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Background: Prostate cancer (PCa) is a major cause of cancer-related mortality
in men, characterized by significant heterogeneity in clinical behavior and
treatment response. Histone modifications play key roles in tumor progression
and treatment resistance, but their regulatory effects in PCa remain poorly
understood.

Methods: We utilized integrative multi-omics analysis and machine learning to
explore histone modification-driven heterogeneity in PCa. The Comprehensive
Machine Learning Histone Modification Score (CMLHMS) was developed to
classify PCa into two distinct subtypes based on histone modification patterns.
Single-cell RNA sequencing was performed, and drug sensitivity analysis
identified potential therapeutic vulnerabilities.

Results:High-CMLHMS tumors exhibited elevated histone modification activity,
enriched proliferative and metabolic pathways, and were strongly associated
with progression to castration-resistant prostate cancer (CRPC). Low-CMLHMS
tumors showed stress-adaptive and immune-regulatory phenotypes. Single-cell
RNA sequencing revealed distinct differentiation trajectories related to tumor
aggressiveness and histone modification patterns. Drug sensitivity analysis
showed that high-CMLHMS tumors were more responsive to growth factor
and kinase inhibitors (e.g., PI3K, EGFR inhibitors), while low-CMLHMS tumors
demonstrated greater sensitivity to cytoskeletal and DNA damage repair-
targeting agents (e.g., Paclitaxel, Gemcitabine).

Conclusion: The CMLHMSmodel effectively stratifies PCa into distinct subtypes
with unique biological and clinical characteristics. This study provides new
insights into histone modification-driven heterogeneity in PCa and suggests
potential therapeutic targets, contributing to precision oncology strategies for
advanced PCa.
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prostate cancer, histone modifications, epigenomics, multi-omics, machine learning,
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Introduction

Prostate cancer (PCa) is the second most frequently occurring
cancer and remains one of the most commonly diagnosed
malignancies in men, representing a significant cause of cancer-
relatedmortalityworldwide (Pujana-Vaquerizo et al., 2024). Current
statistics reveal that 1 in every 44 men will succumb to prostate
cancer, while 1 in 8 men will develop the disease at some point
during their lifetime (Zeng et al., 2024). In 2024, projections estimate
299,010 new cases of prostate cancer, with approximately 35,250
deaths expected in the United States alone (INSTITUTE NC).
The clinical presentation and course of PCa vary substantially
among patients, spanning a spectrum from indolent, slow-growing
tumors with minimal risk of progression, to highly aggressive
variants defined by early recurrence and elevated cancer-specific
mortality (Kulac et al., 2024). Most PCa are adenocarcinomas that
originate from secretory glandular cells, and treatment guidelines
recommend radical prostatectomy, radiotherapy, and hormone
therapy as standard options for patients with localized or regional
disease. These treatments have achieved remarkable success, with
5-year relative survival rates exceeding 99% for local and regional
cases, as reported for men diagnosed between 2013 and 2019
(5). However, recurrence and progression to metastatic prostate
cancer remain substantial challenges, significantly impacting patient
outcomes and presenting ongoing difficulties for clinicians.

Recent advancements in histone modification research have
profoundly influenced the field of cancer biology. Histone
modifications are central to regulating chromatin structure and
gene expression, thereby shaping cell fate and contributing to
tumorigenesis. Key histone modifications, including methylation,
acetylation, and phosphorylation, are pivotal regulators in the
initiation and progression of various cancers. For example, SLC9A9
has been identified as a marker of abnormal histone acetylation in
gastric cancer, functioning as an oncogenic factor (Guang et al.,
2024). It modulates the positioning of the HBO1/KDM9 complex,
influencing histone modification patterns of critical target genes
such as LPCAT1, which promotes cholesterol synthesis and
tumor progression (Yue et al., 2024). Similarly, histone-modifying
enzymes such as PRMT6 and KDM5A have emerged as important
players in diverse cancer types, underscoring their roles in tumor
metabolism and immune evasion (Chen et al., 2024; He et al.,
2024). Additionally, the co-expression of histone methyltransferases
EZH2 and NSD2 has been associated with increased cancer
aggressiveness and drug resistance, emphasizing the therapeutic
potential of targeting histone modifications for early diagnosis and
treatment (Xiong et al., 2024).

In recent years, the integration of multi omics data—including
genomics, transcriptomics, epigenomics, and proteomics—with
machine learning (ML) technologies has significantly advanced
cancer research (Menyhárt and Győrffy, 2021). multi omics
provides a comprehensive view of the molecular basis of cancer,
elucidating the complex interactions among genetic, epigenetic,
and proteomic levels that drive tumorigenesis (Valous et al.,
2024). Machine learning methods, particularly deep learning and
ensemble algorithms, excel at handling high-dimensional datasets,
detecting hidden patterns, and offering predictive insights for
clinical decision-making (Cai et al., 2022; Vahabi and Michailidis,
2022). Moreover, unsupervised learning techniques such as

autoencoders and variational autoencoders are employed to extract
potential representations from multi omics datasets, facilitating
the discovery of underlying patterns by learning compressed
representations of the data. Supervised learning methods can be
trained using input data and predefined output tags to identify
features associated with disease phenotypes (Simidjievski et al.,
2019). These advancements empower data-driven biomedical
research to elucidate the molecular mechanisms of cancer with
greater resolution and accuracy. Notably, the challenge of effectively
integrating multiple modalities to address issues of incompleteness,
sparsity, and high dimensionality has emerged as a key concern in
multi omics analysis.

In PCa, histone modifications have garnered growing attention
for their critical role in disease progression. Histone demethylases
and methyltransferases, including KDM5A, KDM5B, and EZH2
(Du et al., 2020), are particularly implicated in advanced prostate
cancer and castration-resistant prostate cancer (CRPC). For
instance, KDM5A facilitates PCa progression by hyperactivating
the PI3K/AKT signaling pathway, while KDM5B influences
tumor metabolism and cell proliferation via epigenetic regulation
(Rodems et al., 2022; Li et al., 2020). In CRPC, NSD2 upregulation
induces epigenetic alterations, such as gains in H3K36me2
and losses in H3K27me3, coupled with shifts in chromatin
compartmentalization from inactive to active states, collectively
contributing to prostate carcinogenesis (Kanaoka et al., 2024).
Similarly, MAT2A enhances H3K4me2 at multiple loci, driving the
expression of pro-tumorigenic, non-canonical androgen receptor
(AR) target genes (Cacciatore et al., 2024). These findings underline
the pivotal role of histone modifications and chromatin remodeling
in shaping the molecular landscape of PCa.

Despite significant progress in elucidating the roles of
histone modifications in cancer, many studies remain focused
on isolated modification patterns or specific genes, leaving
a critical gap in the comprehensive understanding of global
histone modification networks. Current research often emphasizes
individual histone modification types, such as methylation,
acetylation, phosphorylation, or ubiquitination, while neglecting
their interactions and synergistic effects across diverse genomic
regions. This reductionist approach limits our ability to fully
comprehend the global regulatory networks of histonemodifications
and their collective impact on complex diseases like cancer. An
integrative exploration of global histone modification patterns
is thus essential to unravel the intricate epigenetic mechanisms
underlying prostate cancer progression and to identify novel
therapeutic targets.

Methods and materials

Data collection, preprocessing, and patient
summary

The gene expression matrix and comprehensive clinical data
of PCa patients were obtained from three independent publicly
available databases: The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/), the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/), and ArrayExpress (https://
www.ebi.ac.uk/arrayexpress/). A total of 838 sampleswere ultimately
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included from three cohorts, specifically TCGA-PRAD (n = 495),
MSKCC (n = 140), and GSE70770 (n = 203). Gene sequencing
results from the three cohorts were expressed in transcripts
per million (TPM) formats, and the expression data were pre-
transformed to log2 (TPM +1) for comparability. Noise was defined
as mRNAs with a TPM value <1 in over 90% of the samples,
which were subsequently removed. Patients without paired mRNA
profiles or clinical information, as well as those lacking follow-
up time, were excluded to mitigate potential bias. Recurrence-
free survival (RFS) was designated as the outcome variable. After
pretreatment, gene expression data from three cohorts were merged
by aligning the common genomes present in all datasets. This
was achieved by intersecting the genomes of the three cohorts
to ensure consistency in the analysis. To minimize batch effects
and potential technical differences among the three cohorts, we
employed the ComBat method from the R package ‘sva’ for batch
effect correction (Anwaier et al., 2023). This step ensures that
any systematic differences arising from the source of the datasets
are corrected, resulting in more accurate downstream analyses.
Consequently, a total of 838 samples were identified for further
analysis, and the detailed clinicopathological features of these
patients are presented in Table 1.

Estimation of global histone modification
patterns among PCa patients

In order to clarify the features of histone modifications in PCa,
we gathered 122 signaling pathways related to histone modifications
from the Molecular Signatures Database (MSigDB), particularly
those listed under the C5 ontology gene sets (Liberzon et al., 2011).
The biological processes we examined included histone-mediated
phosphorylation, methylation, ubiquitination, and acetylation. We
utilized the software “GSVA, v.3.5″to evaluate the activation status
of these 122 pathways. For every sample within the TCGA-
PRAD cohort, we computed the enrichment score for each
individual gene set to measure the overall activation extent of
that gene set (Hänzelmann et al., 2013). As a result, the transcript
profiles obtained from the TCGA-PRAD cohort were analyzed
through the lens of gene set activation profiles.

Identification of differentially expressed
genes (DEGs) among different histone
modification patterns

By applying a predetermined threshold of p < 0.05 and
|log2fc| > 1, we identified differentially expressed genes (DEGs)
between the two clusters with the help of the “limma” package.
Additionally, the “clusterProfiler 4.0” R package was employed
to explore the downstream signaling pathways linked with
the DEGs, annotated according to Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Wu et al.,
2021). The fast gene set enrichment analysis (fgsea) algorithm
implemented in R package “fgsea” was performed for
HALLMARKE annotation.

Construction of consensus machine
learning based histone modification risk
model

To ensure the robustness of the machine learning-based
consensus model, a variety of strategies were adopted. First,
prognostic genes were identified through univariate COX regression
analysis in three independent cohorts: TCGA-PRAD, GSE70770,
and MSKCC. These genes were categorized into high and low
expression groups based onmedian expression values and subjected
to further analysis. Only genes with P values <0.05 and hazard
ratios (HR) > 1 were deemed significant risk or protective
factors. Secondly, to enhance the reliability of the identified
prognostic genes, ten different machine learning algorithms were
employed, including Random Survival Forest (RSF), Elastic Net
(ENET), Lasso, Ridge, Stepwise COX Regression, Coxboost, Partial
Least Squares Regression Cox (PLSRCOX), Supervised Principal
Component (SUPERPC), Generalized Boosted Modeling (GBM),
and Survival Support Vector Machine (Survival-SVM). These
algorithms were selected for their complementary advantages in
handling high-dimensional, multivariate data, and were applied to
create integrated, robust consensus models. To further ensure the
model’s universality, the leave-one-out cross-validation (LOOCV)
method was utilized to evaluate the performance of 101 different
combinations of algorithms. LOOCV minimizes overfitting by
training on multiple subsets of the data while testing on the
remaining data, thereby ensuring that the model is consistently
executed across various training and validation schemes. The
TCGA-PRAD dataset serves as the training set (n = 495), whereas
the MSKCC (n = 140) and GSE70770 (n = 203) datasets are
utilized as the external validation sets (Jiang et al., 2024) (Liu et al.,
2022). The consistency index (C-index) for each model is
calculated across all external validation datasets to assess its
predictive accuracy. A higher C-index indicates greater reliability
and robustness of the model in differentiating between high-
risk and low-risk patients. Through this meticulous process, a
consensus machine is developed to learn histone modification
signatures (CMLHM), thereby enhancing the model’s reliability
in predicting patient outcomes, and the risk score was calculated as
following formula:

CMLHMscore =
n

∑
k=1
(coe f.i∗ expression.i)

Multivariate Cox regression analysis

All of the patients were separated into high and low
score subgroups with the median CMLHM score. K-M plot
and was used to assess the prognostic value of CMLHMS,
and receiver operating characteristic (ROC) curve was
employed to evaluate the discrimination ability of the model.
After adjusting the intrinsic impact of variates via the Cox
proportional hazard-regression model, multivariate analysis
was performed for the prognostic value of CMLHM and
clinicopathological features.
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TABLE 1 The distribution of clinicopathological features among TCGA-PRAD, GSE70770, and MSKCC cohorts.

GSE70770 (N=203) MSKCC (N=140) TCGA-PRAD (N=495) Overall (N=838)

Survival time

 Mean (SD) 40.2 (27.6) 46.0 (30.3) 31.5 (24.8) 36.1 (27.1)

 Median [Min, Max] 36.7 [0.362, 103] 45.5 [1.38, 149] 25.8 [0.750, 165] 30.4 [0.362, 165]

Age

 Mean (SD) NA (NA) 58.1 (6.97) 61.0 (6.84) 60.4 (6.96)

 Median [Min, Max] NA [NA, NA] 58.0 [37.3, 83.0] 61.0 [41.0, 78.0] 60.9 [37.3, 83.0]

 Missing 203 (100%) 0 (0%) 0 (0%) 203 (24.2%)

Stage

 T2 79 (38.9%) 86 (61.4%) 187 (37.8%) 352 (42.0%)

 T3 118 (58.1%) 47 (33.6%) 291 (58.8%) 456 (54.4%)

 T4 1 (0.5%) 7 (5.0%) 10 (2.0%) 18 (2.1%)

 Unknown 5 (2.5%) 0 (0%) 7 (0%) 14 (0.6%)

Gleason

 10 1 (0.5%) 0 (0%) 4 (0.8%) 5 (0.6%)

 5 2 (1.0%) 0 (0%) 0 (0%) 2 (0.2%)

 6 35 (17.2%) 41 (29.3%) 45 (9.1%) 121 (14.4%)

 7 140 (69.0%) 76 (54.3%) 246 (49.7%) 462 (55.1%)

 8 13 (6.4%) 11 (7.9%) 63 (12.7%) 87 (10.4%)

 9 10 (4.9%) 10 (7.1%) 137 (27.7%) 157 (18.7%)

 Unknown 2 (1.0%) 2 (1.4%) 0 (0%) 4 (0.5%)

Cell lines and cell culture

The prostate cancer cell lines C4-2 and 22RV1 were obtained
from the American Type Culture Collection (ATCC) and cultured
in RPMI-1640 medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin-streptomycin at 37°C in a humidified
incubator containing 5% CO2. All cell lines were authenticated
using short tandem repeat (STR) profiling and routinely tested for
mycoplasma contamination.

siRNA transfection

Small interfering RNAs (siRNAs) targeting PRC1 (siRNA1
and siRNA2) and a non-targeting negative control siRNA
(NC) were purchased from GenePharma (Shanghai, China).
Transfections were performed using Lipofectamine RNAiMAX
(Invitrogen,United States) according to themanufacturer’s protocol.
Briefly, cells were seeded in six-well plates and transfected with

50 nM siRNA for 48 h. Knockdown efficiency was assessed
by Western blot.

Western blot analysis

Cells were lysed using RIPA buffer supplemented with
protease inhibitors (Roche, Switzerland). Protein concentration
was determined using the BCA Protein Assay Kit (Thermo Fisher
Scientific, United States). Equal amounts of protein were separated
by SDS-PAGE and transferred to PVDF membranes (Millipore,
United States). Membranes were blocked with 5% non-fat milk
in TBST and incubated overnight at 4°C with primary antibodies
against PRC1 (Abcam, ab181147) and GAPDH (CST, 5,174). After
washing, membranes were probed with horseradish peroxidase
(HRP)-conjugated secondary antibodies and visualized using ECL
detection reagents (Thermo Fisher Scientific). Band intensities
were quantified using ImageJ software, and PRC1 levels were
normalized to GAPDH.
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Cell proliferation assay

Cell proliferation was evaluated using the Cell Counting
Kit-8 (CCK-8, Dojindo, Japan). Transfected C4-2 and 22RV1
cells were seeded in 96-well plates at a density of 3 × 103

cells per well. CCK-8 reagent was added at 24-h intervals
over 5 days, and optical density (OD) was measured at 450 nm
using a microplate reader (BioTek, United States). Experiments
were performed in triplicate, and data were normalized to the
control group.

Transwell migration assay

Cell migration was assessed using transwell chambers (8-
μm pore size, Corning, United States). At 48 h post-transfection,
2 × 104 cells in serum-free medium were seeded into the
upper chamber, while the lower chamber contained medium
supplemented with 10% FBS as a chemoattractant. After 24 h
of incubation at 37°C, non-migrating cells were removed from
the upper side of the membrane, and migrated cells on the
lower surface were fixed with 4% paraformaldehyde and stained
with 0.1% crystal violet. Images were captured using a light
microscope (Nikon, Japan), and migrated cells were counted in
five random fields per well. Data represent the average of three
independent experiments.

Chemotherapeutic response evaluation

Regarding the initial chemotherapy regimen for prostate
cancer (PCa) and the recognized activation of signaling pathways,
we chose particular medications to assess the predictive
therapeutic capabilities of our model. The pertinent data was
obtained from GDSC 2016 (https://www.cancerrxgene.org/)
and then incorporated into the ComDrug program found in
the “MOVICS” package (Lu et al., 2020). For each patient,
we utilized ridge regression analysis to calculate the estimated
inhibitory concentration (IC50), reflecting their responses to
different drugs.

Single cell RNA sequencing analysis

Transcriptome data for single cells were derived from the
PRJNA699369 cohort (Guang et al., 2024). This study reveals that
a small population of cells in primary prostate cancer exhibits
characteristics of castration-resistant prostate cancer (CRPC) even
before the initiation of hormone therapy, indicating that these
cells are inherently castration-resistant. In this investigation, we
primarily utilized epithelial cells from seven samples, which
included three primary prostate cancer samples and four CRPC
samples. Data preprocessing of raw information was carried out
utilizing the Seurat package (Stuart et al.). This process included
the removal of cells that had fewer than 200 or more than 2,500
transcripts detected, along with those presenting mitochondrial
gene percentages greater than 10%. To address cell cycle influences
on single-cell transcriptomic data, the CellCycleScoring function

within Seurat was used for scoring cell cycles. For normalization
and logarithmic transformation, the NormalizeData function,
which employs the LogNormalize method, was applied. The
identification of highly variable genes was accomplished with the
FindVariableFeatures function (avg_log2FC > 0.3 and adjusted
P < 0.05), utilizing the variance stabilizing transformation (vst)
approach, preserving the top 2,000 genes with the greatest
variability. Following this, batch effects across samples were
addressed using the ScaleData function. After preprocessing the
data, dimensionality reduction was performed to enable further
analysis of high-dimensional single-cell transcriptomic data. The
RunPCA function in Seurat facilitated principal component analysis
(PCA), the most commonly used approach, while retaining
the leading 50 principal components. Subsequently, inter-cell
K-nearest neighbor (KNN) relationships were identified using
the FindNeighbors function, and cell clustering was executed
through the Louvain method via the FindClusters function. The
annotation of the cell clusters was conducted manually, based on
recognized signature markers (Cheng et al., 2022; Song et al., 2022;
Messex and Liou, 2023).

Slingshot analysis

To create cellular trajectories, we used the Slingshot algorithm
for cell lineage inference (Street et al., 2018). This algorithm
organizes cells along their developmental paths to forecast lineage
trajectories and bifurcations. We applied the default configurations
from the Slingshot package in R, using Seurat’s UMAP coordinates
and cluster assignments as our input data.

Immunohistochemistry (IHC) staining
analysis

Tissue from two patients (Xu et al., 2020) who had undergone
either radical or partial nephrectomy at the Department of
Urology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, were chosen for this analysis, including patients
diagnonsed as low grade PCa (Gleason score: 3 + 4 = 7, T2N0M0)
and high grade PCa (Gleason score: 4 + 4 = 8, T3N1M0). We
conducted IHC staining to evaluate the expression of PRC1. Samples
were blocked with blocking buffer (1.5 h, 22°C), incubated with
PRC1 polyclonal antibody (Product # PA5-101025, ThermoFisher,
United States) using a dilution of 1:100 (1.5 h, 22°C), followed by
HRP conjugated goat anti-rabbit. Detailed IHC procedures could
refer to our prior studies (Yin et al., 2019; Ma et al., 2024). Tumor
specimens were acquired and maintained in a 4% formaldehyde
solution for a duration of 24 h. After this period, the specimens
were embedded in paraffin and cut into slices approximately 5 μm
thick. The sections of the tumor underwent deparaffinization and
rehydration, which was followed by the inhibition of endogenous
peroxidase activity and the retrieval of antigens. Subsequently, a 5%
BSA solution was introduced to the tumor sections to reduce non-
specific binding for 30 min; they were then incubated with primary
antibodies overnight. After a 1-h incubation period with secondary
antibodies, visualization of the tumor sections was performed
using a DAB kit.
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Statistical analysis

The survival outcomes were compared by the log-rank test, the
categorical datawere analyzed via Fisher’s exact test.Thedistribution
between the high-CMLHM and low- CMLHM subgroups were
compared by Student’s t-test. All statistical analyses were performed
using R (Version: 4.2.1). A two-tailed p-value <0.05 was recognized
as statistically significant.

Results

Distinctive global histone modification
patterns in prostate cancer

By leveraging 122 signaling pathways associated with histone
modifications, we identified distinct global histone modification
patterns in prostate cancer (PCa) that highlight their potential
role in driving tumor heterogeneity. Using the TCGA-PRAD
cohort, we calculated histone modification scores and performed
hierarchical clustering via the distance matrix function from the
“ClassDiscovery” package. This analysis stratified patients into
three discrete clusters, each characterized by unique histone
modification profiles (Figure 1A).Among these, clusterC3 exhibited
the highest degree of histone modification activation, while cluster
C2 demonstrated a markedly subdued state, reflecting diverse
epigenetic landscapes across the clusters.

Notably, cluster C3 displayed the highest level of histone
modification activation, whereas cluster C2 exhibited a significantly
subdued state, revealing diverse regulatory environments among
the clusters. The biological implications of these clusters were
further explored via pathway analysis, which identified significant
variations in functional activation. Pathways linked to mitotic
sister chromatid separation, chromosome segregation, and the
regulation of chromosome segregation were particularly enriched
in cluster C3, indicating a vigorous proliferative phenotype
associated with increased genomic instability. This suggests that
the cells within cluster C3 are in a state of active division, where
chromosomal dynamics and regulation during mitosis are crucial
to their biological function. Conversely, cluster C2 was marked
by heightened metabolic activity, incorporating pathways that play
roles in cellular metabolism, protein production, energy generation,
and structural maintenance. This indicates a relatively quiescent
phase concentrated on maintaining cellular balance and metabolic
processes (Figure 1B).

Interestingly, cluster C3 also showed heightened activation in
pathways associatedwith chemotaxis, phospholipidmetabolism, ion
transport, vitamin metabolism, cell signaling, and differentiation.
These pathways suggest a broader involvement in cellular
communication, migration, and specialization, which may
contribute to tumor progression and interactions within the
tumor microenvironment. In comparison, the subdued nature
of these pathways in cluster C2 further supports its metabolic
and maintenance-oriented phenotype. To refine the essential
differences between clusters C3 and C2, KEGG pathway analysis
was conducted (Figure 1C). Among the most significantly enriched
pathways, androgen response was identified as the key differentiator
between these two clusters. The robust androgen response observed

in cluster C3 suggests dependency on androgen receptor (AR)-
mediated transcriptional programs, which are critical for PCa
progression. Conversely, the diminished androgen response in
cluster C2 implies a metabolic adaptation divergent fromAR-driven
phenotypes, potentially reflecting an alternative survival strategy.

Our findings reveal distinct histone modification clusters in
PCa, each representing unique regulatory and functional states.
Cluster C3 is characterized by proliferative and androgen-driven
dynamics, while cluster C2 exhibits a quiescent, metabolically
focused phenotype. These contrasting profiles underscore the role
of histone modifications in shaping tumor biology and highlight
potential therapeutic opportunities for targeted interventions.
The interplay between genomic instability, metabolic adaptations,
and androgen signaling offers critical insights into prostate
cancer progression and treatment resistance (Figure 1D). Overall,
the identification of distinct histone modification clusters in
PCa underscores the profound epigenetic heterogeneity within
tumors, revealing divergent proliferative and metabolic phenotypes.
These findings not only highlight the critical role of histone
modifications in shaping tumor biology but also provide a
foundation for developing precision therapeutic strategies targeting
specific epigenetic and androgen-driven vulnerabilities.

High CMLHMS score indicates poor
prognosis in prostate cancer

The UpSet plot revealed a significant overlap of histone
modification-related genes across the TCGA-PRAD, MSKCC, and
GSE70770 cohorts, with 626 shared differentially expressed genes
(DEGs) identified (Figure 2A). To further assess the prognostic
significance of these genes, univariate Cox regression analysis
was conducted, categorizing genes into risky and protective
groups across the three datasets (Figures 2B–D). Ultimately, 11
risky genes (Figure 2E) and 42 protective genes (Figure 2F) were
consistently identified among the cohorts and subsequently selected
for input into the leave-one-out validation (LOOV) machine
learning process (Figure 3A).

To construct a robust consensus machine learning model
based on global histone modification features, batch effects
among the TCGA-PRAD, MSKCC, and GSE70770 cohorts
were corrected (Supplementary Figure S1). The TCGA-PRAD
dataset was employed as the training cohort, while the MSKCC
and GSE70770 datasets served as validation cohorts. Using
the leave-one-out cross-validation (LOOCV) framework, 101
machine learning prediction models were developed, and the
concordance index (C-index) was calculated for each model across
all validation datasets. Notably, the optimal model was identified as
a combination of LASSO and plsRcox, achieving the highest average
C-index of 0.749.

From this model, 14 genes were established as part of the
final signature, including four risky genes and ten protective genes
(Figure 3B). These genes were further analyzed using univariate
Cox regression, which revealed that PRC1, CDR2L, NUSAP1, and
ZNF467 function as risky factors in PCa, with elevated PRC1 levels
presenting the highest risk (Figure 3C). Based on these findings,
the Comprehensive Machine Learning Histone Modification Score
(CMLHMS) was developed using the formula: CMLHMS Score =
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FIGURE 1
Distinct histone modification patterns in prostate cancer (PCa). (A) Hierarchical clustering of patients in the TCGA-PRAD cohort based on histone
modification GSVA scores identified three clusters with distinct histone modification patterns. (B) GO enrichment analysis for C1, C2 and C3. (C) KEGG
pathway analysis for deferentially expressed genes (DEGs) between C3 and C2. (D) HALLMARKS pathway analysis based on 50 classical oncological
pathways for DEGs between C3 and C2.
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FIGURE 2
Identification of shared risky and protective genes. (A) UpSet plot showed the overlap of histone modification-related genes and DEGs across the
TCGA-PRAD, GSE70770, and MSKCC cohorts. (B–D) Volcano plots showing the distribution of risky and protective genes in the TCGA-PRAD (B),
GSE70770 (C), and MSKCC (D) cohorts. (E, F) Heatmaps illustrating the expression patterns of 11 risky genes (E) and 42 protective genes (F) shared
across the three cohorts.
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FIGURE 3
Construction of the consensus machine learning histone modification signature. (A) The heatmap showed the 101 distinct prediction models based on
LOOV framework, and their C-index were calculated comprehensively across the TCGA-PRAD, GSE70770, and MSKCC cohorts. (B) The coefficient
profiles of the candidate genes are plotted against the log-transformed lambda values and the partial likelihood deviance. (C) Univariate Cox regression
analysis showing HRs for the 14 model genes, with PRC1 identified as the top risk factor. (D–G) Kaplan-Meier (K–M) survival curves of CMLHMS scores
in the merged cohort (D), TCGA-PRAD (E), GSE70770 (F), and MSKCC (G), demonstrating that high CMLHMS scores are significantly associated with
shorter RFS.
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(0.057514∗PRC1) + (0.232672∗CDR2L) + (0.333656∗NUSAP1) +
(0.217279∗ZNF467) − (0.177885∗ARSD) − (0.096998∗PCYOX1) +
(0.028384∗TAOK3) − (0.167867∗ZBTB38) − (0.140445∗KIF13B) −
(0.106067∗EPHA5) − (0.104789∗FAM3B) − (0.058782 ∗ MT1G) −
(0.032181∗MYBPC1) − (0.003047 ∗ MT1H).

The newly developed signature demonstrated strong prognostic
value for predicting prostate cancer recurrence. In the merged
cohort, patients with high CMLHMS scores exhibited significantly
worse recurrence-free survival (RFS) (P < 0.001, HR = 3.72,
95% CI: 2.666–5.198). Further validation in individual cohorts
confirmed these results, with high CMLHMS scores associated
with shorter RFS in TCGA-PRAD (P < 0.001, HR = 4.35, 95%
CI: 2.627–7.204), MSKCC (P = 0.002, HR = 3.13, 95% CI:
1.507–6.489), and GSE70770 (P < 0.001, HR = 3.73, 95% CI:
2.09–6.665) (Figures 3D–G). Collectively, these findings indicate
that a high CMLHMS score correlates with a 3- to 4-fold increase in
the likelihood of shorter RFS, underscoring its utility as a prognostic
biomarker. This robust model offers a novel avenue for predicting
disease progression and stratifying PCa patients for tailored
therapeutic interventions.

High PRC1 expression correlates with high
malignancy and poor prognosis

Given that PRC1 exhibited the highest linear and Cox regression
coefficients among the four signature genes, it was deemed the
most critical contributor to the CMLHMS model and subjected to
further in-depth analysis. To evaluate its prognostic value, Kaplan-
Meier survival curves were generated across the three cohorts. The
results consistently demonstrated that elevated PRC1 expressionwas
significantly associatedwith poorer survival outcomes in all datasets.
In the TCGA-PRAD cohort (Figure 4A), patients with high PRC1
expression had a hazard ratio (HR) of 1.95 (95% CI: 1.3–2.93, P
= 0.002), indicating significantly shorter recurrence-free survival
(RFS). Similarly, in the GSE70770 cohort (Figure 4B), high PRC1
expression was linked to worse survival outcomes, yielding an HR
of 2.04 (95% CI: 1.25–3.34, P = 0.005). In the MSKCC cohort, the
association was even more pronounced, with an HR of 3.2 (95% CI:
1.66–6.16, P < 0.001) (Figure 4C).

To further validate the association between PRC1 expression
and tumor severity, IHC staining was performed on low-grade
and high-grade prostate cancer tissues (Figures 4D, E). The results
revealed that low-grade PCa tissues exhibited weak and sparse PRC1
staining, whereas high-grade PCa tissues displayed significantly
higher PRC1 expression, characterized by widespread and intense
staining. These findings suggest a strong correlation between
PRC1 and tumor aggressiveness, as reflected by Gleason scores.
Furthermore, functional assays were conducted to evaluate PRC1’s
role in prostate cancer progression. Western blot analysis confirmed
efficient knockdown of PRC1 expression using two siRNAs (siRNA1
and siRNA2) in the C4-2 and 22RV1 cell lines (Figure 4F).
CCK-8 assays revealed that PRC1 knockdown significantly
suppressed cell proliferation in both cell lines (Figure 4G). Similarly,
transwell migration assays demonstrated a marked reduction
in migratory ability upon PRC1 knockdown, with significantly
fewer migrated cells observed in PRC1-silenced groups compared
to controls (Figure 4H, P < 0.001).

In addition, we performed K-M survival analyses for
the other three signature genes (CDR2L, NUSAP1, and
ZNF467) across the three cohorts. Consistent results were
observed, showing that elevated expression of CDR2L, NUSAP1,
and ZNF467 was also significantly associated with poor
clinical outcomes (Supplementary Figures S2A–C, all P < 0.05).
Collectively, these findings highlight PRC1 as a critical biomarker
of poor prognosis in prostate cancer, with strong associations to
shorter RFS and higher Gleason scores. Its consistent correlation
with aggressive disease suggests PRC1’s potential as a therapeutic
target, particularly in advanced or high-grade PCa.

CMLHMS serves as an independent risk
factor in prostate cancer

To evaluate the discriminatory efficiency of CMLHMS, ROC
analysis was conducted across the merged cohort, TCGA-PRAD,
MSKCC, and GSE70770 cohorts, revealing favorable performance
with 1-, 3-, and 5-year AUCs of 0.856, 0.780, and 0.668 in
the merged cohort (Figure 5A); 0.764, 0.737, and 0.693 in the
TCGA-PRAD cohort (Figure 5B); 0.833, 0.787, and 0.773 in the
MSKCC cohort (Figure 5C); and 0.856, 0.780, and 0.668 in the
GSE70770 cohort (Figure 5D), respectively. These results highlight
the consistent prognostic accuracy of CMLHMS across multiple
datasets, particularly in short-to medium-term predictions.

To further establish the independent prognostic significance of
CMLHMS, multivariate Cox regression analyses were conducted. In
the merged cohort (Figure 5E), both high Gleason scores (8, 9, and
10; HR = 3.65, 95% CI: 2.493–5.35, P < 0.001) and high CMLHMS
scores (HR= 1.58, 95%CI: 1.079–2.31, P = 0.0185) were identified as
significant risk factors for shorter RFS. In the TCGA-PRAD cohort
(Figure 5F), T stages 3 and 4 (HR = 1.81, 95% CI: 1.007–3.27, P =
0.0472), high Gleason scores (HR = 2.63, 95% CI: 1.575–4.41, P <
0.001), and high CMLHMS scores (HR = 2.37, 95% CI: 1.366–4.13,
P = 0.0022) were all significant predictors. In the MSKCC cohort
(Figure 5G), high Gleason scores (HR = 9.255, 95% CI: 4.361–19.54,
P < 0.001) were statistically significant, while CMLHMS scores (HR
= 1.91, 95% CI: 0.877–4.16, P = 0.1034) indicated a clear trend
toward increased risk. In the GSE70770 cohort (Figure 5H), both
high Gleason scores (HR = 3.97, 95% CI: 1.185–13.33, P = 0.0254)
and high CMLHMS scores (HR = 3.18, 95% CI: 1.22–8.21, P =
0.0171) were identified as independent risk factors. These findings
underscore the robust discriminatory efficiency of CMLHMS and
its role as a reliable independent risk factor in PCa, highlighting
its significant prognostic value and potential utility in guiding risk
stratification.

Divergent biological pathways define high-
and Low-CMLHMS PCa subtypes

To delineate the distinct molecular landscapes between
prostate cancer (PCa) patients with high and low
CMLHMS, we conducted an enrichment analysis of DEGs
(Supplementary Figure S2D). The forest GESA analysis, utilizing
50 hallmark signaling pathways (Figure 6A), revealed profound
differences in pathway activation between the two groups,
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FIGURE 4
High PRC1 Expression Correlates with High Malignancy and Poor Prognosis. (A–C) K-M survival curves for PRC1 expression in the TCGA-PRAD (A),
GSE70770 (B), and MSKCC (C) cohorts. (D) Immunohistochemical (IHC) staining images of PRC1 in low-grade PCa. (E) Immunohistochemical (IHC)
staining images of PRC1 in high-grade PCa. (F) Western blot analysis confirmed efficient knockdown of PRC1 expression using two independent siRNAs
(siRNA1 and siRNA2) in C4-2 and 22RV1 cell lines, compared to negative control (NC). (G) Cell proliferation was assessed using the CCK-8 assay over 5
days. PRC1 knockdown significantly inhibited the proliferation of both C4-2 and 22RV1 cells compared to controls. (H) Transwell migration assays
showed a marked decrease in the migratory ability of PRC1 knockdown cells compared to controls. Quantification of migrated cells revealed
significant reductions in both C4-2 and 22RV1 cell lines upon PRC1 silencing.
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FIGURE 5
Prognostic and independent risk factor evaluation of CMLHMS. (A–D) Receiver operating characteristic (ROC) curves for the CMLHMS model in
predicting 1-, 3-, and 5-year RFS in the merged cohort (A), TCGA-PRAD (B), MSKCC (C), and GSE70770 (D). The model demonstrates strong
discriminatory power across all cohorts. (E–H) Multivariate Cox regression analyses for CMLHMS scores and clinicopathological feature (E),
TCGA-PRAD (F), MSKCC (G), and GSE70770 (H).
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underscoring unique tumor biology. High-CMLHMS tumors
demonstrated pronounced activation of pathways known to
drive invasiveness and proliferation, including MYC TARGETS
V2, OXIDATIVE PHOSPHORYLATION, E2F TARGETS, G2M
CHECKPOINT, and ANGIOGENESIS. These findings suggest a
molecular signature geared toward rapid cell cycle progression,
energy metabolism, and vascular remodeling, consistent with a
highly aggressive tumor phenotype.

To further refine these observations, functional enrichment
analysis using GO (Figures 6B, C) and KEGG pathways (Figure 6D)
was conducted. High-CMLHMS tumors were enriched in pathways
associated with muscle contraction, response to copper ions,
cell-substrate junctions, and collagen-containing extracellular
matrix remodeling, as well as actin binding to the extracellular
matrix. These features suggest an extensive remodeling of the
tumor microenvironment, facilitating invasion and metastatic
dissemination. In contrast, low-CMLHMS tumors showed
significant enrichment in cAMP signaling, retinol metabolism, and
drug metabolism. These pathways are indicative of a phenotype
attuned to stress adaptation, detoxification, and metabolic
regulation, reflecting reliance on intrinsic cellular homeostasis
mechanisms. The molecular divergence between the two subgroups
highlights distinct vulnerabilities. High-CMLHMS tumors, driven
by cytoskeletal reorganization, extracellularmatrix interactions, and
oxidative metabolism, may be particularly susceptible to therapies
targeting actin dynamics or matrix remodeling. Meanwhile, low-
CMLHMS tumors, with their reliance on hormonal and metabolic
pathways, present opportunities for interventions modulating
androgen signaling, metabolic flux, or stress response pathways.

Taken together, these findings illuminate two biologically
distinct subtypes of PCa stratified by CMLHMS, with high-
CMLHMS tumors exhibiting a more invasive and proliferative
phenotype, while low-CMLHMS tumors are characterized by
metabolic and hormonal adaptability. This molecular stratification
offers a framework for tailored therapeutic strategies targeting
subtype-specific vulnerabilities.

CMLHMS score correlates with PCa
progression to CRPC

To validate the role of the CMLHMS in PCa progression,
we performed single-cell RNA sequencing analysis on 12,401
epithelial cells derived from seven patients, including three with
primary PCa and four with castration-resistant prostate cancer
(CRPC). Clustering analysis divided these epithelial cells into ten
distinct subclusters (Figure 7A; Supplementary Figures S3A, B), and
CMLHMS scores were calculated for each cell.

CRPC tissues exhibited significantly higher CMLHMS scores
compared to primary PCa tissues, illustrating a strong correlation
between elevated CMLHMS scores and the development of CRPC
(Figure 7B). Cells were further stratified into high- and low-
CMLHMS groups based on mean CMLHMS scores (Figure 7C;
Supplementary Figure S3C). Proportional analysis revealed that
subclusters C3, C1, C2, C4, C5, C6, and C9 were enriched
in CRPC components, while subclusters C1, C2, C4, C5, C6,
C8, and C9 exhibited elevated CMLHMS scores, consistent with
the observed association between CMLHMS scores and CRPC

progression (Figure 7D; Supplementary Figure S3D). Differential
gene expression analysis identified unique molecular signatures
for high- and low-CMLHMS epithelial cells. The high-CMLHMS
group exhibited upregulation of genes such as TRPC4AP, NUSAP1,
EFNA1, KMT2A, and NCOA6, which are implicated in chromatin
remodeling, cell proliferation, and tumor progression. Conversely,
the low-CMLHMSgroup demonstrated elevated expression of genes
including TMC5, KIF13B, ARHGAP6, DIAPH2, and FNIP2, which
are involved in cytoskeletal organization, intracellular transport, and
stress response (Figure 7E).

To further dissect the developmental dynamics of epithelial
cells, a pseudotime trajectory analysis was performed using
Slingshot (Figures 7F, G). Two major differentiation lineages
(Lineage 1 and Lineage 2) were reconstructed, originating from
a shared progenitor state and diverging into distinct cellular states
along pseudotime. Lineage 1 was characterized by the upregulation
of genes involved in metabolic processes, including AKR1C2,
HSD17B2, and FABP5, associated with prostaglandin metabolism,
unsaturated fatty acid metabolism, and cellular keto metabolism.
This lineage reflects ametabolic shift towards energy production and
cell growth, consistent with the high-CMLHMS phenotype. Along
this trajectory, the proportion of high-CMLHMS cells gradually
increased, indicating a direct link between elevated metabolic
activity and aggressive tumor progression. Lineage 2, on the other
hand, showed a stress-responsive phenotype, with enrichment of
immune signaling pathways and cellular responses to external
stimuli. This lineage was marked by genes such as IFIH1, STAT1,
and IRF7, highlighting adaptation to inflammatory or hostile
microenvironments. Along this pathway, the proportion of low-
CMLHMS cells increased, suggesting that these cells rely on stress
response mechanisms rather than metabolic reprogramming.

Together, these findings reveal a clear dichotomy in epithelial
cell differentiation trajectories, with high-CMLHMS cells
associated with a metabolism-driven phenotype (Lineage 1)
and low-CMLHMS cells exhibiting a stress-adaptive phenotype
(Lineage 2) (Figure 7H). This heterogeneity highlights distinct
molecular programs underlying PCa progression, particularly the
transition to CRPC, and provides insights into potential therapeutic
targets tailored to these phenotypes.

Collectively, the correlation between high CMLHMS scores and
CRPC progression underscores the metabolic plasticity of high-
CMLHMS cells as a key driver of aggressive disease. Conversely,
the stress-adaptive nature of low-CMLHMS cells suggests distinct
vulnerabilities, offering new opportunities for subtype-specific
therapeutic interventions.

Differential drug sensitivities between
high- and Low-CMLHMS PCa groups

Emerging evidence has unveiled the molecular heterogeneity
between high- and low-CMLHMS PCa subtypes, suggesting
that these differences may influence therapeutic responses. To
investigate this, we evaluated drug sensitivity profiles between the
two groups using the Genomics of Drug Sensitivity in Cancer
(GDSC) database (Figure 8A). Drug responsiveness was assessed by
comparing IC50 values, where lower IC50 values indicate higher
drug sensitivity.
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FIGURE 6
Biological pathway differences in high- and low-CMLHMS PCa. (A) Fgsea analysis of hallmark pathways for high-CMLHMS an low-CMLHMS score
tumors. (B, C) GO enrichment analysis. (D) KEGG analysis.
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FIGURE 7
Single-cell analysis of CMLHMS and slingshot pseudotime analysis in PCa. (A) UMAP visualization of 12,401 epithelial cells from primary PCa and CRPC
samples, divided into ten subclusters. (B) Dotplot showed the CMLHMS scores in CRPC tissues and primary PCa. (C) Cells are stratified into high- and
low-CMLHMS groups based on the mean CMLHMS score. (D) Proportion analysis. (E) Differential expression analysis identifies key marker genes for
high-CMLHMS and low-CMLHMS epithelial cells. (F, G) Slingshot trajectory analysis reconstructs two major differentiation lineages, Lineage 1
(metabolism-associated) and Lineage 2 (stress-responsive), highlighting their distinct biological roles. (H) Lineage analysis shows the association
between CMLHMS scores Lineage 1 and Lineage 2.
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FIGURE 8
Evaluations of drug sensitivity between high and low CMLHMS groups. (A) Heatmap showed the IC50 of drugs from GDSC across CMLHMS groups. (B)
Comparison of IC50 between high and low CMLHMS groups (low CMLHMS sensitive). (C) Comparison of IC50 between high and low CMLHMS groups
(high CMLHMS sensitive).

Frontiers in Molecular Biosciences 16 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1557843
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


He et al. 10.3389/fmolb.2025.1557843

Several drugs exhibited significant differential responses,
highlighting potential therapeutic implications. As showed in
Figure 8B, high-CMLHMS tumors demonstrated enhanced
sensitivity to several targeted therapies, as reflected by significantly
lower IC50 values for: AZD6482 (PI3K Inhibitor, P = 0.0171),
Erlotinib (EGFR Inhibitor, P = 0.00291), FH535 (β-catenin/PPAR
Inhibitor, P = 1.05e-07), Dasatinib (BCR-ABL/Src Kinase Inhibitor,
P = 0.00697), TAE684 (ALK Inhibitor, P = 0.000397), AZ628 (BRAF
Inhibitor, P = 0.0412), indicating better response to those drugs.
These findings suggest that tumors with high CMLHMS scores,
driven by proliferative and metabolic pathways as revealed in prior
pathway enrichment analyses, may be particularly susceptible to
therapies targeting growth factor signaling, kinase activity, and
metabolic regulators.

In contrast, low-CMLHMS tumors exhibited greater sensitivity
to agents targeting cytoskeletal integrity, androgen signaling,
and stress-response mechanisms. Drugs with significantly lower
IC50 values in the low-CMLHMS group included: Paclitaxel
(Microtubule Inhibitor, P = 3.6e-06), Bicalutamide (Androgen
Receptor Antagonist, P = 1.72e-07), Pyrimethamine (Antifolate,
P = 0.00428), Sunitinib (VEGFR/PDGFR Inhibitor, P = 0.00114),
Etoposide (Topoisomerase Inhibitor, P = 0.00383), Gemcitabine
(Nucleoside Analog, P = 0.003), Vinorelbine (Microtubule Inhibitor,
P = 0.00356) (Figure 8C). These results align with the stress-
adaptive, immune-regulated phenotype of low-CMLHMS tumors,
highlighting their reliance on cytoskeletal dynamics, DNA damage
repair, and hormonal pathways.

The observed drug sensitivities reflect the underlying molecular
characteristics and pathway dependencies of the two subgroups.
High-CMLHMS tumors, characterized by activation of proliferative
and metabolic pathways, exhibited pronounced sensitivity to PI3K,
EGFR, and β-catenin/PPAR inhibitors, which directly target key
drivers of their aggressive phenotype. Conversely, low-CMLHMS
tumors, which rely on adaptive stress responses and immune
modulation, responded more favorably to microtubule inhibitors,
androgen receptor antagonists, and topoisomerase inhibitors,
consistent with their distinct cellular vulnerabilities.

These findings emphasize the potential for personalized
treatment strategies in PCa. While high-CMLHMS tumors may
benefit from targeted therapies focused on growth factor signaling
and metabolic regulation, low-CMLHMS tumors appear more
responsive to agents targeting hormonal signaling, cytoskeletal
dynamics, and DNA replication stress. This stratification provides a
framework for optimizing therapeutic regimens based onCMLHMS
scores, advancing precision oncology in prostate cancer.

Discussions

PCa is a highly heterogeneous disease with significant variability
in molecular, cellular, and clinical behavior. The therapeutic
drug resistance heterogeneity of prostate cancer is multifaceted,
encompassingmetabolic alterationsand interactionswith the immune
system. For instance, Zhou et al. (2023) discovered that circular
RNA circROBO1 promotes prostate cancer growth and contributes
to drug resistance to enzalutamide by accelerating glycolysis.
Additionally, Ye et al. (2024) emphasized the intricate relationship
between the immune microenvironment and tumor development.

Understanding this heterogeneity is critical for optimizing
therapeutic strategies and improving patient outcomes
(Gillessen et al., 2025; Han et al., 2024; Pan et al., 2024). In this
study, we leveraged integrative multi-omics analysis and machine
learning to develop the CMLHMS, a novel metric to stratify
PCa subtypes based on global histone modification patterns. The
combination of Lasso and plsRcox offers a balanced approach that
not only selects the most relevant features but also reduces the
dimensionality of the data, addressing issues of overfitting and
multicollinearity. This integration enhances the prediction accuracy
of the model, rendering it particularly suitable for survival analysis
in complex tumor datasets, such as those pertaining to prostate
cancer. By merging these two methodologies, our model retains
a manageable quantity of key features while effectively capturing
intricate relationships within the data, thereby facilitating more
reliable and robust predictions of prostate cancer prognosis. Our
findings revealed profound distinctions in biological processes,
treatment sensitivities, and disease progression between high- and
low-CMLHMS groups, providing novel insights into the epigenetic
landscape of PCa and its clinical implications.

Histone modifications are critical regulators of chromatin
structure and gene expression, influencing key cellular processes
such as proliferation, differentiation, and apoptosis. Aberrant
histone modifications have been implicated in the initiation and
progression of various cancers, including PCa (Feinberg et al.,
2016; Dawson and Kouzarides, 2012). Our study demonstrates
that PCa with high CMLHMS scores is characterized by the
activation of proliferative and metabolic pathways, including MYC
targets, oxidative phosphorylation, and the G2M checkpoint. These
pathways are well-known drivers of aggressive tumor phenotypes
and are associated with advanced disease stages (Mishra et al., 2024;
Grasso et al., 2012). Conversely, low CMLHMS tumors showed
enrichment in stress-adaptive and immune-regulatory pathways,
such as androgen and estrogen responses and KRAS signaling.
These findings align with previous studies indicating that epigenetic
regulation plays a pivotal role in determining tumor aggressiveness
and therapeutic resistance (Sinha et al., 2019; Yang et al., 2022).

The observed differences in pathway activation underscore
the impact of histone modifications on PCa heterogeneity. High-
CMLHMS tumorsmay represent a phenotype driven by deregulated
chromatin states that promote rapid cell cycling and metabolic
reprogramming, whereas low-CMLHMS tumors appear to rely on
epigenetic mechanisms that facilitate stress adaptation and immune
evasion. These distinct molecular profiles highlight the potential
of histone modification patterns as biomarkers for PCa subtype
classification and prognosis.

Castration-resistant prostate cancer (CRPC) represents a lethal
stage of PCa that arises despite androgen deprivation therapy
(ADT). The transition to CRPC involves complex molecular
changes, including epigenetic reprogramming (Mandigo et al.,
2022; Sharma et al., 2010). Using single-cell RNA sequencing,
we showed that CRPC tissues exhibited significantly higher
CMLHMS scores compared to primary PCa tissues, suggesting
that elevated histone modification activity is a hallmark of CRPC
progression (Wang et al., 2020). Trajectory analysis further revealed
two distinct differentiation lineages among epithelial cells: Lineage
1, associated with high CMLHMS scores, exhibited upregulation of
metabolic genes and pathways related to prostaglandin metabolism
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and unsaturated fatty acid metabolism, reflecting a shift towards
energy production and tumor growth. In contrast, Lineage 2,
enriched in low CMLHMS scores, demonstrated a stress-responsive
phenotype characterized by immune signaling and adaptation to
hostile microenvironments.

These findings provide a mechanistic link between histone
modifications and CRPC development. The metabolic phenotype
of high-CMLHMS cells may confer a selective advantage under
androgen-deprived conditions, promoting tumor progression and
therapeutic resistance. On the other hand, the stress-adaptive
phenotype of low-CMLHMS cells highlights the role of immune
evasion and microenvironmental interactions in CRPC biology.
This dichotomy underscores the importance of epigenetic plasticity
in driving PCa heterogeneity and resistance to standard therapies
(Pan et al., 2024; Ni et al., 2024).

Our analysis revealed significant differences in drug sensitivities
between high- and low-CMLHMS tumors, reflecting their distinct
molecular characteristics. High-CMLHMS tumors exhibited
greater sensitivity to targeted therapies, including PI3K inhibitors
(AZD6482), EGFR inhibitors (Erlotinib), β-catenin/PPAR
inhibitors (FH535), and kinase inhibitors such as Dasatinib and
TAE684. Obviously, the CMLHMS score is closely associated with
the biological characteristics of the tumor, which subsequently
influences its response to various pharmacological treatments.
Tumors with a high CMLHMS score typically demonstrate
enhanced activation of cell proliferation and metabolic pathways
(Nadiminty et al., 2013), including MYC targets, oxidative
phosphorylation, and angiogenesis (Liu et al., 2014), rendering
them more susceptible to therapies that target these proliferation
and metabolic pathways (Anwaier et al., 2022; Zhu et al., 2022).
Conversely, low CMLHMS tumors primarily depend on stress
adaptation and metabolic regulation, and they exhibit a more
favorable response to drugs that target cytoskeletal dynamics, DNA
repair, and androgen signaling. Targeting these pathways could
provide a therapeutic advantage in high-CMLHMS patients.

Conversely, low-CMLHMS tumors demonstrated enhanced
sensitivity to drugs targeting cytoskeletal dynamics (e.g., Paclitaxel,
Vinorelbine), androgen signaling (e.g., Bicalutamide), and DNA
damage repair (e.g., Etoposide, Gemcitabine). The stress-adaptive
and immune-regulatory phenotype of low-CMLHMS tumors may
render them more vulnerable to therapies that disrupt cellular
homeostasis or exploit DNA replication stress. These results are
consistent with previous studies highlighting the therapeutic
potential of microtubule inhibitors and androgen receptor
antagonists in less aggressive PCa subtypes (Bian et al., 2024;Ni et al.,
2023). The differential drug sensitivities observed in this study
provide a rationale for tailoring treatment strategies based on
CMLHMS scores. High-CMLHMS patients may benefit from
targeted therapies that disrupt proliferative andmetabolic pathways,
while low-CMLHMS patients may respond better to cytoskeletal
inhibitors and hormone-based treatments. This stratified approach
represents a step forward in the development of precision
medicine for PCa.

One of the key strengths of this study is the integration of
multi-omics data and machine learning to develop the CMLHMS
model. This approach enabled us to capture the complexity of
histone modification patterns and their functional implications
in PCa. Additionally, the use of single-cell RNA sequencing

provided a high-resolution view of tumor heterogeneity and allowed
us to identify distinct differentiation trajectories associated with
CMLHMS scores. Collectively, the innovation of this article lies in
its focus on holistic histone modifications, utilizing multiple batch
cohorts to evaluate comprehensive patterns. This approach offers a
novel perspective for prostate cancer research, distinguishing it from
previous literature on the subject (Zhu et al., 2025).

However, several limitations should be acknowledged. First, the
sample size for single-cell analysis was relatively small, particularly
for CRPC tissues, which may limit the generalizability of our
findings. Second, while the GDSC database provided valuable
insights into drug sensitivities, experimental validation of these
predictions in preclinical or clinical settings is necessary. Third,
the functional roles of key genes identified in high- and low-
CMLHMS groups (e.g., TRPC4AP, NUSAP1, ARHGAP6) remain
to be elucidated. Future studies should focus on validating these
findings and exploring the underlying mechanisms.

This study lays the groundwork for several future research
avenues. First, the CMLHMS model should be validated in
larger, independent cohorts, including prospective clinical trials, to
confirm its prognostic and predictive value. Second, mechanistic
studies are needed to investigate the functional roles of histone
modifications and key genes in driving PCaheterogeneity andCRPC
progression.Third, preclinical studies should evaluate the efficacy of
targeted therapies identified in this study, such as PI3K inhibitors
for high-CMLHMS tumors and microtubule inhibitors for low-
CMLHMS tumors. Finally, exploring combination therapies that
target both proliferative and stress-adaptive phenotypes may help
overcome therapeutic resistance and improve patient outcomes.

Conclusion

In conclusion, this study highlights the critical role of histone
modifications in shaping PCa heterogeneity and progression. By
integrating multi-omics data and machine learning, we developed
the CMLHMS model, which provides a novel framework for
understanding the epigenetic landscape of PCa. The findings
reveal distinct molecular subtypes with unique biological processes,
therapeutic sensitivities, and clinical implications. These insights
pave the way for precision oncology strategies that tailor treatments
based on histone modification patterns, offering new hope for
improving outcomes in PCa patients.
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