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Objectives: Discovering the potential metabolic alterations underlying
generalized ligamentous laxity (GLL) is crucial for identifying new therapeutic
targets and improving patient prognosis. Serum metabolites could mirror
systemic and local alterations and help understand the metabolic features of
GLL. The present work aimed to determine serum biomarkers for GLL diagnosis
and to unveil metabolic pathways linked to GLL.

Design: Prospective, observational cohort study.

Methods: In this study, serum sample collection was conducted from 65 GLL
and 35 healthy control (HC) cases. The obtained specimens were assessed by
ultra-performance liquid chromatography high-resolution mass spectrometry
(UPLC-HRMS). Orthogonal partial least squares-discriminant analysis (OPLS-
DA), random forest (RF), binary logistic regression (BLR) and receiver operating
characteristic (ROC) analyses were applied to screen and validate biomarkers.

Results: Totally 24 small-molecules were considered differentially expressed
metabolites. Of these, hexadecanamide was found to be a specific biomarker
for differential diagnosis of GLL, with an area under the ROC curve (AUC)
of 0.907. Additionally, the α-linolenic acid and linoleic acid metabolism had
the most substantial alteration among various pathways in GLL cases. The
altered pathway of α-linolenic acid and linoleic acid metabolism affected bone
mineral density and bone metabolism in GLL patients, leading to enhanced
inflammation or fracture of the bone and joints. Joint inflammation and
dislocation led to systemic ligament relaxation, which induced and aggravated
musculoskeletal injury.

Conclusion: Through identification of serum biomarkers and analysis of
metabolic pathways, the current study provided novel insights into GLL
pathogenesis.
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generalized ligamentous laxity, anti-inflammatory, metabolomics, osteoarthritis,
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1 Introduction

Generalized ligamentous laxity (GLL) is an orthopedic
condition characterized by soft tissue injury, ligamentous laxity, and
excessive joint mobility, leading to symptoms such as neck and back
pain, lumbar disc herniation, and reduced quality of life (Cho et al.,
2019; Cahill et al., 2020; Tobias et al., 2013). The prevalence of GLL
ranges from 10% to 30% in the general population (Cahill et al.,
2020). Due to the abnormal development of ligament structures,
GLL patients are at higher risk of joint injuries, osteoarthritis, and
even visceral prolapse (Patterson et al., 2013; Liu et al., 2011). Early
detection ofGLL is crucial for effective prevention andmanagement.

The Beighton Score (BS) is the most commonly used tool
for diagnosing GLL, with a score of four or higher indicating
a positive result (Malek et al., 2021). However, the BS has
limitations in accurately reflecting GLL, as it focuses primarily
on upper limb joints and omits many major joints, leading
to potential misclassification and inadequate detection of
hypermobility (Malpas et al., 2018). This highlights the need for
more reliable diagnostic biomarkers to improve GLL diagnosis and
treatment.

Biomarkers are essential for detecting disease occurrence and
progression by reflecting changes in biological structures and
functions (Keeratichamroen et al., 2020). Metabolomics, a high-
throughput “-omics” technique, has been successfully applied to
identify clinical biomarkers for various diseases by elucidating
metabolic pathways and providing insights into diseasemechanisms
(Malpas et al., 2018). Serum biomarkers are valuable for their non-
invasive nature, accessibility, stability, and clinical relevance. They
reflect systemicmetabolism and pathological changes, making them
essential for diagnosis, monitoring, and prognosis (Lazaros et al.,
2025). Easily obtained during routine check-ups, serum samples
cause minimal discomfort and remain stable for long-term storage
and analysis. Regular blood tests enable dynamic monitoring of
disease progression and treatment response, especially in chronic
and critical illnesses (Lee et al., 2024; Zhang et al., 2025; Thorlacius-
Ussing et al., 2023). Extensive clinical literature supports their use
across various diseases, providing a strong foundation for our study.

LC-MS, integrating the separation efficiency of liquid
chromatography with the high-sensitivity detection of mass
spectrometry, enables the simultaneous detection of hundreds
to thousands of low-abundance metabolites in serum. For
instance, in Alzheimer’s disease research, HPLC-MS/MS achieved
accurate quantification of 337 ceramides, identifying 62 differential
molecules as potential biomarkers (Ge et al., 2025). In vaccine
research, the sensitivity of UPLC-MS/MS reached 0.5 ng/mL,
allowing for the detection of highly polar metabolites (Shinde et al.,
2025). LC-MS requires minimal sample volumes, making it suitable
for trace samples like serum. A single serum sample can be
used across multiple platforms, such as NMR and LC-MS, with
optimized sample preparation (e.g., acetonitrile precipitation,
MWCO filtration) to accommodate various metabolite classes
(Kacerova et al., 2025). Coupled with bioinformatics tools, LC-
MS supports high-throughput data generation and analysis. In
a study on hoof deformation in dairy cows, integrating LC-
MS metabolomics with ICP-OES ionomics revealed regulatory
mechanisms of the metabolite-ion network (Deng et al., 2023a).
In ceramide analysis, mathematical models improved the accuracy

of qualitative identification through retention time prediction and
fragment pattern analysis (Ge et al., 2025). LC-MS has shown
remarkable performance in biomarker discovery and mechanistic
studies across various diseases. In non-alcoholic steatohepatitis
(NASH), sCDCP1 identified by LC-MS achieved an AUROC of
0.838 for risk stratification (Vali et al., 2023). In placenta accreta
spectrum (PAS) research, LC-MS discovered that L-arginine
promotes cell invasion via the GPRC6A/PI3K/AKT pathway,
offering a therapeutic target (Gao et al., 2025).

In this study, we aim to identify new biomarkers for GLL
diagnosis and management through untargeted metabolomics of
serum samples from GLL patients and healthy controls (HCs), as
depicted in Figure 1.

2 Materials and methods

2.1 Patients

Between October 2018 and August 2021, a total of 35 HCs and
65 GLL cases were enrolled in the Affiliated Hospital of Nanjing
University of Chinese Medicine. The current study had approval
from the Institutional Review Board (IRB) of the Affiliated Hospital
of Nanjing University of Chinese Medicine and complied with the
declaration of Helsinki. The approval ethical file number was No.
2018NL-056-02. All patients withGLLwere clinically evaluatedwith
the BS system. A score of four or greater was used to determine
the presence of GLL. Table 1 summarizes the clinicodemographic
features of the participants.

Exclusion criteria were: (1) complications with other GLL
disorders; (2) complications with severe primary diseases such as
those affecting the liver, kidney, cardiovascular, cerebrovascular and
hematopoietic systems; (3)mental illness with inability to cooperate;
(4) involvement in clinical studies within the last 1 month; and (5)
unwillingness to participate in the research. The collected serum
specimens were immediately placed at −80°C for future assessment.

2.2 Sample preparation and metabolomics
profiling

The chromatography was performed using an ExionLCTM
high-performance liquid chromatography system (America AB
SCIEX company). In positive ion mode, a Waters HSS T3 column
(100 × 2.1 mm, 1.7 µm) was used to analyze small polar metabolites.
The column temperature was maintained at 40 °C, and the sample
plate temperature was kept at 4 °C. The sample volume and flow rate
were set at 2 μL and 0.3 mL/min, respectively. Mobile phase A was
ultra-purewater containing 0.1% formic acid (FA), andmobile phase
B was 100% acetonitrile. In negative ion mode, an Acquity UPLC
BEHAmide column (100 × 2.1 mm, 1.7 µm)was used for large polar
metabolites. Mobile phase A was ultra-pure water containing 5 mM
NH4OAc and 0.05% FA, and mobile phase B was 100% acetonitrile.
Gradient elution was employed in both modes.Mass spectral data
were acquired using a TripleTOFTM 5600+ high-resolution mass
spectrometer (America AB SCIEX company). First-order spectra
were obtained by full scanning, and second-order spectra were
acquired by information-dependent acquisition (IDA).
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FIGURE 1
Study workflow.

TABLE 1 Clinicodemographic characteristics of the study participants.

Characteristic Discovery set Validation set

GLL HC GLL HC

Number 40 20 25 15

Male/Female 18/22 9/11 11/14 7/8

Age, mean [min, max] 36.58 [12, 59] 38.60 [30, 50] 34.83 [15, 44] 35.40 [22, 49]

Beighton score [min, max] 7.50 [5, 9] - 7.71 [6, 9] -

In electrospray ionization-mass spectrometry (ESI-MS),
metabolites often appeared as multiple ion species due to
isotopologues, adducts, clusters, and in-source fragments. These
species shared the same retention time as the parent compound.
XCMS algorithm detected features with signal intensity exceeding
a threshold at specific m/z values. However, some features could be
attributed to instrumental noise or artifacts. One compound might
havemultiple features due to isotopic peaks or adducts, complicating
statistical analysis and compound identification. To further verify
and accurately annotate metabolites, we used MS2 data from
standard samples. By comparing the MS2 fragmentation patterns
of experimental samples with those of standard samples, we could
more accurately confirm the structures ofmetabolites.TheMS2 data
of standard samples provided us with characteristic fragmentation
patterns of known metabolites under specific conditions, which

played a key role in our study, helping us distinguish and identify
the structures of different metabolites.

2.3 Data analysis

The MSConvert software was used for format conversion
of the original data. The WIFF format of raw data was not
recognized and should be converted to the XLS format. The primary
mass spectrum peak table with all material mass-to-charge ratio
information and secondary data quality control were imported into
XCMS, MetDNA and Masterview Software. Suitable experimental
conditions were selected and matched in the database for qualitative
analysis, and the above software programs were utilized to identify
various compounds based on retention time, accurate mass number,
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secondarymass spectrometry, etc. Supplementary Material provides
the specific process for data analysis using the above three software
packages. The MultiQuant software was used for the quantitative
peak areas of qualitative compounds.

2.4 Metabolomics analysis

The data were standardized using MetaboAnalyst v5.0. The
standardized data were analyzed by orthogonal partial least squares
discriminant analysis (OPLS-DA) to identify differentially expressed
metabolites (DEMs) between GLL cases and healthy controls
(HCs). DEMs were selected based on variable importance in
projection (VIP) values (VIP >1.0), Mann–Whitney-Wilcoxon test
p values (p < 0.05), false discovery rate (FDR) values (FDR
<0.05), and fold change (FC > 1.1 or <0.6).Random forest
(RF) and binary logistic regression (BLR) models were used to
determine the best combination of DEMs. Receiver operating
characteristic (ROC) curves were generated, and areas under the
ROC curves (AUCs) were assessed to evaluate the potential of
these metabolites as GLL biomarkers. Metabolite pathway analysis
was performed using the KEGG database, and the associations
between potential biomarkers and the clinical index (BS) were
analyzed by Spearman correlation.Data analysis for ROC and BLR
was performed using SPSS 23.0.

3 Results

3.1 Participants’ features and study design

Totally 60 participants (40 GLL cases and 20 HCs) were
allocated to the test set for evaluating biomarkers, and 40
(25 GLL cases and 15 HCs) to the validation set for further
evaluation of potential biomarkers. Although previous results from
epidemiological analyses showed that GLL could develop at any
age, GLL was more frequent in females than in male patients
(Ortiz-Declet et al., 2022)]. Therefore, the clinical features (Table 1)
corroborated the distribution characteristics and age and sex data
of GLL patients in clinic. The BS values of the GLL and HC groups
showed a significant difference. Due to the relatively good range of
activity and physical condition of patients withmildGLL, symptoms
related tomildGLL are often ignored by patients. In clinical practice,
it is difficult to encounter mild GLL patients with a BS value of 4.
In this study, the BS values of the 65 recruited GLL cases were all
greater than 4.

3.2 Metabolomics of serum specimens
from GLL and HC cases

In the metabolomics analysis, 88 small-molecule metabolites
were identified in serum specimens in the test set. The selected
metabolites were submitted to OPLS-DA, in which GLL cases
and HCs were clearly separated (Figure 2a). The results of the
permutation test revealed the OPLS-DA model showed substantial
robustness in reflecting metabolic differences between the GLL
group and HCs, with no significant overfitting (Figure 2b).

Therefore, the collected clinical samples were able to cover
the relevant needs of this study. Subsequently, 38 significantly
altered metabolites were identified in the test set (VIP>1, p
< 0.05, FDR<0.05 and FC > 1.1 (or <0.6). The important
information and statistical analysis results of 38 DEMs are listed
in Supplementary Table S1, S2, respectively. Principal component
analysis (PCA) was performed cluster the control samples and
GLL samples (Supplementary Figure S2). The quality control
samples are tightly clustered and intermingled with the study
samples, indicating good consistency and controllability of the data
throughout the experimental process and suggesting the absence
of significant batch effects or other sources of variation that might
affect the reliability of the results.

3.3 Identification and performance of
potential diagnostic biomarkers

In this study, the selection process was divided in three steps:
(1) DEMs underwent sorting in descending order based on VIP
and p value; (2) DEMs should show consistent trends in the test
and validation datasets; and (3) selectmetabolites further underwent
screening by RF model, BLR and ROC analyses.

Untargeted metabolomics detected 38 DEMs between the
GLL group and HCs in the test set. Serum specimens from
the validation set were utilized for further evaluation of the
38 DEMs for reliability, screening major metabolites as possible
diagnostic biomarkers for GLL. OPLS-DA of GLL cases versus
HCs showed an overt between-group separation (Figure 3a) in
the validation set, corroborating OPLS-DA findings in the test
dataset. Additionally, permutation testing confirmed the OPLS-DA
model was reliable in the prediction of variations between GLL
cases and HCs in the validation set (Figure 3b). The above 38
DEMs were further examined in the validation set as described
for the test set. Interestingly, 24 of 38 metabolites had significant
differences between GLL cases and HCs, with consistent trends
in the test and validation datasets (Table 2). To highlight the
significant differences in metabolites in the validation set, volcano
plots were utilized to depict the 24 DEMs (Figure 3c), with red
and blue dots each representing 12 upregulated (p < 0.05 and FC
> 1.1) and downregulated (p < 0.05 and FC < 0.6) metabolites,
respectively. Furthermore, for visualizing the distributions of DEMs
in various groups in the validation dataset, a hierarchical clustering
algorithm (HCA) was utilized to carry out cluster analysis of
the identified DEMs (Figure 3d). In conclusion, 12 of 24 DEMs,
namely, citric acid, oleamide, gluconate, N-acetyl aspartate, dulcitol,
hexadecanamide, seven-ethoxy-4-methyl-2H-chromen-2-one, Dl-
lactic acid, purine, glucoheptonic acid, 3-methyl-2-oxovalerate and
myoinositol, were elevated, while the remaining 12 DEMs were
decreased in patients with GLL relative to HCs.

In comparison with other methods, the RF model provides
a more effective way to screen biomarkers in metabolomic
analysis. Notably, 15 of 24 DEMs were selected using RF
analysis (Figure 4a), and oleamide, 7-ketodeoxycholic acid,
delta-valerolactam, hexadecanamide and propylparaben were
the top 5 DEMs based on mean decrease accuracy (MDA).
Subsequently, the above 15 DEMs were further examined by BLR
in the validation set. Utilizing a forward stepwise optimization
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FIGURE 2
OPLS-DA of serum metabolomics data for GLL patients and HCs. (a) OPLS-DA score plot based on the HCs and GLL groups in the test set. (b)
Validation plots constructed from 200 random permutation tests showing the robustness of the original OPLS-DA model.

FIGURE 3
Identification of potential metabolic biomarkers for GLL diagnosis in the validation set. (a) OPLS-DA score plot based on the HCs and GLL groups in the
validation set. (b) Validation plots constructed from 200 random permutation tests showing the robustness of the original OPLS-DA model. (c) Volcano
plot of 24 differential metabolites. (d) Heatmap of 24 differential metabolites.

algorithm (Wald), hexadecanamide was detected as a reliable
DEM in regression analysis. The representative chromatogram
and secondary mass spectra of hexadecanamide are depicted in
Supplementary Figure S1. Hexadecanamide’s relative intensity in
serum is shown in Figure 4b. The commonest tool for assessing
biomarkers for diagnostic accuracy is ROC curve analysis. As
shown in Figure 4c, the AUC of hexadecanamide was 0.907, with
a sensitivity of 84.0% and a specificity of 93.3% (95% confidence
interval [CI] 0.811–1.000). ROC curve analysis confirmed the
high potential of hexadecanamide to discriminate GLL cases from
HCs. Finally, the biological significance of hexadecanamide as a

potential biomarker in GLL was examined, and hexadecanamide
had a positive correlation with the BS (Figure 5). The latter findings
further suggested hexadecanamide could constitute a diagnostic
biomarker in GLL. The diagnostic capability of this biomarker is
provided in Supplementary Material.

3.4 Metabolic pathways

To detect the biological significance of the above 24 DEMs,
the KEGG database was utilized to identify pathways impacted
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TABLE 2 Differentially altered metabolites between GLL patients and HCs.

Metabolite Test set Validation set

VIPa P valueb FDRc FCd VIP P Value FDR FC

3-Methyl-2-oxovalerate 2.09 <0.001 <0.001 27.3↑ 1.17 0.003 0.007 2.04↑

4-Hydroxybenzoic acid 1.41 <0.001 <0.001 0.44↓ 1.93 <0.001 <0.001 0.50↓

7-Ethoxy-4-methyl-2H-chromen-2-one 1.74 <0.001 <0.001 3.43↑ 1.25 <0.001 <0.001 2.26↑

7-Ketodeoxycholic acid 1.20 <0.001 <0.001 0.12↓ 1.74 <0.001 <0.001 0.17↓

All-cis-4,7,10,13,16-docosapentaenoic acid 1.59 <0.001 <0.001 0.35↓ 1.13 0.004 0.009 0.46↓

Arachidonic acid 1.50 <0.001 <0.001 0.29↓ 1.42 <0.001 <0.001 0.29↓

Cis-8,11,14-Eicosatrienoic acid 1.48 <0.001 <0.001 0.43↓ 1.22 <0.001 <0.001 0.42↓

Citric acid 1.73 <0.001 <0.001 21.4↑ 1.94 <0.001 <0.001 8.87↑

Delta-valerolactam 1.35 <0.001 <0.001 0.44↓ 1.87 <0.001 <0.001 0.33↓

Dl-Lactic acid 1.27 <0.001 <0.001 2.13↑ 1.32 <0.001 <0.001 2.07↑

Docosahexaenoic acid 1.45 <0.001 <0.001 0.41↓ 1.10 0.013 0.026 0.58↓

Dulcitol 1.65 <0.001 <0.001 5.09↑ 1.44 <0.001 <0.001 2.95↑

Glucoheptonic acid 1.20 <0.001 <0.001 2.09↑ 1.24 0.001 0.004 2.01↑

Gluconate 1.48 <0.001 <0.001 6.40↑ 1.75 <0.001 <0.001 3.72↑

Hexadecanamide 1.57 <0.001 <0.001 7.58↑ 1.37 <0.001 <0.001 5.85↑

Inosine 1.06 <0.001 <0.001 1.14↑ 1.18 0.006 0.013 1.12↑

Myoinositol 1.12 <0.001 <0.001 2.21↑ 1.04 0.004 0.010 1.71↑

N-acetyl aspartate 1.57 <0.001 <0.001 16.1↑ 1.90 <0.001 <0.001 16.06↑

Oleamide 1.63 <0.001 <0.001 7.55↑ 1.58 <0.001 <0.001 6.79↑

Oleoyl-L-alpha-lysophosphatidic acid 1.19 <0.001 <0.001 0.47↓ 1.26 <0.001 0.001 0.26↓

Phe-Phe 1.75 <0.001 <0.001 0.13↓ 1.72 <0.001 <0.001 0.16↓

Phosphoric acid 1.31 <0.001 <0.001 0.42↓ 1.51 0.001 0.003 0.49↓

Propylparaben 1.61 <0.001 <0.001 0.23↓ 2.11 <0.001 <0.001 0.17↓

Purine 1.202 <0.001 <0.001 2.01↑ 1.29 <0.001 0.001 2.05↑

aThe VIP, value was obtained from the OPLS-DA, model with a threshold of 1.0.
bP values were obtained from one-way ANOVA.
cThe FDR, was obtained from the adjusted P value calculated using the MetaboAnalyst 5.0 software.
dThe FC, was obtained by comparing metabolites between GLL, patients and HCs.

by these metabolites. As shown in Figure 6, α-linolenic acid and
linoleic acid pathways had significant alterations over the entire
course of GLL and may be involved in GLL development. In
addition, the detailed results of metabolic pathways are shown in
Supplementary Material.

4 Discussion

In this study, UPLC-HRMS was applied to assess serum
metabolites in GLL patients and HCs, and 15 metabolites were
significantly different between these two groups as examined by
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FIGURE 4
(a) Mean Decrease Accuracy values of the metabolic biomarkers used for random forest classification. (b) Scatter plot of the relative plasma strength of
hexadecanamide. (c) ROC analysis of hexadecanamide.

FIGURE 5
Correlation analysis between the biomarker hexadecanamide and the Beighton score.
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FIGURE 6
Pathway analysis of the differentially altered metabolites identified in patients with GLL.

the OPLS-DA and RF methods. A potential biomarker model
was established to identify a biomarker (hexadecanamide) for
diagnosing patients with GLL. Current diagnostic approaches for
GLL predominantly rely on the Beighton Score, which assesses joint
hypermobility through clinician-dependent subjective evaluations.
Although this method is simple, rapid, and cost-effective, its
outcomes are susceptible to inter-observer variability due to
differences in clinical expertise, thereby limiting its sensitivity
in identifying early-stage or mild GLL cases. Furthermore, it
fails to capture molecular-level mechanisms underlying disease
progression and carries a risk of underdiagnosis. In contrast,
our proposed strategy employs liquid chromatography-mass
spectrometry (LC-MS) to analyze serum metabolic profiles, could
leverage quantitative metabolomic data to minimize human-
induced biases. This approach also could enable the detection of
molecular alterations prior to themanifestation of clinical symptoms
while simultaneously uncovering dysregulated metabolic pathways.
Notably, multivariable analysis highlighted marked differences
in metabolomic profiles in GLL cases versus HCs, suggesting
significant effects of disease state on these serum metabolites. As
demonstrated above, 88 metabolites were screened, including 24
metabolites that were considered DEMs, including 12 each showing
upregulation and downregulation (Table 2; Figure 3c). Among
24 DEMs, all-cis-4,7,10,13,16-docosapentaenoic, arachidonic and
docosahexaenoic acids were involved in fatty acid metabolism,
inflammation and immune regulation; 7-ketodeoxycholic acid,
glucoheptonic acid, delta-valerolactam, Dl-lactic acid and dulcitol

in the inflammatory response, pain and immune regulation; and cis-
8,11,14-eicosatrienoic acid in fatty acid metabolism. These results
indicated that majority of the identified DEMs play crucial roles in
fatty acid metabolism, inflammation, pain, immune regulation in
GLL. Hence, recent data provided strong support on the notion that
inflammatory and metabolic disorders are the main culprit in GLL
pathogenesis.

Analyzing untargeted metabolomic data, hexadecanamide was
identified as a biomarker that could be utilized to diagnose
GLL. Hexadecanamide is an endogenous fatty acid amide of the
family of nuclear factor agonists. Hexadecanamide was shown to
bind to nuclear receptors, affecting a variety of chronic pain-
and inflammation-related biological functions (Roy et al., 2016).
The primary target is thought to be peroxisome proliferator-
activated receptor α (PPAR-α). Hence, hexadecanamide could be
regarded as a serum biomarker of GLL. The results of this study
indicated that hexadecanamide could segregate GLL cases from
HCs. ROC curve analysis was conducted to assess hexadecanamide
for diagnostic value in GLL, and an overt separation of GLL
cases and HCs was achieved, with elevated diagnostic performance,
sensitivity and specificity (Figure 4C). Hence, hexadecanamide
as a diagnostic biomarker of GLL, would be conducive to
increasing diagnostic accuracy, enabling early diagnosis, improved
patient categorization, and monitoring of GLL treatment. This
study innovatively provided a reference for the application of
metabolomics in the clinical assessment of GLL and expanded
research ideas on the pathogenesis of GLL. The present work was
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based on clinical practice andprovided a reference for the translation
of clinical results and the development of detectionmethods forGLL
diagnosis.

The most significant pathways were α-linolenic acid and linoleic
acid metabolism. The essential fatty acids (FAs) linoleic acid
and α-linolenic acid are not synthesized in the human body,
but are necessary for human health (Singh, 2005). In humans,
arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic
(DHA) acids are produced by these FAs, which play key roles
in homeostatic modulation. Serum levels of α-linolenic acid and
linoleic acid are positively correlated with BMD and inversely
correlated with fracture risk (Lavado-García et al., 2018; Yuan et al.,
2020). It was proven that a diet with a low n-6 (linoleic acid)/n-
3 (α-linolenic acid) ratio, i.e., rich in n-3 polyunsaturated fatty
acids (PUFAs), could protect bone and joint health (Saini and
Keum, 2018; Albertazzi and Coupland, 2002). Previous studies
have shown that adult males who initially present with muscle
injury are more likely to develop GLL (Vasdev et al., 2016).
Musculoskeletal injury may be an inducing factor of GLL and is
closely related to ligamentous laxity (Ye et al., 2024). Therefore, it
is speculated that changes in serum α-linolenic acid and linoleic
acid metabolism in patients with GLL affect BMD and bone
metabolism, leading to increased inflammation or fracture of
the bone and joints (Deng et al., 2023b; Hoque et al., 2025).
Joint inflammation and dislocation led to GLL, which induced
and exacerbated musculoskeletal injury (Choi et al., 2024). The
current work provided a solid basis for further research on GLL
pathogenesis and treatment and screened potential biomarkers for
the diagnosis of GLL (Talarico et al., 2024).

The current study had limitations. First, it had a limited
sample size and involved a single center, and we expect
both sensitivity and specificity to improve with additional
samples from multiple centers. Additionally, metabolomics
itself has inherent limitations. There is currently no single
tool for detecting all metabolites in the same analysis, and
the above data had incomplete metabolite annotation because
multiple interesting pathways are not comprehensively explored.
Besides, the data analysis approach might introduce biases in
interpreting complex metabolic interactions. Future studies should
prioritize larger cohorts, standardized metabolite validation
protocols, and hybrid analytical methods combining machine
learning with traditional statistics to enhance reliability. These
improvements would strengthen the translational potential
of findings.

5 Conclusion

Overall, nontargeted metabolomics was utilized for a
comprehensive assessment of alterations of serum metabolites
in GLL cases. We found alterations in multiple DEMs linked
to critical biological processes, e.g., fatty acid metabolism,
inflammatory response and immune regulation in GLL.
Notably, we identified hexadecanamide as a potential diagnostic
biomarker, which was further validated by RF, BLR and
ROC analyses. In addition, α-linolenic acid and linoleic
acid pathways had substantial perturbations over the entire
course of GLL, affecting BMD and bone metabolism in

patients, leading to more bone and joint inflammation
or fractures. The above data provide novel insights into
the improvement of GLL diagnosis and treatment, further
enhancing the understanding of the pathophysiological
mechanisms of GLL.
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