asthma, including airway inflammation and remodeling,
by interacting with specific Wnt ligands in various cell
types. The Wnt signaling pathway is involved in a range
of physiological and pathological processes, including
neuroinflammation and autoimmune diseases, and its
regulation could impact disease progression (Baarsma and
Königshoff, 2017).

Notch4 disrupts Treg cells into TH2 and TH17 effector T (Teff)
cells through Wnt and Hippo pathway-dependent mechanisms,
thereby enhancing immune cell infiltration in the airways and
exacerbating the inflammatory response in asthma. As a result,
related studies have identified Notch4-mediated disruption
of immune tolerance as a fundamental mechanism of tissue
inflammation in asthma (Harb et al., 2020). The discovery of
a novel Notch4-Wnt-GDF15 axis in controlling allergic asthma
in mice, and its subsequent validation in patients with severe
asthma, undoubtedly offers new therapeutic prospects for restoring
pulmonary immune tolerance and maintaining systemic balance
(Hammad and Lambrecht, 2020). Notch signaling, which plays a
critical role in maintaining the proliferation and differentiation of
colon epithelial cells, has been linked to severe inflammation and
colitis when chronic inhibition of the Notch pathway, combined
with intestinal infection, leads to changes in mucosal components,
bacterial dysbiosis, and loss of tight junction integrity (Ahmed et al.,
2018). Relevant animal studies provide compelling evidence of
Notch signaling’s involvement in the crosstalk between innate
and adaptive immune cells (Cahill et al., 2015), and demonstrate a

significant role for Notch4 in embryonic dermal lymphangiogenesis
(Muley et al., 2022).

In addition, we identified NOS2, TCN1, CHI3L1, and TIMP1 as
possible diagnostic markers for UC and asthma. NOS2 (inducible
nitric oxide synthase) plays a critical role in immune-inflammatory
diseases (Kanwar et al., 2009). Present in the respiratory epithelium,
NOS2 is strongly linked to exhaled NO levels in asthmatic children
and may serve as a redox-related marker of asthma progression
(Salam et al., 2011; Qi et al., 2018). Increased iNOS activity and
expression have been observed in the colonicmucosa ofUCpatients,
with NOS2 inhibition shown to alleviate intestinal inflammation,
highlighting its role in UC pathogenesis (Zhang et al., 2022;
Bernstein et al., 2007).

TCN1 is linked to various immune checkpoint markers
and immune cells, playing key roles in cell metabolism and
proliferation (Li H. et al., 2022). Its expression is elevated in
the sputum of asthmatic patients, correlating positively with
inflammatory markers and negatively with lung function, making
it a potential biomarker for asthma diagnosis and treatment
(Xu et al., 2023). While TCN1 expression differences have
been noted in other studies, current evidence does not support
its use as a UC biomarker (Cheng et al., 2020; Hu et al.,
2022). However, elevated TCN1 levels have been observed
in refractory UC cases (Komeda et al., 2020). In our study,
TCN1 showed excellent discrimination ability, which indicated
that TCN1 was expected to be a candidate biomarker for
asthma and UC.

CHI3L1, part of the glycoside hydrolase family 18, plays a
key role in tissue injury, inflammation, repair, and remodeling.
Elevated CHI3L1 levels have been detected in the serum and
lungs of asthma patients (Zhao et al., 2020). The promoter SNP
(−131C→G) in CHI3L1 is linked to higher serum CHI3L1 levels,
asthma susceptibility, bronchial hyperresponsiveness, and lung
function indicators (Chupp et al., 2007; James et al., 2016; Tang et al.,
2010). In inflammatory bowel disease, CHI3L1 aggravates
inflammation and promotes bacterial adhesion and invasion by
interacting with bacterial chitin-binding proteins (Buisson et al.,
2016). Targeting CHI3L1 activity offers a promising therapeutic
strategy.

TIMP1, a metalloproteinase inhibitor, forms irreversible
complexes with MMPs like MMP10 and MMP13, suppressing
protease activity and limiting collagen degradation (Li Y. et al.,
2022). Studies suggest TIMP1 enhances eosinophilic airway
inflammation, airway remodeling, and lung function decline
in severe asthma, making it a potential marker for predicting
persistent eosinophilic inflammation and poor outcomes in
severe asthma (Cao et al., 2023). In UC patients, TIMP1
expression is elevated and associated with innate and B
cell-mediated immune responses, immune regulation, and
T Cell activation, playing an immunomodulatory role in
UC pathogenesis (Pan et al., 2023). TIMP1 also influences
the prognosis of IBD-associated CRC and may serve as a
marker for monitoring intestinal mucosal healing in UC
(Li Y. et al., 2022; Altadill et al., 2021).

In conclusion, NOS2, TCN1, CHI3L1 and TIMP1, as key
immune and inflammatory regulatory targets, play an important role
in the comorbidity of asthma and ulcerative colitis. The functions of
these targets are not only of great significance in the pathogenesis
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of a single disease, but their interactions in comorbidities may
promote the dysregulation of systemic immune responses, leading
to the exacerbation of patients’ conditions. Therefore, the combined
treatment strategies targeting these targets may provide more
effective treatment options for patients with comorbid asthma and
ulcerative colitis.

CIBERSORT analysis revealed significant differences
in immune cell infiltration between asthma, UC, and the
control group, with several immune cell subtypes closely
linked to the biological processes of both diseases. Recent
studies confirm that immune cell infiltration plays a critical
role in the development of asthma and UC. Our analysis
found a strong correlation between the expression of hub
genes (NOS2, TCN1, CHI3L1, and TIMP1) and immune cell
infiltration in disease comorbidities. Specifically, these genes
were significantly associated with Macrophage M1, Macrophage
M2, resting mast cells, memory B Cells, and resting memory
CD4 T Cells.

Macrophages, themost abundant immune cells in the lungs, play
a crucial role in asthma. They differentiate into pro-inflammatory
M1 or anti-inflammatory M2 phenotypes based on local stimuli.
M1macrophages are predominant in non-allergic asthma, whileM2
macrophages are more involved in allergic asthma (Saradna et al.,
2018). M1 macrophages are particularly linked to severe asthma,
especially in patients unresponsive to systemic corticosteroids
(Oriss et al., 2017). Similarly, in the gastrointestinal mucosa,
macrophages are essential for intestinal homeostasis, with M1
macrophages promoting inflammation and mucosal damage, while
M2 macrophages aid in tissue repair and reduce inflammation,
thus alleviating IBD symptoms (Bain and Mowat, 2014; Huo and
Wang, 2023).

Mast cells (MCs) are versatile immune effectors widely
distributed throughout the body (Paivandy and Pejler, 2021).
They play a central role in asthma pathogenesis by producing
mediators that regulate both innate and adaptive immunity in
the lungs. Mast cell activation, triggered by allergic and non-
allergic stimuli, is crucial for initiating and maintaining the
allergic inflammatory cycle, primarily through the secretion of
type 2 (Th2) cytokines. Key triggers for mast cell activation in
asthma include allergen-stimulated IgE receptors (FCεRI), toll-
like receptors, and cytokines that activate alarmin receptors
(e.g., TSLP, IL-33) (Bradding and Arthur, 2016). In ulcerative
colitis, a reduction in quiescent mast cells in affected tissues
compared to normal tissue has also been observed (Ding et al.,
2023). Our findings showed a strong correlation between
the expression of four diagnostic markers and immune cell
infiltration, highlighting the critical role of immune mechanisms
in the inflammation and immune responses of asthma
complicated by UC.

In addition, we predict the progression of potentially effective
therapeutics for UC with asthma. We obtained 10 overlapping
potential drugs targeting NOS2, TCN1, CHI3L1 and TIMP1 from
the DGIdb database and verified the molecular docking of three
of them. Among them, PD 98059, an ERK inhibitor, acts as a
downstream regulator of Kv1.3 channel inhibitors in neutrophilic
asthma and has therapeutic potential for the treatment of asthma
(Zhou et al., 2018). It is well known that beclomethasone is widely
used in the treatment of asthma. Similarly, in Italy and a few other

European and non-European countries, oral controlled-release BDP
preparations have been approved for the treatment of active mild to
moderate ulcerative colitis (Manguso et al., 2016). Relevant studies
have shown that continuous inhalation of low-dose l-isoproterenol
in the emergency department and hospital environment is superior
to salbutamol in the treatment of pediatric patients with acute severe
attacks of asthma. Compared with salbutamol, it has a faster onset
of action and fewer adverse events (Katsunuma et al., 2019). MD
simulations are crucial for understanding protein conformational
changes and dynamic mechanisms, and are commonly used in
drug design and target validation. The results above indicate
that the binding between TIMP1 and Beclomethasone is highly
stable. Therefore, our findings may provide valuable insights
for developing effective treatments for asthma and ulcerative
colitis UC.

This study identified potential diagnosticmarkers andmolecular
mechanisms of asthma and ulcerative colitis using bioinformatics
and machine learning. However, a key limitation is the lack of
experimental validation, which is essential to confirm the biological
relevance of our findings. In the future, our research will focus on
in vitro and in vivo experiments to further validate the identified
biomarkers. Despite this limitation, our study provides a valuable
computational framework for future research and potential clinical
applications.

5 Conclusion

In conclusion, our bioinformatics analysis identified NOS2,
TCN1, CHI3L1 and TIMP1 as potential diagnostic biomarkers
for asthma and UC. These genes are likely involved in disease
pathogenesis through their roles in immunity and inflammation.
Furthermore, immune infiltrating cells, such as Macrophage
M1, Macrophage M2, resting mast cells, memory B Cells,
and resting memory CD4 T Cells, dominate in both diseases.
These findings highlight the key role of immune responses
in asthma and UC, driven by interactions between hub genes
and immune cells. These biomarkers offer new insights for
personalized diagnosis, prevention, and treatment of asthma
and UC and could advance our understanding of the gut-lung
axis.
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