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Carbon dots (CDs), renowned for their distinctive photoluminescence
properties, have emerged as a prominent material in the field of luminescence.
They are extensively utilized in bioimaging, drug delivery, theranostics, and
other applications. In this study, CDs were successfully prepared and isolated
from PEC-GS/BG hybrids. Their chemical composition, surface functional
groups, and crystal structure were comprehensively characterized. The results
demonstrated that the CDs are mainly composed of carbon and oxygen.
They exhibit a near-spherical morphology with an average diameter of
about 7.4 nm. Then, the fluorescent properties of the CDs were thoroughly
assessed. Photoluminescence (PL) measurements revealed that the CDs
display intense blue fluorescence upon exposure to ultraviolet (UV) light.
This emission is excitation-dependent and shows resilience to variations in
pH, high ionic strength, and photobleaching. The quantum yield (QY) was
determined to be around 4.5%. Additionally, the synthesized CDs exhibited
excellent biocompatibility and cell-labeling capability. These findings indicate
that the synthesized CDs hold significant potential for practical applications in
various fields.
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1 Introduction

Bone tissue engineering (BTE) has drawn considerable interest owing to its remarkable
potential in addressing large-scale bone defects and related conditions (Peng et al., 2020;
Leonovich et al., 2023). Silicate bioactive glasses (BG) are a promising material in BTE
due to their outstanding biocompatibility, bioactivity, and osteoconductivity (Ke et al.,
2020; Shearer et al., 2023). Zheng et al. demonstrated that BG could promote angiogenesis
by stimulating the release of endogenous bioactive factors, including vascular endothelial
growth factor (VEGF) (Zheng et al., 2022). The success of bone repair is highly contingent
on the vascularization of the transplanted graft (Zhu et al., 2023; Pan et al., 2024).
However, previous research has indicated that the osteogenic capacity of BG alone is
insufficient (Putra et al., 2023).

Carbon dots (CDs) are a novel type of carbon nanomaterial, distinguished by their
attractive properties that offer significant potential for a wide range of biomedical
applications (Yang P. et al., 2019; Yang H. et al., 2019; Liu et al., 2019). CDs typically exhibit
excitation-wavelength dependent photoluminescence emission spectra (Liu et al., 2020;

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2025.1555995
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2025.1555995&domain=pdf&date_stamp=2025-06-16
mailto:276256915@qq.com
mailto:276256915@qq.com
mailto:nfzzm@163.com
mailto:nfzzm@163.com
https://doi.org/10.3389/fmolb.2025.1555995
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1555995/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1555995/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1555995/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zhang et al. 10.3389/fmolb.2025.1555995

Yu et al., 2022), alongside exceptional photostability and strong
resistance to photobleaching (Barman et al., 2024; Zhang et al.,
2023; Ghosal and Ghosh, 2019). Both in vitro and in vivo studies
have demonstrated that CDs exhibit excellent cytocompatibility and
biological compatibility with no apparent toxic effects (Wei et al.,
2024; Dash et al., 2024; Perikala et al., 2023; Dehvari et al., 2020).
Moreover, considerable investigations have been conducted into
the interactions between CDs and biomacromolecules, including
proteins, nucleic acids, and lipids (Li et al., 2023). Owing to these
advantageous properties, CDs have been widely applied in various
biomedical fields, such as bioimaging, drug delivery, and therapeutic
interventions (Sun et al., 2020; Zhong et al., 2023).

Citric acid is abundant in the skeletal system, accounting for
90% of the total citric acid content in human body, and plays a
crucial role in bone metabolism and formation (Książek, 2023;
Wang et al., 2023). It has been shown to promote osteogenic
differentiation and matrix mineralization of mesenchymal stem
cells (MSCs) (Zhang et al., 2021; Wu et al., 2021). Additionally,
it can also serve as a fundamental precursor for the development
of CDs (Yang et al., 2022; Otten et al., 2022). In previous
studies, our team incorporated citric acid into BG, resulting in
the preparation of PEC-GS/BG hybrids that exhibiting enhanced
bone-promoting effects (Zhao et al., 2019).

In this study, we synthesized PEC-GS/BG hybrids and identified
the presence of fluorescent CDs within them. The structure and
fluorescence characteristics of the CDs obtained were systematically
investigated. The as-prepared CDs demonstrated near-spherical
geometry, excitation-dependent emission, significant quantum
yields, excellent photostability, and low toxicity. Additionally, the
possible functions of the CDs in cell imaging were also explored.

2 Experimental section

2.1 Materials

Citric acid (>99%) was purchased from J&K Chemical (Beijing,
China). Poly (ethylene glycol) (PEG300), methoxyethanol (99.8%),
calcium 2-methoxyethoxide (CME, ≥98%) and (3-glycidoxypropyl)
trimethoxysilane (GS, ≥98%) were obtained from Sigma-Aldrich
(St. Louis, MO, United States). Tetraethylorthosilicate (TEOS,
≥99.0%) was acquired from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). All commercial reagentswere utilized in the form
they were received, without any further purification.

2.2 Preparation of PEC-GS/BG hybrids and
CDs

PEC-GS/BG hybrids were prepared using a previously reported
procedure (Zhao et al., 2019). At a constant nitrogen flow rate, equal
molar amounts of PEG300 and citric acid were introduced into a
three-neck round-bottom flask. The mixture was stirred and heated
to 180°C for 30 min to yield a poly (ethylene glycol-co-citric acid)
(PEC) pre-polymer.The prepared PEC pre-polymers were dissolved
in methoxyethanol, resulting in a 50% concentration solution. GS
(molar ratio: GS/CA = 0.8/1) was added to the aforementioned

solution, and the reaction was conducted at 40°C for 6 h to produce
the PEC-GS pre-polymer solution.

TEOS and CME were then sequentially introduced into PEC-
GS solution with an organic/inorganic mass ratio of 50:50, while
ensuring a Si/Ca molar ratio of 70:30 in the inorganic phase.
Specifically, TEOS and PEC-GS were first blended to achieve a
colorless solution. Then, CME was added to the mixture and stirred
continuously, resulting in the formation of an orange transparent
solution. After 12 h of stirring, water droplets were cautiously
incorporated into themixture until a significant increase in viscosity
was observed. The mixture was subsequently transferred to a Teflon
mold and allowed to gel at room temperature for 24 h, then dried
in an oven at 60°C for 7 days. The resulting product is referred to as
PEC-GS/BG hybrids.

Subsequently, the hybrids were immersed in distilled water,
and CDs were gradually released as the material degraded. The
degraded solution, containing CDs, was filtered twice using a
0.22 μm membrane to eliminate any remaining bulk particles. The
filtered solution was ultimately dried at 45°C to obtain the CDs.

2.3 Apparatus

Fourier transform infrared (FTIR) spectroscopic measurements
were performed using a Bruker VECTOR22 spectrometer (Bruker,
Karlsruhe, Germany). X-ray photoelectron spectroscopy (XPS)
for elemental analysis was conducted with equipment from
Thermoelectricity Instruments, United States. Corresponding
energy dispersive X-ray spectroscopy (EDS) analysis was carried
out using an EDS detector integrated with a Hitachi S-4800
high-resolution field emission scanning electron microscope.
Transmission electron microscope (TEM) images were obtained
with an FEI Tecnai G20 (FEI, Hillsboro, Oregon, United States)
operating at an acceleration voltage of 200 kV. Dynamic light
scattering (DLS) experiments were performed in water at room
temperature using a 90 Plus particle size analyzer from Brookhaven
Instruments Corp (Holtsville, NY, United States). Ultraviolet-visible
(UV-vis) absorption spectra were recorded using a UV-2450 UV-vis
spectrophotometer (Shimadzu, Tokyo, Japan). Photoluminescence
(PL) spectra were measured at room temperature with an FL-
7000 spectrophotometer (Hitachi, Tokyo, Japan). Cell imaging was
conducted with an Inverted-BX51 microscope (Olympus, Melville,
NY, United States) that utilized a 488 nm laser.

2.4 Assessment of quantum yields

The quantum yield (QY) of the CDs was determined
with quinine sulfate (dissolved in 0.1 M H2SO4, QY = 54%)
serving as a reference. The QY was calculated according to the
following equation (Shen et al., 2021):

φ = φ′A
′

I′
I
A
( n
n′
)
2

In this equation, φ and φ′, I and I′, A and A′ represent the QY,
fluorescence intensity, and absorbance of the obtained CDs and the
quinine sulfate solution, respectively. Both n and n’ represent the
refractive indices of water. Modify the concentrations of the quinine
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sulfate and CDs solutions to ensure their optical absorbance was
below 0.05.

2.5 Cellular toxicity test

The cytotoxicity of CDs was evaluated using an MTT assay
(Yang et al., 2023; Zhang W. et al., 2024) on MC3T3-E1 cells,
which were obtained from the Cell Bank of the Chinese Academy
of Sciences. Initially, MC3T3-E1 cells (100 μL) were seeded into
96-well culture plates at a density of 1.0 × 105 cells/mL in α-
MEM complete medium. After 12 h, the medium was replaced with
fresh medium containing various concentrations of CDs (0, 10,
20, 50, 100, 200, and 400 μg/mL), maintaining a total volume of
200 μL per well. Following another 24 h of incubation, 10 μL of
MTT solution (5 mg/mL) was added to each well and incubated
for another 4 h. Subsequently, the culture medium was discarded,
and 100 μL of DMSO was introduced to dissolve the formazan
crystals. The absorbance of each well was measured at a specific
wavelength using a microplate reader. Cytotoxicity was assessed
using the formula below:

Cellviability (%) = A1/A2 × 100

where A1 is the absorbance of the wells containing cells exposed
to the CDs, and A2 is the absorbance of the wells containing cells
not exposed to the CDs. Each control and test concentration was
assessed in six replicate wells. Results are presented as means with
standard deviations.

2.6 Cell imaging

The potential of CDs for biolabeling was assessed through
cell imaging of MC3T3-E1 cells (Sobhanan et al., 2023). In brief,
MC3T3-E1 cells were cultured in complete α-MEM medium
containing 10% fetal bovine serum, 100 µg/mL penicillin, and
100 µg/mL streptomycin. The culture was maintained at 37°C in
a 5% CO2 atmosphere. Cells were seeded into well plates at
a concentration of 5.0 × 105 cells/mL and incubated for 24 h.
Subsequently, cells were incubated with 100 μg/mL CDs for 2 h
and washed three times with phosphate-buffered saline (PBS).
Fluorescence imaging was then performed using an Inverted-BX51
confocal fluorescence microscope with a ×20 objective lens and a
488 nm excitation laser.

3 Results and discussion

3.1 Structural characterization

The functional groups of CDs were characterized by FT-
IR spectrum (Figure 1A). The broad peak around 3,400 cm−1 is
attributed to the N-H or O-H stretching vibrations in amino
and hydroxyl groups. The peaks at 2,919 cm−1 and 2,875 cm−1

correspond to the stretching vibrations of the C-H bond. The peak
at 1,592 cm−1 can be assigned to the stretching vibration of the C=O
bond, while the peaks at 1,413 cm−1 and 1,353 cm−1 are due to the

stretching vibrations of the C-N bond. The peaks at 1,065 cm−1 and
1,017 cm−1 are attributed to the C-O bond.The surface composition
and elemental analysis of the obtained CDs were characterized
using XPS and EDS. The XPS results are shown in Figure 1B. A
survey scan was conducted from 0 to 600 eV, revealing primary
peaks at 100, 285, 350, and 532 eV, corresponding to Si2p, C1s,
Ca2p, and O1s, respectively (with hydrogen not detectable by XPS).
Additionally, the EDS results (Figure 1C) indicate that the CDs
primarily consist of carbon and oxygen (with a C/O weight ratio
of 2.96), along with detectable amounts of silicon. These findings
are consistent with the XPS results and suggest the presence of
numerous hydrophilic groups on the CD surfaces. The hydrophilic
groups evidently stabilize the CDs in aqueous solutions.

The size of nanoparticles is crucial for bio-applications (Hu et al.,
2022). The TEM image (Figure 2A) demonstrates that the CDs
are nearly spherical and well-dispersed. Statistical analysis of the
grain size based on the TEM images indicates that the CDs
have a size range of 4–10nm, with an average diameter of 7.4 ±
1.4 nm (Figure 2B). However, DLS measurements indicated that the
hydrodynamic diameter of the CDs is approximately 24 nm, which
is larger than the size determined by TEM. This discrepancy is
attributed to the impact of hydration in a water-based solution.
While TEM measures the diameter of CDs after being dried on
a surface, DLS determines the diameter of hydrated CDs in the
solution, reflecting their more “swollen” state (Hu et al., 2022).
Therefore, the size of the obtained CDs is appropriate for biological
applications. Moreover, the zeta potential of the CDs was measured
to be −15.3 mV.

3.2 Fluorescent properties

We measured the UV-vis absorption spectrum of the CDs to
determine their band structure. The absorption spectrum, shown
in Figure 3A, features two peaks in the 200–300 nm region. The
peak at 275 nm is likely due to the π-π∗transition of the CDs,
while the peak at 207 nm may result from the generation of
multiple polyaromatic chromophores. Additionally, as depicted
in Figure 3B, the emission spectrum of the CDs was recorded
upon excitation with light in the range of 300–380 nm. Both the
emission intensity and wavelength are dependent on the excitation
wavelength. The emission intensity increases gradually with the
excitation wavelength, peaking at 330 nm, and then declines as
the excitation wavelength continues to increase. Consistent with
previous studies, the emission of the CDs exhibits a notable red-
shift property, where the emission wavelength shifts to longer
wavelengths as the excitation wavelength increases. This excitation-
dependent emission is an inherent characteristic of CDs and has
been extensively documented in the literature (Zhang Y. et al., 2024).
In addition, the QY of the CDs was calculated to be approximately
4.5% using quinine sulfate solution as a reference.

The PL origin of CDs remains under debate, with potential
explanations including surface defect states, quantum confinement
effects, or other factors. The notion that functional groups
act as continuous surface defect states and govern emission
properties has gained broad acceptance in the scientific community
(Dorontic et al., 2022). The surface defect states on CDs are varied,
resulting in heterogeneous emission energy levels and producing
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FIGURE 1
(A) Fourier transform infrared (FTIR) spectrum, (B) X-ray photoelectron spectroscopy (XPS) survey scan and (C) energy dispersive X-ray spectroscopy
(EDS) of CDs.

excitation-tunable emission (Kaur et al., 2024). Ding et al. also
suggested that the photoluminescence of CDs is likely dominated
by continuous surface defect states, with different defect states

contributing to emissions at different wavelengths (Ding et al.,
2024). However, Zhang et al. concluded in their research that the
functional groups are non-radiative surface states (Zhang P. et al.,
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FIGURE 2
(A) Typical TEM image and (B) corresponding particle size distribution of as prepared CDs.

FIGURE 3
(A) UV-vis absorption spectrum of CDs. Inset: photographs of the CD aqueous solutions under visible light (left) and UV light (right), respectively; (B)
Excitation dependent photoluminescence behavior of CDs.

2024). The quantum confinement effect, which is also referred to
as the size effect, stands as another broadly recognized mechanism
model (Vargas-Reyes et al., 2024). Previous studies have suggested
that the strong PL of CDs, observed upon surface passivation, is
due to the quantum confinement effect of emissive energy traps
on the CD surface (Ayisha Naziba et al., 2024). Rao et al. proposed
that the excitation-tunable PL emission of CDs is mainly due to
variations in size, rather than the presence of different emission
trap sites on particles of similar size (Rao et al., 2023). However,
research has indicated that CDs of varying sizes exhibited identical
PL emission peaks under a 365 nm UV lamp, which is unexpected
given the typical size-dependent emission behavior (Gan et al.,
2016). In this study, the excitation wavelength dependence of CD
photoluminescence may be attributed to variations in particle size.
However, the exact mechanism behind the PL of CDs remains
controversial and requires further investigation.

The stability of the as-prepared CDs under various conditions
was thoroughly examined. The PL intensity of the CDs exhibited

pH independence over a broad range of 2–9, as shown in
Figure 4A. Furthermore, the PL intensity remained nearly constant
in solutions with NaCl concentrations up to 500 mM, as depicted
in Figure 4B. The CDs also demonstrated remarkable stability
under UV excitation, with no significant change in PL intensity
after 1 hour (Figure 4C), and maintained their PL intensity after
6 months of storage (Figure 4D). These findings indicate that the
CDs possess exceptional stability, highlighting their potential for
biological applications.

3.3 Cytotoxicity and cell-imaging

Cytotoxicity is a critical parameter for evaluating the
biocompatibility of biomaterials in cell experiments. In this
study, standard MTT assays were performed on MC3T3-E1 cells
to assess the cytotoxicity of the synthesized CDs (Yang et al.,
2023; Zhang W. et al., 2024). Figure 5A illustrates cell viability
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FIGURE 4
(A) Effect of pH on the photoluminescence intensity of CDs; (B) Fluorescence intensity of CDs in NaCl aqueous solution (pH = 7) against the ionic
strength; (C) Dependence of the fluorescence intensity of CDs on excitation time under 488 nm irradiation in ultrapure water; (D) Effect of storage
time on the photoluminescence intensity of CDs.

FIGURE 5
(A) Cell viability of MC3T3-E1 cells after 24-h incubation with various concentrations of CDs; (B) Fluorescence images of MC3T3-E1 cells incubated
with CDs for 2 h under 488 nm filter irradiation. Scale bar:50 μm.

following 24-h incubation with CDs at concentrations of 10, 20,
50, 100, 200, and 400 μg/mL. The results clearly indicate that the
CDs exhibit low cytotoxicity, even at concentrations as high as
200 μg/mL. Therefore, these CDs demonstrate significant potential
for single-molecule imaging and tracking within living cells. To

further investigate this application, confocal fluorescence imaging
was employed. As shown in Figure 5B, the green emission is
predominantly localized within the cytoplasmic region, indicating
that the CDs successfully penetrate the cell membrane.The uniform
and regular distribution of CDs within the cellular matrix suggests
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an enhancement in cellular biological activity. These initial findings
indicate that the synthesized CDs are promising candidates for use
in cell imaging, drug delivery, and bone tissue engineering.

4 Conclusion

In the present study, carbon dots (CDs) were successfully
synthesized and isolated from PEC-GS/BG hybrids. The CDs
exhibit near-spherical geometry with an average diameter of
approximately 7.4 nm. They demonstrate strong blue luminescence
under ultraviolet irradiation. As the excitationwavelength increases,
the emission intensity initially increases and then gradually
decreases, with a concurrent red shift in the emission wavelength.
Moreover, the CDs exhibit excellent stability and a quantum yield
of approximately 4.5%. Cytotoxicity and cell imaging experiments
indicate that the CDs exhibit high biocompatibility and uniform
intracellular distribution, making them promising candidates for
cell-labeling applications.
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