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Breast cancer (BC) remains a complex and widespread problem, affecting
millions of women worldwide, Among the various subtypes of BC, triple-
negative breast cancer (TNBC) is particularly challenging, representing
approximately 20% of all BC cases, and the survival rate of TNBC patients
is generally worse than other subtypes of BC. TNBC is a heterogeneous
disease characterized by lack of expression of three receptors: estrogen (ER),
progesterone (PR), and human epidermal growth factor receptor 2 (HER2),
resulting conventional hormonal therapies are ineffective for its management.
Despite various therapeutic approaches have been explored, but no definitive
solution has been found yet for TNBC. Current treatments options are
chemotherapy, immunotherapy, radiotherapy and surgery, although, these
therapies have some limitations, such as the development of resistance to
anti-cancer drugs, and off-target toxicity, which remain primary obstacles and
significant challenges for TNBC. Several findings have shown that EVs exhibit
significant therapeutic promise in many diseases, and a similar important role
has been observed in various types of tumor. Studies suggest that EVs may offer
a potential solution for the management of TNBC. This review highlights the
multifaceted roles of EVs in TNBC, emphasizing their involvement in disease
progression, diagnosis and therapeutic approach, as well as their potential as
biomarkers and drug delivery.

KEYWORDS

extracellular vesicles, biomarkers, therapeutic challenges, non-coding RNAs, drug
delivery

1 Introduction

Cancer remains a major concern worldwide, after skin cancer, BC is the most common
among women. According to NIH statistical data, about 3 lakh cases were expected with
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7.1%mortality rate. BC increasing steadily over the past two decades
(Aravindan et al., 2024), and one of the most prevalent diseases
affectingwomenworldwide (Arnold et al., 2022). Several studies and
their results from different perspectives unanimously classify BC
as a highly heterogeneous disease molecular and histological both
level (Viale, 2012). Over time, several molecular markers have been
discovered to classify BC based on factors like genomic instability,
genetic changes, and gene activity. Advanced technologies have
made it much easier for us to understand why BC is so diverse by
identifying biomarkers like ER, PR, and HER2. These markers have
helped classify BC into five subtypes, including luminal A, luminal
B, HER2-enriched, triple-negative (or basal-like), and normal-like
breast cancer. This classification helps to predict disease progression
and choose effective treatments (Zubair et al., 2021). According
to cancer statistics and several studies, the proportion of TNBC
is higher in Asian countries. Primarily, Indian data shows that
100,000 people are diagnosed with breast cancer every year. It is
estimated that by 2025, global cancer cases will reach approximately
30 million, while deaths will increase to 17 million. Like the United
States, breast cancer is the second leading cause of cancer-related
deaths in India after lung cancer. The diagnosis of breast cancer
presents a significant challenge in effectively managing the disease.
According toWHO, survival rates vary across regions, ranging from
about 90% in high-income countries, 60% in India and 40% in
South Africa (Gupta et al., 2024).

Of all these subtypes of BC, TNBC has received significant
attention. TNBC is an aggressive subtype that represent around
11%–20% of all BC cases (Loizides and Constantinidou, 2023). It
is characterized by the lack of estrogen receptor (ER), progesterone
receptor (PR), as well as lack of overexpression or amplification of
human epidermal growth factor receptor 2 (HER2) (Tiwari et al.,
2023). Consequently, TNBC is frequently unresponsive to hormone-
based therapies, which specifically target ER and PR, as well as
strategy designed to address HER2 receptors. The lack of these
receptor targets hinders the effectiveness of conventional hormone-
based and HER2-targeted therapies in managing TNBC cases
(Saleh et al., 2021). TNBC primarily affects young, premenopausal
women to a more significant number and has been observed more
frequently in African-American women. This is often associated
with inherited gene mutations involving the BRCA1 and BRCA2
genes (Howard and Olopade, 2021). The highly aggressive nature of
TNBC poses a significant challenge in its diagnosis and prognosis.
TNBC have more propensity to metastasize to different body parts
in compression of other subtypes of BC (Azim et al., 2020).

Prognostic biomarkers may play in significant role in the
initial diagnosis of TNBC. Lipids, circulating tumors DNA
(ctDNA), glycogen, tumors-infiltrating lymphocytes (TILs),
immune checkpoint molecules (PD-L1), circulating tumors cells
(CTCs), and microRNAs (miRNAs) are considered as next-
generation predictive biomarkers and promise significant potential
for enhance the prognosis of TNBC. Glycogen and lipid show
pathology-associatedmetabolic changes and give important insights
into malignancy growth and treatment response. ctDNA serves as
a non-invasive methodology to assess tumors genetics and monitor
pathological conditions (Alismail, 2024; Banerjee et al., 2024).
Patients with early-stage TNBC who have not received adjuvant or
neoadjuvant chemotherapy have been shown to have significantly
better survival when they have significant quantities of TILs in their

BC tissues. These studies results confirm, abundance of TILs in
BC may serve as a crucial prognostic factor for early-stage TNBC
patients (Leon-Ferre et al., 2024). PD-L1, a protein that involved
in immune evasion, mostly exhibit in aggressive type neoplasm. In
BC, its expression is related with high histologic grade and negative
hormone receptor status. Approximately 20% of TNBC tumors
express PD-L1 (Mittendorf et al., 2014).

Currently, the primary therapeutic approach for TNBC involve a
combination of surgery, radiation, chemotherapy, and neoadjuvant
therapy (Baranova et al., 2022). Though there are some approved
chemotherapeutics such as platinum agent (carboplatin and
cisplatin), doxorubicin, paclitaxel, capecitabine, gemcitabine, and
eribulin, but their efficacy are limited (Twelves et al., 2016).
Moreover, most of these drugs cannot cross the blood-brain barrier,
posing a challenge in treating brain tumors resulting from TNBC
metastasis. Approximately one-third of TNBC patients develop
brain metastases, which currently have no available cure, leading
to short survival times (Kadamkulam Syriac et al., 2023; Kannan
and Cheng, 2023). Some TNBC patients with BRCA1/2 mutations
can receive intervention with poly (ADP-ribose) polymerase
inhibitors like olaparib and talazoparib, however these options
are limited (Hobbs et al., 2021). Therefore, there is a pressing need
for developing new and effective therapies with high specificity for
BC and minimal damage to healthy tissues.

EVs are tiny particles surrounded by lipid bilayers that are
released into the circulation by various types cells, including
tumor cells, and these diverse membranous vesicles secreted
into the extracellular space (Dixson et al., 2023), which engage
in numerous functions, including intercellular communication,
immune regulation, disease progression and development, and
tissue repair. Additionally, EVs carries cargo such as, proteins,
lipids, metabolites DNA and various type RNA, which play a
crucial role in biological processes (Yue et al., 2023). Initially,
until the late 1990s, EVs did not receive significant attention in
the field of research, because in the early stages it was believed
that these vesicles were waste material of cells (Yuan et al., 2023).
Primarily based on their biogenesis and size, EVs have been
classified into three different types (Liu and Wang, 2023), (i)
Exosomes range in size from 30 to 150 nm. Their biogenesis occurs
within multivesicular bodies (MVBs) via the endocytic pathway,
following ESCRT-dependent complexes, and they are released
into the extracellular space via exocytosis (Yin et al., 2023). The
presence of various biomarkers including tetraspanins (CD9, CD63,
CD81), endosomal proteins (TSG101, Rab-GTPase), and heat shock
chaperones (HSP70, HSP90) characterize exosomes (Banerjee and
Rajeswari, 2023). (ii) Microvesicles are formed through outward
of the plasma membrane under stimuli and calcium-dependent
pathways. These vesicles range in size from 50 to 1,000 nm and are
released through outward budding and fission of the membrane.
These include various biomarkers including flotillin-2, CD40 ligand,
and annexin (Rani et al., 2023), and (iii) apoptotic bodies which is
greater than 1,000 nm in size, formed during the apoptosis process,
compared to other EVs it has phosphatidylserine, cytochrome c
and DNA histones as major markers (Wen et al., 2023) (Detailed
classification and characteristics of EVs mentioned in Table 1).

Tumor cell-derived EVs promote tumor development and
metastasis through diverse mechanisms by influencing the tumor
microenvironment (TME), modulating cellular interactions, and
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TABLE 1 Extracellular vesicle classification, based on category, size, formation, pathways and marker.

1. Category Size Formation Biogenesis
pathway

Markers References

2. Exosomes 30–120 nm Multivesicular
bodies fusion
(MVBs) with the
plasma membrane

ESCRT-dependent Tetraspanins (CD9,
CD63, CD81),
Endosome system
proteins (TSG101,
Rab-GTPase), and
Heat shock
chaperones (HSP70,
HSP90)

Xu et al. (2022);
Banerjee and
Rajeswari (2023)

3. Microvesicle 40–1,000 nm Outward blebbing of
the plasma
membrane

Stimuli-dependent,
Ca2+-dependent,
cell-dependent

Flotllin-2, CD40
ligand, Selectin,
Annexin 1

Ståhl et al. (2019)

4. Apoptotic bodies >1,000 nm Plasma membrane
budding of
Apoptotic cells

Apoptosis-related Phosphatidylserine,
Annexin V, DNA
histones

Ståhl et al. (2019),
Hu et al. (2020b)

signaling pathways (Tian et al., 2023). TME play crucial role in the
TNBC progression, by utilizing different biological mechanisms
such as immune suppression, proliferation, angiogenesis, and
apoptosis inhibition. Dynamic interactivity between surrounding
stromal, endothelial, immune cells, and neoplasm cells builds niche,
that facilitated tumor development, metastasis, and epithelial-to-
TNBC stem cell transition (Deepak et al., 2020). TME composed
diverse types of cells and biological molecule, including ECM
components, immune cells, tumor-associated fibroblasts (CAFs),
blood vessels and cancer stem cells (CSCs), ECM generate signals
for numerus key processes like cell proliferation, replicative
immortality, invasion, and apoptosis evasion. CAFs are prime
contributors to drug resistance and disease progression by
producing growth factors and chemokines, additionally play crucial
role in immune cell infiltration (Otranto et al., 2012).

EVs can be collected from various bodily fluids such as
blood or urine, providing a non-invasive method to obtain real-
time information about the status and types of malignant cells
(Kalra et al., 2016).They got special attention in the clinical field due
to verity of function like precisely targeted drug delivery (vaccines
and therapeutic agents), interaction with specific cell and tissue.
This observation has led to the exploration of EVs as potential
cargo carriers for delivering (Wang et al., 2020). Notably EVs
secreted from body enable them to work well with the same because
they are natural and are less likely to cause an adverse reaction
or be seen as foreign particles by the immune system of body
(Song et al., 2022). EVs surface is made of the cellular proteins and
can escape fromour immune system. Additionally they can also pass
through the protective blood-brain barrier and prevent drugs from
breaking down (Kooijmans et al., 2016).

2 Biogenesis of extracellular vesicle

Endosomes are membrane-bound compartments within cells
that play an essential role in sorting and trafficking various cellular
materials, includingproteins and lipids.Theearly endosome is thefirst
step in the endocytic pathway, where thematerial is internalized from

the cell surface via endocytosis (Simonetti et al., 2023). Endosomes
mature into late endosomes or multivesicular bodies (MVBs), and
specific cargo inside the endosomal membrane forms tiny buds that
separate from themembrane.These buds synthesize tiny intraluminal
vesicles (ILVs) within the endosome’s inner space, and these ILVs are
later released through exocytosis. So based on this process exosomes
biogenesis can be categorized into two main pathways, i.e., ESCRT
(endosomal sorting complex required for transport)-dependent
pathway and the ESCRT-independent pathway (Han et al., 2022).

2.1 Biogenesis of exosomes through
ESCRT-dependent pathway

The ESCRT machinery is a multi-protein complex comprised
of approximately 30 distinct proteins, which can be classified into
four different complexes: ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-
III. These protein complexes play crucial roles in the biogenesis
of exosomes (Camacho et al., 2023). The investigation of ESCRT
complexes has yielded significant insights into the intricate cellular
mechanisms underlying the formation and release of exosomes,
enhancing our understanding of intercellular communication and
cellular trafficking processes (Ho et al., 2022). The biogenesis of ILVs
begins by placing cargo on the outer surface of MVBs, and this
action is facilitated by the ESCRT-0 complex. ESCRT-0 functions like
a team management, capable of capturing the biomolecule utilized
two crucial components: hepatocyte growth factor-regulated tyrosine
kinase substrate (HRS) and signal transducing adaptor molecule
(STAM). Both help the team to identify and attach to the cargo,
preparing it for the subsequent stages in forming ILVs (Jin et al.,
2022). The ESCRT-0 complex have ten binding sites that facilitate
the capture of polyubiquitylated cargo (Dixson et al., 2023). Upon
attachment of marked polyubiquitylated cargo to ESCRT-0, the HRS-
STAM complex presents an opportunity for the ESCRT-I complex to
participate in the process (Mirzaei et al., 2022). ESCRT-I, aided by the
molecule TSG-101 (Tumor susceptibility gene 101), which binds to
ubiquitin, facilitates the transport of the cargo (Mishra et al., 2023).
Subsequently, ESCRT-I recruits the subsequent complex, ESCRT-II,
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FIGURE 1
The biogenesis of exosomes depends on two pathways ESCRT dependent and ESCRT-independent. (A) The formation of exosomes begins with the
inward budding of the plasma membrane, leading to the formation of early endosomes. Subsequently, the ESCRT complex (ESCRT 0, I, II, III) facilitates
the formation of multivesicular bodies (MVBs). These MVBs either fuse with lysosomes for degradation (by autophagosomes) or translocate to the
plasma membrane, where the SNARE complex aids their fusion, releasing the exosomes into the extracellular space. In ESCRT-independent
mechanism RAB31 present on late endosomes that interact to EGFR, EGFR phosphorylate RAB31 viva tyrosine phosphorylation. Active RAB31 bind with
Flotillin (FLOTs), now these complexes allow to formation of ILVs. Additionally, RAB31 recruit TBC1D2B that binds with protein RAB7 and prevents MVEs
from fusing with lysosomes. (B) Biogenesis of apoptotic bodies begins with cytoskeletal reorganization and plasma membrane blebbing that regulated
by ROCK1 and MLCK proteins. Caspase-3 triggers ROCK1, which then modifies myosin II, leading strong contractions of the cytoskeleton, and
formation of membrane blebs. Further aspase-3 kinase cleaves PAK2 and add fatty acid to it, thereby increasing its activity, that help in cell membrane
movement and controls cell shape. Moreover, activates JNK pathways, for the proper release of apoptotic EVs.

through its interactionwithVPS28 andVPS36 subunits (Hudait et al.,
2023). ESCRT-II, in turn, recruits ESCRT-III, accompanied by the
involvement of a specialized protein known as CHMP2-4 (Azad et al.,
2023). Collectively, they formnovel structures known as ILVs, thereby
accomplishing the budding and cleavage of these diminutive vesicles
from themembrane.Additionally, the accessoryproteinAAA-ATPase
VPS4 performs a vital role in the disassembly and recycling the
ESCRT-III complex (Tseng et al., 2022) (Figure 1A).

2.2 Biogenesis of exosomes through
ESCRT-independent pathway

Inmammalian cells, MVBs can still be synthesized even without
ESCRT complexes, indicating that ILV biogenesis can happen
independently of ESCRT. However, it has been noted that MVBs
formed without ESCRT are larger and contain fewer ILVs with
irregular shapes and sizes. RAB31 is a relatively small GTPase
protein primarily responsible for intracellular trafficking and vesicle
transport (Wei et al., 2021). The activation of RAB31 is crucial for
exosome biogenesis, mediated through phosphorylation catalyzed
by the EGFR (Horbay et al., 2022). After the activation of RAB31,

it interacts with flotillin proteins of SPFH (Stomatin, Prohibitin,
Flotillin, HflK/C) domain present in lipid raft microdomains
(Wei et al., 2021). Flotillins are membrane-associated proteins that
localize to specific cholesterol-rich microdomains in the plasma
membrane known as lipid rafts (Lu and Fairn, 2018).The interaction
between RAB31 and flotillin proteins facilitates the entry of EGFR
into EVs, leading to the formation of ILVs (Lizarraga-Valderrama
and Sheridan, 2021). Another role has been observed for this protein
in EVs, similar to RAB31, which recruits TBC1D2B, deactivates
RAB7, and prevents the fusion of EVs with lysosomes. This
process creates a favorable environment for the formation of ILVs.
Consequently, functional exosomes are released, playing a crucial
role in intercellular communication and various cellular processes
(Gao et al., 2022) (Figure 1A).

2.3 Biogenesis of microvesicles (MV) and
apoptotic body

The MVs form when direct outward budding and subsequent
shedding of the plasma membrane occurs (Clancy et al., 2021). In
the formation of MVs, various factors work together, such as the
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redistribution of phospholipids and the contraction of the actin-
myosin machinery (Abels and Breakefield, 2016). When looking
into the detailed mechanism, ADP-ribosylation factor 6 (ARF6),
a small GTPase protein, plays a significant role in the activation
of phospholipase D (PLD) enzyme during its active state and
leads to the repositioning of phosphatidylserine to the outer leaflet
and initiates the process of MV formation (Menck et al., 2020).
Additionally, the activity of ARF6 recruits the Extracellular Signal-
RegulatedKinase (ERK) (mitogen-activated protein kinase (MAPK)
family) to the plasma membrane. ERK’s presence is pivotal for
downstream signaling pathways. Upon phosphorylation of ERK, it
further activates myosin light chain kinase (MLCK). This activation
leads to the phosphorylation of the Myosin Light Chain (MLC).
The phosphorylation of MLC enhances the contractility of the
actin-myosin complex, resulting in induced membrane curvature
and budding. This activity ultimately leads to the genesis of
small MVs from the plasma membrane. These vesicles contain
specific biomolecules, such as ARF6, MHC-I, b1-integrin, VAMP3,
and MT1MMP (Abels and Breakefield, 2016).

Apoptotic bodies also a membrane-bound structure that also
contain variety of cargos such as proteins, lipids, RNA, miRNAs
and DNA, that involve in intercellular communications. The
feature of apoptotic bodies can vary depending on the cell type
(Santavanond et al., 2021). There is not much information available
about the role of apoptotic bodies in cancer biology, mostly
scientific work is being done utilizing exosomes and microvesicles.
The biogenesis of apoptotic bodies begins with cytoskeletal
reorganization and plasma membrane blebbing. Previously, it was
believed that this process occurred randomly, but recently it
was recognized that the biogenesis of apoptotic bodies occurs
through well-ordered morphological steps. Rho-associated coiled-
coil-containing protein kinase 1 (ROCK1) and myosin light chain
kinase (MLCK) regulates biogenesis of apoptotic bodies (Phan et al.,
2020). In this mechanism, caspase-3 activation triggers ROCK1,
which then modifies myosin II, resulting in strong contractions
of the cytoskeleton, leading to the formation of membrane
blebs. It is not yet completely clear which MLCK is active, but
inhibition ofMLCKhas been shown to preventmembrane blebbing.
Additionally, another protein, LIMK1, helps in this process by
activating cofilin that also regulates the actin skeleton and supports
apoptotic membrane blebbing (Sebbagh et al., 2001). Caspase-3
kinase cleaves p21-activated kinase 2 (PAK2) adds a fatty acid
to it, thereby increasing its activity. Active PAK2 helps in cell
membrane movement and controls cell shape. It also activates
signaling pathways such as JNK, which play a role in proper release
of apoptotic EVs (Han et al., 2024) (Figure 1B).

3 Role of EVs in TNBC

TNBC is a type of aggressive and refractory BCmainly occurs in
young patients and has a poor clinical prognosis. So far, no specific
target has been identified for its management on which intervention
can be done. To achieve better treatment outcomes, a promising
drug is needed, and in recent years EVs have shown significant
promise in the management of TNBC (St-Denis-Bissonnette et al.,
2022). In a study conducted by Ozawa et al., it was revealed that
EVs originating from the HCC1806 malignant cell line possess

remarkable capabilities. These EVs not only promote the spread of
TNBC tumors in the non- malignant MCF10A cell line but also
play a significant role in inducing drug resistance, thereby enhancing
the survival of the recipient cells. Additionally, these EVs display an
exceptional ability to modulate specific miRNAs intricately linked
to tumor-related processes (Ozawa et al., 2018). EVs originating
from TNBC tumor cells have been observed to substantially
impact tumor development and metastasis. Notably EVs release
from TNBC cells line (HCC1806) can enhance the growth of
normal mammary epithelial cells (MCF10A), Additionally induce
drug resistance by activating PI3K/AKT, MAPK and HIF1α
signaling pathways (Das K. et al., 2023). EVs have multifaced
role including the facilitation of tumor proliferation, angiogenesis,
and immune system evasion. These effects are achieved through
the targeted delivery of specific biomolecules to adjacent cells,
thereby modulating their behavior and providing crucial support
for neoplasm progression (Tai et al., 2018). EVs derived from
TNBC cells transfer oncogenic proteins such as EGFR and MMPs
(Matrix metalloproteinases) to recipient cells, that enhancing their
invasiveness and migratory traits (Mashouri et al., 2019).

EVs can modulate the TME in a manner that facilitates the
development of pre-metastatic sites. Specifically, these EVs can
instruct stromal cells, such as fibroblasts and immune cells, to create
a supportive and conducive environment for the proliferation and
dissemination of the tumor cells (Liu et al., 2020). Additionally,
EVs have the remarkable capacity to induce modifications in gene
expression and several signaling pathways within recipient cells,
subsequently resulting in profound alterations in their phenotypic
characteristics and functional role (Mashouri et al., 2019).

3.1 EVs in TNBC prognosis

Comparative analysis of plasma samples between healthy and
patients suffering from TNBC, a conspicuous presence of small
extracellular vesicle (sEVs) has been discerned. Specially, these
sEVs are substantially enriched in TNBC patients (Stevic et al.,
2018). Additionally, a distinct dissimilarity has been noticed
in the expression patterns of sEV-miRNA between TNBC
and HER2-positive patients. Notably, miR-335, miR-422a, and
miR-62 have emerged as specific examples of such differential
expression. In the context of TNBC, miR-374, which is linked
to sEVs, plays a crucial role in promoting increased tumor size
(Zhou et al., 2022). In contrast, several other miRNAs, namely,
miR-185, miR-376a, miR-382, miR-410, miR-433, and miR-628,
displayed an association with HER2-positive patients (Liu T. et al.,
2021). The substantial secretion of sEVs depends upon the
upregulation of the TSAP6 protein (Negahdaripour et al., 2021).
Functionally, TSAP6 maintains cellular homeostasis and impedes
carcinogenesis (Pavlakis et al., 2020). In the context of DNA
damage, the activation of the p53 protein subsequently induces
the transcription of TSAP6 (Nagao et al., 2022).

The SKBR3 cell line exhibits a high proliferative rate and
demonstrates elevated expression levels of the Her2 (Neu/ErbB-
2) gene product (Coppola et al., 2022). In contrast, the MDA-
MB-231 cell line represents a poorly differentiated TNBC cell line
characterized by the absence of ER and PR expression. Similarly,
the HCC1954 cell line also overexpresses Her2/neu (Shiravi et al.,
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2021). Upon the reception of sEVs derived fromTNBC, a significant
enhancement is observed in the proliferation, migration, and
invasion capacities of these cell lines (Zhou et al., 2022). Wills
et al. conducted a study on tumor metastasis mechanisms facilitated
by EVs post-chemotherapy. For this they used xenograft mouse
models of TNBC, and notice that Doxorubicin increased the
release of sEVs from malignant cells, thereby promoting pulmonary
metastasis. Utilizing proteomic analysis and CRISPR/Cas9 gene
editing, they identified glycoprotein Pentraxin 3 (PTX3) as abundant
in Doxorubicin-induced sEVs (Wills et al., 2021). PTX3 can
trigger the NF-κB pathway, which is a key regulator of tumor cell
proliferation and survival (Rathore et al., 2019). Consequently, PTX3
plays a pivotal role in regulating chemotherapy-induced metastasis
and chemoresistance, thereby suggesting it as a potential therapeutic
target against the adverse effects of chemotherapy on metastatic
progression and chemoresistance (Wills et al., 2021).

3.2 EVs in diagnosis of TNBC

In diagnosing TNBC, imaging and immunohistochemistry
(IHC) are the two primary tools currently being used (Roostee et al.,
2023). Imaging tools identify TNBCby detecting BCmasses or other
irregularities. Frequently utilizing imaging tool for TNBC include
mammography, ultrasound, andmagnetic resonance imaging (MRI)
(Sha and Chen, 2022). Mammograms can detection oncological
diseases, but less effective in the case of TNBC when compared
to other types of malignancy. This limitation is because of
TNBC lacking distinctive features such as speculated margins
or microcalcifications commonly found in different pathology
(Chen and Lee-Felker, 2023). Due to this reason, it becomes quite
challenging to identify it through mammograms. Firstly, it may
yield false-negative results, as it cannot provide 100% accurate
information about TNBC. It may miss one in eight TNBC cases,
particularly in women with dense breast tissue, leading to a false
sense of reassurance (Gegios et al., 2023). Secondly, false-positive
results may occur, where in a positive result is shown even in the
absence of disease. This is more prevalent in younger women, those
with dense breasts, those who have previously undergone breast
biopsies, have a family history of BC, or women taking estrogen,
and so on (Wong et al., 2023).

Ultrasound is a beneficial tool for the detection of TNBC
(Wang and Wang, 2023), playing an important role in determining
the patient’s condition. Ultrasound is significantly superior to
mammography as it can easily identify small, non-calcified lesions,
accurately differentiate between solid and cystic lesions, and reduces
false positive results (Emory et al., 2023). In a study, it was found
that the sensitivity of ultrasound for detecting TNBC ranges from
60%–80%, and the specificity ranges from70%–90%. In spite of these
findings, some limitations are associated with it (Ahmed, 2018).
Ultrasound has a lower susceptibility to detect TNBC compared to
other types of BC. In addition, it is not as effective as other imaging
modalities in the accurate staging of TNBC (Dogan and Turnbull,
2012). These features contribute to the challenges in identifying
TNBC and determining its extent using ultrasound imaging.

MRI a highly sophisticated tool for detecting TNBC, and it is
remarkably better than mammography or ultrasound techniques
(Kong et al., 2022). MRI is proficient in precisely identifying tiny

tumors. MRI can also determine the location, size of TNBC,
and it can also detect the spread of the tumor (Taourel et al.,
2018). MRI also serves as critical role in monitoring the progress
of TNBC management. Additionally utilized in planning the
surgery for tumor removal (Ross and Chenevert, 2021). Despite its
advantages, MRI has some limitations compared to mammography
and ultrasound (Ma et al., 2022). First of all, it is significantly
more expensive than imaging tools. Secondly, it is not as widely
available as other imaging options. Additionally, it requires
more time to perform and can sometimes be uncomfortable
for patients (Ormond Filho et al. 2019).

Biopsy another technique which are done for TNBC. In this
procedure, a small piece of breast tissue is extracted and examined
under the microscope, and provides significant information
about TNBC and its grade (Beňačka et al., 2022). One of the
major diagnostic techniques performed on biopsy specimens is
immunohistochemistry (IHC). This is a diagnostic test that relies on
specific antibodies that specifically detect specific types of proteins
or molecules on the surface of tumor cells. For instance, in the
case of TNBC, it is performed based on the expression of ER,
PR, and HER2 (Wang et al., 2022). IHC also identifies specific
proteins or biomolecules that are expressed in TNBC, such as
EGFR (epidermal growth factor receptor), Ki-67 (a proliferation
marker), and p53 (a tumor suppressor gene) (Lu et al., 2023).
This test is extremely beneficial because of its quick results and
its heightened sensitivity in detecting TNBC. It can also identify
molecules that significantly contribute to the aggressiveness and
metastasis potential of TNBC (Ribeiro et al., 2022), and also provide
significant assistance in intervention. The result this test may vary
depending on the laboratory that performs the test (Cardos et al.,
2022). Additionally, IHC cannot diagnose all cases of TNBC because
not all cases show the presence of ER, PR, andHER2.These are some
limitations that are specific to the IHC test.

Mutations in genes identify by genetic testing that provide
crucial information regarding malignancy for instance BRCA1 and
BRCA2 in BC. Mutations in these genes are strongly associated
with the development of BC and help confirm risk as well as guide
treatment (Ponti et al., 2023). Molecular profiling techniques can
provide insights into the biological characteristics of TNBC and
significantly aid in its therapy (Das D. et al., 2023). The majority of
patients with TNBC often receive their diagnosis at an advanced
stage because biomarkers that can effectively detect the tumor
are absent during primary stage of TNBC (Das D. et al., 2023;
Ponti et al., 2023). In order to streamline and enhance TNBC
treatment, it becomes important to discover biomarkers as early
as possible to detect TNBC in its early stages (Agostinetto et al.,
2022). By identifying such biomarkers, the diagnosis and subsequent
strategy of TNBC can be simplified and made more accessible,
potentially improving patient outcomes and overall prognosis.
Researchers anticipate that EVs will play a crucial role in the
diagnosis and treatment of a variety of diseases in the future. EVs
can carry oncogenic proteins, whichmay provide important insights
into cancer initiation, progression, risk assessment, and treatment
strategies (Wang J. et al., 2019).

3.2.1 EVs-associated proteins in TNBC diagnosis
The markers present on the surface of EVs derived from

TNBC, along with the proteins packaged within them can greatly
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help in the early estimation of an aggressive neoplasm diagnosis
(Dong et al., 2022). Various methods are available for EVs isolation
from different sources such as urine, plasma, serum, MSCs and
other body fluids, but most widely accepted are ultracentrifugation
(Giovanazzi et al., 2023). These EVs are further confirmed
by various techniques such as DLS (dynamic light scattering),
nanoparticle tracking analysis (NTA) and Electron microscopy for
their size, and Western blotting using specific EVs markers such
as tetraspapnin, CD63, and TSG and annexin IV. Furthermore,
the flow cytometry is the best methods to quantify the specific
proteins associated with EVs utilizing specific antibodies against
them (Zhang et al., 2021; Tiwari et al., 2024).

3.2.1.1 EVs associated EGFR (epidermal growth factor
receptor) in TNBC diagnosis

EGFR is a trans-membrane glycoprotein present on the cell
surface, after binding of epidermal growth factor molecule, it
initiates intracellular signaling cascades. Resulting regulates various
cellular processes including proliferation and differentiation,
thereby controlling cell growth, division and cell division
(Sabbah et al., 2020). The overexpression of EGFR has been
identified as a contributing factor in several cancers, including
TNBC (Hsu and Hung, 2016). Previous studies have revealed that
EGFR protein is found on the surface of EVs secreted by TNBC
cells, plays a crucial role in its propagation, dissemination, growth
and metastasis (St-Denis-Bissonnette et al., 2022), and it utilizes
various methods to carry out these functions (Zakaria et al., 2019).
For instance, EVs displaying EGFR transfer EGFR to immune cells,
such as dendritic cells. As a result, dendritic cells become activated
and start producing pro-inflammatory cytokines. Consequently,
this leads to the growth and metastasis of tumor cells (Frawley and
Piskareva, 2020). It also participates actively in cell proliferation
by triggering crucial pathways such as EGFR, Ras-Raf-MAPK,
and PI3K-Akt pathways. It can facilitate the degradation of the
extracellular matrix by promoting matrix metalloproteinases
(MMPs), resultingmetastasis. Additionally, involved in angiogenesis
and resistance to therapy (Dey et al., 2022). The varied functions of
EGFR confer its strong potential for clinical translation in both
discernment and therapeutic interventions for TNBC (Figure 2).

3.2.1.2 EVs associated CSF 1 (colony-stimulating factor 1)
in TNBC diagnosis

The EVs associated protein CSF-1 have pivotal role in recruiting
and polarizing tumor-associated macrophages (TAMs). CSF-1 can
significantly enhance the tumor growth, invasion, and metastasis,
that is key factor for TNBC development (Cannarile et al., 2017).
For this, CSF-1 behaves like a cytokine. It binds to its receptor,
colony-stimulating factor 1 receptor (CSF1R), which is present on
the surface of TAMs. This interaction triggers specific signaling
transduction, leading to the recruitment anddifferentiation ofTAMs
(Muñoz-Garcia et al., 2021). CSF-1 and TAMs are prominently
present in the case of TNBC, contributing to tumor progression
and creating an environment characterized by immunosuppression
and pro-tumorigenic factors (Baig et al., 2020). consequently, CSF-
1 can play a importent role as a crucial biomarker in the diagnosis
of TNBC, which will be highly valuable in its therapeutic approach
(Kuemmel et al., 2022) (Figure 2).

3.2.1.3 EVs associated CCL5 (chemokine ligand 5) in
TNBC diagnosis

CCL5 is also identify as RANTES, and its key function is to
attract immune cells such as T cells, B cells, and natural killer
(NK) cells (Mgrditchian et al., 2017). It interacts with TME-derived
EVs, and has been associated with poor prognosis in numerous
types of neoplasm, including TNBC (St-Denis-Bissonnette et al.,
2022). In TNBC, CCL5 attracts immune cells that participate
in suppressing the immune response, such as myeloid-derived
suppressor cells (MDSCs), which inhibit the activity of T cells
and NK cells (Weber et al., 2021). Additionally CCL5 promote
the growth of CAFs, that is responsible for tumor growth and
metastasis (Mao et al., 2021). CCL5 has the ability to induce the
formation of angiogenesis cells, which are necessary for tumor
growth, nourishment, and dissemination, and it attracts endothelial
cells, the lining cells of blood vessels, to carry out this function
(Do et al., 2020). In a study conducted on rats with TNBC,
it was observed that if CCL5 is blocked using antibodies can
significantly reduce tumor metastasis, and it was also observed that
the number of T cells and NK cells increased significantly. CCL5
emerges as a potential predictive biomarker for assessing the risk of
pathology recurrence in TNBC patients. Empirical investigation has
demonstrated a significant association between elevatedCCL5 levels
in tumor specimens and an augmented susceptibility to neoplasm
relapse within a 5-year period following therapeutic intervention
(Figure 2).

3.2.1.4 EVs associated cluster of differentiation 24 (CD24)
in TNBC diagnosis

The GPI-anchored protein CD24-EVs are identified in various
biological fluids of cancer patients and serve as a marker of EVs.
IHC showed that CD24+ EVs were detected in the serum of
melanoma patients and BC, and it is also known as the heat-
stable antigen CD24 (Gilliam et al., 2017). CD24 is an extremely
small cell surface protein characterized by extensive glycosylation
and its linkage to the glycosylphosphatidylinositol on the cell
surface (Altevogt et al., 2021). It finds expression in various cells,
including B cells, T cells, neutrophils, and epithelial cells, among
others (Altevogt et al., 2021). Its primary function is to take
responsibility for various cellular processes such as cell adhesion,
migration, differentiation, and apoptosis (Shirmohamadi et al.,
2020). CD24 also plays a crucial role in the tumor growth, cellular
proliferation, epithelial-mesenchymal transition, angiogenesis,
invasion, metastasis, promoting Immune invasion and acquisition
of drug resistance in TNBC (Altevogt et al., 2021). It behaves
like an anti-phagocytic surface protein and sends a “do not eat
me” signal to immune cells like macrophages, discouraging them
from attacking or engulfing the tumor cells (Barkal et al., 2019).
Along with that, it interacts with Siglec-10 protein present on the
surface of macrophages that exhibits resistant to tumor cells. This
interaction significantly reduces CD24’s inhibitory capacity against
tumors, Subsequently impairing the ability of immune system to
combat tumors (Zhao et al., 2023). Moreover, CD24 is found to be
overproduced in pathologically stem cells (CSCs), highly specific
cells within tumors with the ability to self-renew and initiate tumor
growth (Liu et al., 2014). As per findings from investigations
in TNBC, CD24 emerges as a highly potential promising
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FIGURE 2
This figure shows the role of EV-associated proteins in TNBC progression through various molecular interactions: 1. EGFR-EVs: promoting tumour
growth and metastasis through dendritic cells and cytokines. EGFR activates the PI3K-AKT pathway, upregulating matrix metalloproteinases (MMPs),
leading to tumour invasion, metastasis, and angiogenesis. Additionally, EGFR also activates the Ras/MAPK pathway, increasing MMP activity, resulting in
ECM degradation and tumour progression. 2. CSF1-EVs: target tumour-associated macrophages (TAMs), stimulating their activity and enhancing
tumour progression. 3. CCL5-EVs enhance the function of MDSCs and CAFs. MDSCs suppress T cell/NK cell activity, leading to immune evasion, while
CAFs promote angiogenesis. 4. CD24-EVs: Suppress immune response by interacting with Siglec-10 on macrophages, thereby helping TNBC cells
escape immune surveillance. 5. ADAM10-EVs: Regulate cell proliferation and adhesion by targeting Notch-1 and CD44 receptors, which contribute to
tumour progression. 6. Cofilin-1-EV: Enhances tumour metastasis, further increasing the aggressiveness of TNBC.

biomarker, given its crucial role in the disease (Chan et al., 2019)
(Figure 2).

3.2.1.5 EVs associated ADAM10 in TNBC diagnosis
ADAM10 that is member of Metalloproteinase (ADAM) and

disintegrin family (Matthews et al., 2017), exhibits expression
in various tissues. It is a multifaceted enzyme that can cleave
verity of proteins, including cell surface receptors, extracellular
matrix proteins, and other ADAMs (Shimoda et al., 2021).
ADAM10 have pivotal role in the etiology of diverse disease,
including TNBC (Cheng et al., 2021). EVs associated ADAM10
can initiate the activation of Notch signaling transduction by
inducing the expression of the Notch1 receptor (Alabi et al.,
2021), a process associated with cellular proliferation, enhancing
migratory potential. In addition, it also increases the expression
of CD44 receptor, which significantly contributes to cell adhesion
and invasion. Due to the significant increase in CD44 expression
in TNBC, the disease spreads to different body parts (Alabi et al.,
2021; Cheng et al., 2021). ADAM10-EVs confer resistance to
therapeutic interventions, such as chemotherapy in tumors cells
(Tan et al., 2018) (Figure 2).

3.2.1.6 EVs associated Cofilin-1 in TNBC diagnosis
Cofilin family protein like Cofilin-1, is responsible for

cell motility and actin depolymerization (Tahtamouni et al.,
2022). Its crucial role in various types of disease has been
well-documented, with particularly elevated expression levels
observed in EVs released from TNBC (Howard et al., 2022).
The actin protein is fundamentally essential for cellular motility
and cytoplasmic spreading, with its regulation primarily under
the control of Cofilin-1 (Sousa-Squiavinato et al., 2019). In the
context of TNBC, the overexpression of Cofilin-1 assumes a
critical function in facilitating tumor infiltration and metastatic
dissemination (Howard et al., 2022). Cofilin-1 promotes metastasis
in TNBC by aiding actin-rich filopodia (Aseervatham, 2020).
Filopodia a finger-like projections that extend from the surface
of cells and have the ability to adhere to their surrounding
environment (Jarsch et al., 2020). Cofilin-1 promotes tumor
cell spread by weakening cell connections, enabling them to
break away from the primary tumor (Zhang et al., 2018).
Additionally, it also helps cancer cells survival by preventing
apoptosis, as higher level of cofilin-1 have been linked to
resistance against chemotherapy and radiation therapy, both of
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which rely on apoptosis to kill cancer cells (Chen et al., 2020;
Howard et al., 2022) (Figure 2).

3.2.1.7 EVs associated non-coding RNAs in TNBC
diagnosis

Non-Coding RNAs (ncRNAs) derived through EVs, such as
miRNA, lncRNA, and circRNA, have been extensively studied in
the context of various tumors. miRNA, renowned for its versatility
and multifaceted regulatory roles in various cellular processes,
including cell signaling, homeostasis, and cell fate. It can also
function as tumor suppressors or oncogenes for this purpose
(Rupaimoole and Slack, 2017). The search for reliable tools for
diagnosing different subtypes of BC at themolecular level has always
been the focus of research efforts. miRNA has emerged as highly
capable of achieving accurate diagnosis (Yang et al., 2019). Several
studies have indicated that by analyzing the expression patterns
of different miRNAs, can distinguish between BC samples and
normal tissues, as well as differentiate TNBC from other types of
clinical BC (Sabit et al., 2021).

The researchers examined plasma EVs of TNBC patients
and healthy individuals, identifying 20 upregulated and 34
downregulated miRNAs in these EVs compared to healthy controls.
Among the upregulated miRNAs, miR-150-5p and miR-4665-
5p demonstrated the ability to differentiate TNBC patients who
respond positively to therapy and those who do not. This discovery
has led scientists to believe that this could be an unprecedentedly
valuable tool for the diagnosis and potential management of TNBC
(Ozawa et al., 2020). In a study, the researchers identified four
EV-associated miRNAs: miR-142-5p, miR-150-5p, miR-320a, and
miR-4433b-5p. After analyzing these miRNAs, they created a
miRNA profile consisting of miR-142-5p, miR-320a, and miR-
4433b-5p, which could differentiate between TNBC patients and
healthy individuals. The sensitivity of this profile was 93.33%, and
the specificitywas 68.75%.moreover, the reduced expression ofmiR-
142-5p and miR-150-5p in patients indicated a high advanced stage
of tumor classification (Carvalho et al., 2022). In clinical practice,
multiple studies have unveiled insights into the utility of serum
EV-miRNA as a targeted indicator to predict the efficacy of diverse
prevention strategies in TNBC. Such studies shed light on the pivotal
clinical application of EV-miRNAs as specific biomarkers. One
such investigation was conducted during a randomized phase II
neoadjuvant trial known as Geparsixto (Stevic et al., 2018).

Long non-coding RNAs (lncRNAs) are important and specific
components of the genetic program that modulate tumor cells and
can influence their characteristics, exhibiting role in mediating
tumor initiation and progression (Hu Q. et al., 2020). The
lncRNA transcript panel exhibits an association with normal
breast tissue, TNBC, and its subtypes. Through comprehensive
analysis of transcriptome, molecular classification of BC becomes
possible. Thereby, facilitating the identification and diagnosis
of specific molecular signatures exclusively related to TNBC
(Rodríguez Bautista et al., 2018). SUMO1P3 is a type of lncRNA
that exhibits peculiar behavior in various cancer types, especially
when found in high amounts in blood-derived EVs. It is strongly
associated with negative prognosis and ineffective treatment
outcomes in TNBC patients compared to individuals without
disease or those in good health (Hu et al., 2021). In a recent
study, it has been elucidated that the expression level of exosome

lncRNA XIST decreases significantly after surgical resection of
the primary breast tumor. However, upon the recurrence of BC,
a notable and statistically significant elevation in the expression
level of exosomal lncRNA XIST is observed. Consequently, EVs
lncRNA XIST holds promise as a robust biomarker for patients
with recurrent TNBC. Especially, this predictive ability remains
independent of confounding variables associated with the patient’s
clinical and pathological condition (Lan et al., 2021).

3.3 Role of artificial intelligence (AI) in
TNBC diagnoses

AI, especially with advances in deep learning (DL), a subset
of machine learning (ML), has made significant contributions
to addressing various clinical challenges in oncology, including
tumor diagnosis, intervention, and prognosis. DL has the ability
to automatically extract big data and process it, which has
revolutionized areas such as image classification, neural language
processing, and audio/video analysis. AI application in medical
imaging has made diagnosis more accurate while reducing false
positives, demonstrating its transformative potential in improving
healthcare outcomes (Liao et al., 2023). DL exhibited significant
success in the diagnosis of various types of pathology, like liver,
colorectal, prostate, and BC, by using latest imaging modalities such
as MRI, mammography, ultrasound (US), computed tomography
(CT), and positron emission tomography-CT (PET-CT), DL plays
an important role in increasing diagnostic accuracy and reliability,
thereby improving oncology care and improving patient outcomes.

Firstly, any effective therapeutic approach for TNBC pathology,
early screening and diagnosis is essential. While MRI is potential
to effectively differentiate between TNBC subtypes, but there is a
need to determine its various stages. Prognostic challenges arise
due to heterogeneous predictive biomarkers, making predictions
more complex. AI has significantly improved TNBC diagnosis at
all stages through advanced algorithms, increasing both accuracy
and efficiency. Integrating AI into screening programs has led to
substantial improvements in clinical outcomes (Batool et al., 2024). AI
integrationwithspectroscopictechniquessuchasRamanspectroscopy
has significantly increased TNBCprediction accuracy, achieving rates
up to 96.7% (Leithner et al., 2020). InTNBCpathology, need to critical
diagnostic biomarkers to guide immunotherapy and prognosis. AI
has proven to be a valuable tool in this domain. In a recent study
by Li et al. developed an immune infiltration cell (IIC)-associated
signature (MLIIC) for TNBC using transcriptomic data from purified
immune cells, TNBC cell lines, and patient samples, as well as 25
machine learning algorithms including Boruta, LaSolR, SVM, and
XGBoost. The results identified IIC-related RNAs (IIC-RNAs) using
the tumor-stroma index (TSI), which displayed different expression
patterns—upregulation in immune cells and downregulation in
TNBC cells. The MLIIC signature demonstrated strong predictive
value, correlating with survival outcomes. Its significance was
further validated through immunofluorescent staining, confirming its
potential as a reliable biomarker for TNBC prognosis (Li et al., 2023).
As mentioned earlier, lack of these receptors (ER, PR, and HER2)
renders many standard treatments ineffective. AI has the potential
to use molecular and genetic data to identify therapeutic targets
and predict strategy responses. Its integration could significantly
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enhance precision medicine approaches and improve treatment
outcomes in all TNBC stages (Tsou et al., 2020). Similarly, the ML
algorithm IDtrax holds promising potential in identifying specific
therapeutic targets for TNBC, enabling targeted drug development
and personalized therapy. Additionally, it is able to predict effective
inhibitors (Gautam et al., 2019).

3.4 EVs in developing drug resistance in
TNBC

3.4.1 EVs role in resistance to EGFR targeted
therapy for TNBC

TNBC cells secrete a multitude of cargo components within
EVs, which play a significant role in conferring drug resistance in
TNBC. These cargo components encompass drug efflux-promoting
proteins, oncogenic molecule, and biomolecule capable of
modulating signaling pathways (Maleki et al., 2021). Notably, TNBC
exhibits significantly high expression of EGFR (Zoeller et al., 2020),
and these tumors inherently possess resistance to EGFR inhibitors
(EGFRi), EVs also play crucial role for this like EVs encapsulated
EGFR are protected from the inhibitory effect of EGFRI, such as
Erlotinib, Gefitinib (reversible inhibitors), Afatinib (irreversible
inhibitor), Bendamustine and osimertinib. Additionally, the transfer
of EGFR through TNBC-EVs can activate signaling pathways
in recipient TNBC cells, leading to resistance against EGFRi.
Overcoming EGFRi resistance may be an alternative option for
the management of TNBC (Costa et al., 2017; Hung et al., 2019).

TNBC is primarily managed through systemic chemotherapy,
which remains the mainstay of treatment (Luo et al., 2022). One
of the highly efficacious drugs used in TNBC is Gemcitabine, also
referred to as dFdC (2′,2′-difluorodeoxycytidine) (Zhao et al., 2020).
Gemcitabine demonstrates notable effectiveness specifically in TNBC
patients who have previously undergone regimen with anthracyclines
and taxanes (Li et al., 2021). In cases of metastatic TNBC, the
combined administration of platinum-based agents and gemcitabine
provides substantial benefits (Pandy et al., 2019).Theutilizationof this
combination therapy demonstrates significant efficacy in managing
TNBC metastasis. However, TNBC cells exhibit remarkable capacity
to develop rapid and efficient drug resistance (Zhang et al., 2022).
Extensive research has revealed that these drug-resistant TNBC cells
possess the capability to transfer their resistance to sensitive cells
via EVs. This phenomenon allows the transmission of acquired drug
resistance within the TNBC cellular population (Xavier et al., 2022).
TNBC cells that have developed resistance to gemcitabine exhibit
heightened expression levels of Annexin A6 (ANXA6) within both
the cellular and EV compartments (Yi, 2023). ANXA6, functioning as
a calcium-dependent membrane-binding protein, imparts resistance
to multiple drug classes used in TNBC therapy (Noreen et al., 2020).
Mechanistically, ANXA6 engages in interactions with EGFR and
impedes the ubiquitin-proteasome pathway, thereby facilitating the
accumulation of active EGFR and fostering tumor proliferation and
dissemination (Li et al., 2021). Lapatinib, a bivalent inhibitor targeting
both Vesicle-associated Proteins in TNBC and HER2, exhibits the
capacity to counteract the resistance mediated by EVs ANXA6 (EV-
ANXA6). Moreover, the circulating ANXA6 levels in the serum of
TNBCpatients serve as prognostic indicators for the responsiveness to
gemcitabine-based chemotherapy. As previously stated, monotherapy

with EGFR inhibitors proves inadequate for TNBC treatment due to
the inherent resistance to EGFRi (Yi, 2023) (Figure 3).

3.4.2 EVs role in resistance to human epidermal
growth factor receptor 2 (HER2)-targeted
therapy in TNBC

The persistent over-expression of HER2 in BC instances
has posed an enduring and significant prognostic dilemma
(Lee et al., 2015). However, the advent of targeted therapies aimed
at HER2 has led to remarkable achievements in the effective
management of BC (Simmons et al., 2022). Trastuzumab, as
the initial monoclonal antibody targeting HER-2, has gained
approval for the remedy of HER2-positive BC, imparting significant
enhancements to long-term survival and disease-free maintenance
(Jagosky and Tan, 2021). Nevertheless, despite the promising initial
outcomes, studies have shown that resistance to HER2-targeted
drugs develops in the majority of patients after approximately
1 year of therapeutic approach (Derakhshani et al., 2020).
Several studies have demonstrated that EVs exhibit interference
with the efficacious functioning of trastuzumab, resulting in
neutralization of its effects. EVs were obtained from SK-BR-3
and BT-474 cell lines, which revealed substantial upregulation
of HER2 expression within these EVs. Similar findings were
observed in experimental analyses involving samples from BC
patients, which also revealed a significant abundance of HER2
(Dong et al., 2020).

In a study conducted by Martinez et al., it was discovered
that HER2-targeted drugs, which eventually develop resistance in
HER2-negative cells are modulated by two pivotal biomolecules:
transforming growth factor beta 1 (TGF-β1) and programmed
death-ligand 1 (PD-L1). Notably, the researchers observed the
transfer of TGF-β1 and PD-L1 from resistant cells to sensitive
cells via EVs. This process plays a critical role, and these
transferred molecules exert an inducible effect, causing the
acquisition of characteristics exhibited by the source cells within the
sensitive cells (Martinez et al., 2017).The levels of TGF-β1 associated
with EVs are related to the response of patients with HER2+ BC
to HER2- targeted strategy, suggesting TGF-β1 could potentially be
used as a biomarker to assess the management effectiveness.

Dysregulation of non-coding RNAs also plays a crucial role in
developing resistance to trastuzumab in BC (Singh et al., 2022).
Trastuzumab-resistant cells exhibit the release of EVs containing a
specific long non-coding RNA known as SNHG14. This SNHG14
RNA molecule, in turn, induces resistance to trastuzumab by
impeding the process of cell apoptosis through themodulation of the
B cell leukemia/lymphoma 2 (BCL-2)/Bcl-2-associated X pathway
(Lampropoulou et al., 2022). Moreover, a notable observation
reveals significantly elevated expression of SNHG14 in trastuzumab-
resistant cells, while its expression remainsminimal in cells sensitive
to trastuzumab (Shen et al., 2021). Similarly, the lncRNA, i.e.,
AGAP2-AS1 has the potential to induce resistance to trastuzumab
in BC cells (Zheng et al., 2019). The protein heterogeneous nuclear
ribonucleoprotein (A2/B1) hnRNPA2B1 is implicated in the process
of packaging lncRNA AGAP2-AS1 into exosomes (Zheng et al.,
2019). However, as of now, comprehensive information about the
precise molecular mechanisms by which this resistance is conferred
remains elusive. Further investigations are required to elucidate
the underlying mechanisms responsible for the development of
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FIGURE 3
EVs derived from TNBC cells line can transfer various biomolecules to recipient cells, thereby modulated their biological functions. 1. EVs carrying
EGFR contribute to drug resistance in recipient cells. ANXA6-containing EVs inhibit the ubiquitin-proteasome pathway, leading to EGFR-mediated
tumour growth and proliferation. 2. EVs secreted by SK-BR-3 and BT-474 cell lines transport bioactive molecules such as TGF-beta, PD-L1, lncRNA
AGAP2 and SNHG14, which promote tumour growth and resistance to trastuzumab. 3. miR-770 derived from THP1 cells enhances apoptosis and
counteracts drug resistance. VEGF-derived siRNA and let-7 miRNA target AS1411, which inhibits nucleolin proteins, thereby increasing drug sensitivity.
Let-7a miRNA, when loaded into EVs and introduced into TNBC HCC70 cells, was tested in Rag2−/− mice resulting Let-7a miRNA suppresses tumor
growth by blocking the EGFR signaling pathway. 4. EVs from Hs578Ts cells carrying miR-134 reduce metastasis by inhibiting HSP90 activity, increase
sensitivity to cisplatin, vincristine, and 5-fluorouracil, and inhibit tumor cell proliferation.

trastuzumab resistancemediated by exosomal lncRNAAGAP2-AS1
in BC cells (Dong et al., 2020) (Figure 3).

3.4.3 Role of EVs-associated miRNA in drug
resistance

The miRNAs found in TNBC-EVs can cause drug resistance
by influencing several processes (Li et al., 2020). A crucial
protein called Protease-activated receptor 2 (PAR2) plays a role
in producing and releasing EVs (Sung et al., 2019), and these
EVs, through various signaling pathways like the AKT/NF-
κB pathway, can transform normal cells into malignant cells.
Moreover, these EVs carry specific miRNAs, such as miR-
221, which regulate gene expression by reducing the mRNA
expression of phosphatase and tensin homolog (PTEN) through
targeting their 3′-untranslated region (3′-UTR) (Yi, 2023).
The sEVs derived from MDA-MB-231 cells induce cellular
resistance against Cisplatin, a chemotherapeutic agent used in
the intervention of TNBC (Wang B. et al., 2019). Cisplatin exerts
its cytotoxic effect by forming covalent cross-links between
adjacent DNA strands, thereby inhibiting the process of DNA

replication and transcription, ultimately triggers apoptosis
(Tchounwou et al., 2021).

3.5 EVs in TNBC treatment

Recent advancement in targeted therapy and immunotherapy
are playing an important role in the management of TNBC, such
as inhibitors of key pathways (PI3K/AKT/mTOR and Notch), as
well as immune checkpoint inhibitors like pembrolizumab. These
approaches offer promising strategies for personalized therapeutic
approach of TNBC patients. Such precise targeting is helpful in
improving TNBC management and guiding future therapeutic
approaches (Zhu et al., 2023). EVs play a key role in TNBC
management (Brena et al., 2022). They contribute to drug resistance
through paracrine signaling to nearby cells or by affecting the
whole body, thereby hindering satisfactory treatment outcomes
(Xavier et al., 2022). EVs also play a role in developing and
strengthening new drug resistance (Grimaldi et al., 2023). However,
they possess essential qualities such as specific targeting, immune
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compatibility, low toxicity, and a protective layer, making them an
excellent option for delivering diverse drugs or biological molecules
to treat tumor (Khosravi et al., 2022). In a research investigation on
exosomes derived fromTHP-1 cells, the presence of the biomolecule
miR-770 was identified (Liu J. et al., 2021). It was observed thatmiR-
770 plays a role in promoting apoptosis and reducing chemotherapy
resistance miR-770 targets STMN1 to enhance chemo-sensitivity
and suppress metastasis. To explore the underlying molecular
machinist Y. Li et al. using three bioinformatics tools—TargetScan,
miRDB, and PICTAR5—identified predicted binding sites for miR-
770 at positions 54–60, 267–273, and 409–415 in the 3′ UTR
region of the STMN1 gene. Additionally, clinical evidence indicated
a positive correlation between elevated miR-770 expression in
cells or tissues and a notable enhancement in drug sensitivity.
Consequently, these findings propose the potential utility of
exosomal miR-770 as a promising therapeutic target or a prognostic
indicator for TNBC (Li et al., 2018).

Experiments employing siRNA-loaded EVs have revealed
their critical importance in post-translational processes, gene
silencing and provoking apoptotic cell death in various cancer
cell lines (Zhang et al., 2015). Macrophage-derived EVs (Mφ-
EVs) are modified using VEGF-siRNA and let-7 miRNA, which
target the nucleolin protein (Boimel et al., 2012), nucleolin
that plays various roles in the cell, including in the regulation
of gene expression, cell proliferation, and tumor development
(Burbano De Lara et al., 2021). For this purpose, the DNA aptamer
AS1411 (a specific DNA aptamer, a short single-stranded DNA
molecule) is used, which has the ability to bind nucleolin with high
affinity. The binding of AS1411 to nucleolin interferes nucleolin’s
function, and provides inhibition of tumor growth in MDA-
MB-231 (Wang et al., 2017; Brenske et al., 2023). CXCL12 have
crucial role in breast cancer progression by promoting invasion,
angiogenesis and immune system modulation. It can affect the
TMEby recruiting immunosuppressivemacrophages and increasing
microvessel density, which supports tumour expansion. Targeting
the CXCL12-CXCR4 pathway could be a potential therapeutic
strategy for the treatment of breast cancer (Boimel et al., 2012).
Another experiment was conducted for the TNBC cell line MDA-
MB-231, in which EVs derived from the bone marrow stroma
were loaded with several miRNAs, such as miR-127, miR-197, miR-
222, and miR-223. These miR targets CXCL12 resulting arrested
proliferation in this cell line (Lim et al., 2011). Let-7a miRNA was
packed into EVs derived fromHEK293 cells and introduced into the
TNBCHCC70 cell line. Subsequently,HCC70 cells were successfully
implanted into Rag2−/− mice. As a result, it was observed that let-
7a miRNA inhibits tumor growth by interfering with the EGFR
signaling pathway (Zhou et al., 2014) (Table 2). Previous studies
showed that Mesenchymal Stromal/Stem Cell-derived EVs (MSC-
EVs) have therapeutic potential for various diseases. Shojaei et al.
found that packing miR-381 into MSC-EVs and co-culturing with
MDA-MB-231 TNBC cells reduced metastatic capabilities. miR-381
downregulated key transcription factors (Twist and Snail) associated
with the Wnt signaling pathway and EMT (Shojaei et al., 2021).
NK cells and CD8+ T-cells (CTL) are have capacity to detect and
kill maligned cells. However, their ability to penetrate deep into
tumors is limited. EVs derived fromNK cells or CTLs can effectively
penetrate solid tumors andhelp overcome this challenge. TNBCcells

often express PD-L1, while its receptor PD-1 is present on tumor-
infiltrating lymphocytes (TILs). The interaction between PD-L1 and
PD-1 not only attenuates TIL proliferation but also leads to TIL
apoptosis, which contributes to the immune evasion mechanism of
TNBC. Sthudy shown that PD-1+ EVs released by TILs interact
with either the cell surface or PD-L1 of EVs, thereby preventing
the interaction between TILs and TNBC cells. As a result, PD-L1-
induced suppression of TIL activity is reduced, ultimately increasing
the ability of TILs to kill TNBC cells (Das K. et al., 2023) (Table 2).

3.6 Role of EVs in overcome drug
resistance

Engineered EVs as drug carriers offer a promising strategy
for overcoming drug resistance in various disease intervention.
By facilitating the delivery of therapeutic agents in chemotherapy,
targeted therapy, immunotherapy, and endocrine therapy, EV-based
approaches offer potential solutions to reduce tumor recurrence and
improve clinical outcomes (Zheng et al., 2024). MiR-9 expression is
upregulated in temozolomide (TMZ)-resistant glioblastoma (GBM)
cells and involves the drug efflux transporter P-gp. Anti-miR-9 loaded
EVs is promising strategy for overcoming temozolomide resistance
in glioblastoma (Munoz et al., 2013). Thus, engineered EVs highly
effective in overcoming various types of drug resistance, such as
overcoming reduced drug uptake-induced resistance, for instance,
loading cisplatin on EVs derived from M1 and M2 macrophages
significantly facilitated drug delivery to resistant neoplasm cells
(A2780/DDP) and non-resistant cells (A2780) (Zhang et al., 2020).
Similarly, these EVs not only play crucial role in overcoming
drug inactivation-induced resistance, overcoming signaling pathway
alteration-induced resistance and overcoming apoptosis defect-
induced resistance but also, they also can overcome targeted therapy
resistance (Zheng et al., 2024). EVs also shown as promising strategy
for overcoming mutation-induced resistance, similar to overcoming
targeted therapy resistance. For example, imatinib (IM), a selective
BCR-ABL inhibitor, mutations in BCR-ABL reduce the binding
affinity to IM. Engineered EVs from BCR-ABL siRNA help overcome
targeted drug resistance in CML by inhibiting Bcr-Abl (Bellavia et al.,
2017). Additionally, various studies have highlighted that overcoming
pathway mutation-induced resistance, overcoming immunotherapy
resistance, and overcoming endocrine therapy resistance are also
effective and promising strategies for the management of TNBC.

3.7 EVs in drug delivery

Although most of cells produce EVs, among them not all
EVs are suitable for use as drug carriers. EVs that meet quality
parameters such as surface protein composition, size, yield, and
intracavitary content are considered suitable for drug delivery
applications. Various types of cells have been investigated as
potential EVs donators for drug delivery such as Dendritic cells
(DC), Mesenchymal stem cells (MSC), Macrophages, Milk, red
blood cells (RBCs), NK cell-derived EVs, etc. A study demonstrated
engineered exosomes (DEVs) could be used to deliver RNA
interference (RNAi) therapy into the brain.They used RVG-targeted
exosomes, which help deliver treatments directly to brain cells
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TABLE 2 Extracellular vesicles associated cargos and their roles in TNBC treatment.

S. N. Extracellular vesicle Source Biomolecule Function References

1. Exosomes THP-1 cells miR-770 Promoting apoptosis and
reduce resistance to
chemotherapy

Li et al. (2018)

2. Extracellular vesicle Macrophage-derived EVs
(Mφ-EVs)

VEGF-siRNA and let-7
miRNA

Inhibit tumor growth in
MDA-MB-231cell line

Brenske et al. (2023)

3. Extracellular vesicle bone marrow miR-127, miR-197, miR-222,
and miR-223

Arrested proliferation in
MDA-MB-231

Lim et al. (2011)

4. Extracellular vesicle HEK293 cells Let-7a miRNA Inhibits tumor growth by
interfering with the EGFR
signalling pathway

Zhou et al. (2014)

5. Extracellular vesicle Mesenchymal stromal cells
(MSCs)

miR-381 Reduced metastatic by
downregulated key
transcription factors Twist and
Snail

Shojaei et al. (2021)

(Meng et al., 2020). MSC-derived EVs (MEVs) exhibit similar
functions, including immune modulation, drug delivery, wound
healing, and tissue repair, and these features make them promising
candidates for therapeutic applications. Increased expression of
miR-9 is observed in temozolomide (TMZ)-resistant glioblastoma
(GBM) cells (Zhang et al., 2014). EVs have the capacity to deliver
targeted drug to specific cells or tissues (Ullah et al., 2021).
Additionally, they exhibit the ability to modulate the immune
system (Burrello et al., 2016). The utilization of EVs in drug
delivery is supported by several advantageous factors. Firstly, EVs
exhibit biocompatibility and biodegradability, thereby minimizing
potential toxic effects (Chen et al., 2021). In addition, they
possess a remarkable ability to selectively target specific cells or
tissues through the recognition of surface molecules on vesicles.
Additionally, EVs demonstrate proficiency in delivering diverse
types of drugs, encompassing small molecules, proteins, and nucleic
acids. These attributes render EVs as promising candidates for
effective and targeted drug delivery strategies (Peswani Sajnani et al.,
2021). EVs for drug delivery show promising potential in diverse
therapies. They efficiently carry chemotherapy drugs to tumor
cells, thereby enhancing cancer therapy (Meng et al., 2020). In
gene therapy, EVs deliver corrective genes that target genetic
defects and modulate the immune system to target and destroy
oncological cells. In vaccination, EVs provide antigens, inducing a
potent and specific immune response, enhancing protection against
pathogens (Mehanny et al., 2021).

Researchers have found that EVs have natural properties that
help them target specific organs in the body to some extent, and
this depends largely on the lipid composition and protein content
present on their surface (Murphy et al., 2019). For example, some
integrinsmayalter thepharmacokineticsandcause theiraccumulation
in the brain, lung, or liver, depending on the specific integrin
type (Hoshino et al., 2015). Other studies have shown that EVs
containing Tspan8 along with integrin alpha4 are more likely to
be taken up by pancreatic cells (Rana et al., 2012). In addition,
the lipid composition of EVs may also affect the way they are
absorbed, as seen with phosphatidylserine, which plays a role in their

absorption by macrophages (Matsumoto et al., 2017). Additionally,
researchers can furthermodify theEVs toenhance targeteddeliveryby
engineering producer cells using methods similar to those previously
described for cargo loading.

3.7.1 EVs suitable characteristics for drugs
delivery

EVs exhibit a lipid bilayer enveloping their entire surface,
displaying structural similarity to liposomes (van der Koog et al.,
2022). Due to their complex assemblies consisting of lipids,
proteins and other bioactive fragments, EVs exhibit exceptional
biocompatibility, facilitating pronounced targeting capabilities
towards specific cells or tissues (Mathieu et al., 2019). EVs can
be bioengineered to contain therapeutic molecules using various
technological approaches, including drug incorporation during their
biogenesis or post-loading strategies (Song et al., 2022). EVs have
intrinsic targeting capabilities due to specific proteins displayed on
their surface,which facilitate interactionwith target cells or tissues and
facilitate precise cargo delivery to the designated site (van Niel et al.,
2022).EVshave thenaturalability toefficientlyandeffectivelyestablish
themselves inspecificcellsandtissueswithinthebody(Al-Jipourietal.,
2023). This innate feature enables them to easily cross biological
barriers and reach the intended destination easily. As a result, using
EVs as carriers for drug delivery greatly simplifies the process, thereby
increasing the accuracy and efficacy of drug delivery (Al-Jipouri et al.,
2023). As a result, therapeutic agents transported via EVs exhibit
enhanced effectiveness and efficiency in their pharmacological actions
(van der Meel et al., 2014). EVs exhibit cargo protection capabilities
by safeguarding their transported payload from diverse enzymatic
and intracellular components, which pose potential risks of cargo
degradation (Bahmani and Ullah, 2022). Additionally, the utilization
of autologous EVs, which refer to EVs obtained from the patient’s own
cells, has the potential to enhance the safety profile of medicines and
mitigate the toxicity associated with drug delivery (Elsharkasy et al.,
2020).This is attributed to their capacity to reduce immune responses.
The utilization of autologous EVs offers a secure and less hazardous
approach to drug delivery, particularly for patients susceptible to
intense immune reactions or adverse effects (Elsharkasy et al., 2020).
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Researchers and medical professionals are actively investigating this
avenue,as itholdspromise for introducinganovelandefficientmethod
of drug administration.

3.7.2 EVs as a delivery vehicle for chemotherapy
drugs and biomolecule

Paclitaxel is a chemotherapeutic agent with significant
therapeutic implications for various pathology, including breast,
lung, and ovarian cancer (Meng et al., 2020). Its primary mode
of action involves stabilizing microtubules, which play a critical
role in chromosome organization during cell division. Upon
binding to microtubules, Paclitaxel impedes their breakdown,
resulting in the inhibition of cell division (Honore et al., 2004).
Notably, paclitaxel induces apoptosis by activating specific signaling
pathways, particularly the p53 pathway, which is responsible for the
detection and repair of DNA damage (Ganansia-Leymarie et al.,
2003; Kulaberoglu et al., 2021). Additionally, paclitaxel triggers
the caspase cascade, which results in DNA fragmentation and
degradation of cellular organelles. Despite its efficacy, conventional
administration of paclitaxel is associated with unwanted side effects
and limited therapeutic benefits (Basu et al., 2020). Encouragingly,
preclinical investigations utilizing Paclitaxel-loaded EVs have
shown promising outcomes, demonstrating enhanced drug delivery,
reduced systemic toxicity, and improved anti-tumor activity
(Meng et al., 2020).

A recent study by Xiao Hu and colleagues involved the
use of micro-particles to deliver the chemotherapeutic agent
paclitaxel (MP-PTX) in combination with radiotherapy for treating
TNBC. The experiment demonstrated that targeted delivery
of MP-PTX increased absorption, enhancing its ability to kill
tumor cells. The combination of MP-PTX and radiotherapy
resulted in a synergistic antitumor effect by inhibiting tumor
cell proliferation, promoting apoptosis, and reducing the tumor’s
immunosuppressive microenvironment. Using MP-PTX and
radiotherapy together had a more significant impact on combating
TNBC than using them individually(Hu et al., 2023). Another
study was conducted by Haney and colleagues, in which they
performed experiments using mouse models to treat pulmonary
metastasis. They loaded EVs with PTX (EV-PTX) and Doxorubicin
(EV-Dox), which effectively targeted malignant cells and showed
strong anticancer efficacy in the mouse model of pulmonary
metastasis. Subsequently, they developed novel EV-based drug
formulations using optimized loading procedures, including
variations in pH, temperature, and sonication. These formulations
demonstrated high drug loading and efficient accumulation in
TNBC cells during in vitro testing, indicating a significant anti-
proliferation effect of drug-loaded EVs. In vivo experiments
targeting TNBC in both immune competent and Athymic nu/nu
mice resulted in the successful suppression of tumor growth
(Haney et al., 2020).

In their research, Gong and colleagues unveiled the presence
of A15-Exos, an exosomes containing biomolecules, including
disintegrin and metalloproteinase 15, localized on its surface.
A15-Exos exhibits the ability to transport DOX and miR-159,
thereby targeting TNBC. This combination demonstrates efficacy
in treating TNBC by down-regulating the expression of TCF-7
(Gong et al., 2019), a gene promoter involved in cell proliferation,
invasion, andmetastasis. Moreover, it also suppresses the expression

of genes related to cell death, leading to an effective TNBC
management without causing adverse effects (Lu et al., 2021). As
previouslymentionmodifying the surface of exosomes using several
engineering technologies significantly increases drug delivery
efficiency, like the CD47-targeted RS17 peptide was encapsulated
into liposomes containing the chemotherapeutic agent shikonin,
photosensitizer IR820, and immunomodulator poly-metformin for
the regimen of BC (Kim et al., 2024). Chlorine E6 (CE6), an FDA-
approved photosensitizer, offers a promising approach for targeted
pathology treatment in photodynamic therapy (PDT). Integrating
Ce6 with 18F-FDG in goat milk-derived exosomes significantly
increased the efficacy and accuracy of PDT in BC (Guo et al., 2023).
Similarly, TPP-CE6-engineered exosomes were used to load the
cancer-specific chemotherapeutic agent pipelongumin (PL). After
ultrasonic irradiation, TPP-Ce6-PL-loaded exosomes shows the
strongest anticancer effect (Nguyen Cao et al., 2023) (Table 3).

In a subsequent investigation Lou and his team isolated
exosomes from mesenchymal stem cells obtained from adipose
tissues (AMSCs). They modified these exosomes with the
biomolecule miR-199a (AMSC-Exo-199a) and administered them
to patients with hepatocellular carcinoma. As a result, it was
observed that these modified exosomes significantly sensitized
disease cells to the DOX drug, thereby targeting the mTOR
pathway (Lou et al., 2020). The mTOR pathway is linked to
various poor prognostic factors, including increased tumor size,
lymphnode metastasis, and shorter survival (Wu et al., 2021)
(Table 3).

4 Limitation of extracellular vesicle in
TNBC

The diversity of EVs and their presence in various types of
diseases has captivated the scientific community. However, their
application is currently constrained by issues related to cargo
delivery, biological barriers, and clinical translation. Researchers
have been actively engaged in addressing these limitations of EVs
and are diligently working towards harnessing their substantial
potential as a powerful tool in the management of TNBC. One
important reason for the failure of TNBC management is the lack of
a specific molecular target that can be focused on (Maqbool et al.,
2022). On the other hand, EVs have been explored as a crucial
biomarker and prognostic tool for TNBC (Dong et al., 2022).
However, recognizing a specific target of TNBC is currently
a challenge in order to deliver therapeutic cargo through EVs
(Haney et al., 2020). Additional off targeting a major challenge,
because EVs membranes are enriched with receptors or ligands that
interact with target cells, providing them with inherent targeting
missions. But most natural therapeutic EVs suffer the fate of being
cleared by macrophages, resulting EVs often become off target
and fail to reach their destination. Therefore, it is necessary to
reduce this off-target effect to improve the bioavailability of target
tissues. Despite EV-based drug delivery is now a breakthrough for
clinical pathology. Methods such as incubation provide a simple
and non-disruptive approach to loading drugs into EVs. However,
limited drug-loading capacity remains a significant drawback
(Gangadaran and Ahn, 2020).
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TABLE 3 Extracellular Vesicles deliver chemotherapy drugs and biomolecule and its various effect on different target cells.

EVs Drugs and biomolecule Target cells Effect References

Micro-particles Paclitaxel (PTX) MCF-7 PTX increased absorption, enhancing its ability
to kill cancer cells. Inhibiting tumor cell
proliferation, promoting apoptosis, and reducing
the tumour’s immunosuppressive
microenvironment

Hu et al. (2023)

A15-Exo Doxorubicin and miR-159 MDA-MB-231 Down-regulating the expression of TCF-7,
resulting cell proliferation, invasion, and
metastasis

Gong et al. (2019)

AMSC-Exo miR-199a Sensitized cancer cells to the DOX drug and
target the m-TOR pathway resulting reduce
tumor size, lymph node metastasis.

Wu et al. (2021)

miR-134- EVs miR-134 Reduced STAT5B and Hsp90, reduced cellular
migration and invasion, and enhanced sensitivity
to anti-Hsp90 drugs

O’Brien et al. (2015)

HER2+ EVs Anti-HER2 antibodies and paclitaxel Reducing side effects and increasing the
effectiveness of the treatment

Quinn et al. (2021)

ADSC-exosomes miR-381 MDA-MB-231 cells Inhibited proliferation, migration, and invasion
by altering EMT-related gene expression

Dong et al. (2022)

The low toxicity, immune tolerance and long half-life of
EVs has been a boon in the medical field. However, their
slow secretion remains a major obstacle to clinical applications.
Over the past decades, there has been an emphasis on large-
scale EV production using physical, chemical, and environmental
stimulation methods. However, none of these approaches have been
successful enough to be widely adopted for clinical applications
(Hahm et al., 2021). Among the many challenges, some of
these like Complexities in isolating EVs from various biological
mixtures arise from their inherent heterogeneity in their size,
shape and composition (Ding et al., 2021). This challenge is
further compounded by variation in EVs secretion rates from
biological source and different cell types, which can reduce yields
and limit sample size, hindering thorough analysis (Dong et al.,
2022). Maintaining the functional behavior of EVs remains a
major challenge. EVs obtained from MSCs or other parts of
the body remain stable and viable for long periods at −80°C,
but freezing and thawing can lead to clustering. Storage and
transportation at low temperatures may reduce the translational
activity of EVs. This drawback can be overcome by using
freeze-dried exosomes, that allows storage at room temperature,
extends shelf life, and reduces storage and transportation costs
(Karn et al., 2021).

Additionally, the presence of interfering biological molecules
like proteins, lipids, and nucleic acids complicates the precise
isolation and purification of EVs (Mateescu et al., 2017).The lack of a
standardizedmethod to isolate EVs from various bodily sources also
presents a challenge (Zeng et al., 2022). Currently, five EV isolation
methods include ultracentrifugation, size-based techniques,
immunoaffinity capture, precipitation, andmicrofluidics (Yang et al.,
2020). Ultracentrifugation is most widely used method, with
other methods being used by only 5%–20% of researchers (Li
and Xu, 2019). Each technique has advantages and disadvantages.

Differential ultracentrifugation is cost-effective but inefficient
and potentially harmful to EVs during recovery (Tiwari et al.,
2021). On the other hand, Density gradient centrifugation is
more efficient method for recovering EVs, but it is also more
expensive and time-consuming (Monguió-Tortajada et al., 2019).
The Immunoaffinity method is effective but time-consuming and
costly. Similar challenges exist with othermethods (Taylor and Shah,
2015). Given these limitations, there is a growing demand for user-
friendly, affordable tools that efficiently isolate EVswhile saving time
(Yuan et al., 2021).

The entrapment of diverse cargo within EVs presents a
formidable challenge, stemming from the geometrical constraints
imposed by the small dimensions of EVs that reduce their
viability for large molecular species (Tran and Tran, 2020). The
phospholipid bilayer constitution of EV membranes imposes a
selective barrier against macromolecules with high electrostatic
potential, and concurrently selective cargo units are endowed with
surface-bound receptors on EVs, which makes their preferential
interaction possible (van der Meel et al., 2014). Nevertheless,
the lack of receptors in all cargo categories prevents binding
interactions, thereby hindering the association. ATP, apart
from its role as a universal energy currency, assumes pivotal
significance in the context of encapsulating bio-macromolecules
within EVs, harnessing energy sourced from ATP hydrolysis
to facilitate and potentiate cargo encapsulation processes. The
depletion of ATP stores can complicate this complex process
(Russell et al., 2019).

EVs offer a promising avenue for disease diagnosis, but
this promise is accompanied by certain challenges. Variability
in samples, whether derived from blood, urine, saliva or other
sources, can result in variation in the amount and type of EVs
(Jafari et al., 2020). Research focusing on EVs biomarkers often
adopts diverse criteria to indicate specific EVs subpopulations,
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potentially leading to inconsistent findings across different
studies. To mitigate this problem, standardization of these
criteria becomes imperative to establish reliable and consistent
diagnostic markers (Yan et al., 2021). Moreover, the sensitivity of
diagnostic tests based on EVs can be influenced by multiple factors
including the selection of detection methods (such as ELISA, flow
cytometry, and nanoparticle tracking analysis) and the quality of
reagents employed (Serrano-Pertierra et al., 2020). Considering
that EVs exhibit heterogeneity in both size and composition, the
presence of analogous-sized cellular fragments or vesicles might
impede the precise detection of targeted biomarkers, underscoring
the need for methodological refinement in this promising
diagnostic approach.

Our understanding of EVs’ role in supporting TNBC, their
mechanisms, and their impact on TNBC interventions is currently
limited (St-Denis-Bissonnette et al., 2022). The assistance of
EVs in TNBC metastasis and their role in epigenetic processes
like methylation, histone modification, and non-coding RNA
activities remains unclear (Zolota et al., 2021) Additionally, roles
and alterations in immune regulation, forming pre-metastatic
niches in metastatic organs, lack comprehensive understanding
and require further research (Yang et al., 2021). The complex
BC tumor microenvironment, with diverse cells and interactions,
poses challenges in understanding TNBC progression’s regulatory
mechanisms. Uncertainties persist about specific cell-derived EV
components crucial in this network (Awadasseid et al., 2021). Many
research studies concentrate solely on specific targets within EVs,
preventing a comprehensive perspective. It's crucial to precisely
track the path, dispersion, and destiny of EVs to comprehend
how they are absorbed and their impacts on the recipient cells.
The complex structure of exosomes and their interactions with
recipient cells remain mysterious, underscoring the insufficient
understanding of the mechanisms through which EVs operate in
TNBC. Bridging these knowledge gaps plays an important role in
realizing the potential of EVs as a diagnostic aid and therapeutic
focal point in dealing with TNBC.

5 Future directions of EVs application
as therapeutics in TNBC

The evidence highlighting the role of EVs in TNBC has
presented another opportunity for research, particularly in the
development of EVs as diagnostic/prognostic biomarkers, but
more importantly, as therapeutic agents. EVs demonstrated
promising results in cancer vaccination and drug delivery, making
it a noteworthy consideration in medical applications. The
initial characterization of EVs reveals their unique therapeutic
properties, making them interesting for potential use in clinical field
(Elsharkasy et al., 2020). EVs encapsulate nucleic acids and proteins
released from malignant cells, providing valuable insights into the
essential characteristics of disease cells (Cerezo-Magaña et al.,
2020). Studies results shown that EVs can indicate differences
between tumor samples and controls, which make it easier to obtain
preliminary information about disease prognosis (Hoshino et al.,
2020). The ability to detect such differences has the potential
to revolutionize the approach to BC diagnoses. Through the
examination of the contents of EVs, medical professionals could

enhance their comprehension of the ailment and its advancement,
ultimately resulting in improved and individually tailored therapies.

6 Conclusion

TNBC shows significant challenges in its management due to
its aggressive nature, propensity for metastasis, and limited strategy
options. Current therapies, including surgery, chemotherapy, and
radiation, have shown limited efficacy, particularly in addressing
metastatic tumors. Limitations of currently used diagnostic tools
like imaging (mammography, ultrasound, and magnetic resonance
imaging) and immunohistochemistry (IHC) in the diagnosis of
TNBC, make challenging to obtain comprehensive and accurate
information about it. EVs opened new avenues for the diagnosis of
various disease including TNBC. EVs associated protein biomarkers
such as EGFR, CCL5, CD24, ADAM10, cofilin-1 and Non-coding
RNA (ncRNA) like miRNA have significant role in its diagnosis as
previous mention. In the field of oncology, the integration of AI,
especially DL, significantly enhances tumor diagnosis, intervention,
and prognosis. With its ability to automatically extract features
and analyze large datasets, DL has revolutionized medical imaging,
improving diagnostic accuracy while reducing false positives. The
inability to effectively manage TNBC so far is largely due to drug
resistance, which remains a major challenge. This challenge can
overcome by EV-associated biomolecules, and EVs are capable of
carrying molecules, and allowing non-invasive monitoring of the
disease. The emergence of EVs as versatile mediators of intercellular
communication and potential therapeutic carriers offers a promising
avenue for the development of more effective TNBC therapeutic
approaches. EVs also have crucial role in the development of
TNBC and significantly influence patient outcomes. EVs possess
inherent properties that make them well-suited for targeted drug
delivery, ability to evade the immune system, and capacity to
traverse biological barriers like the blood-brain barrier. The use
of EVs as drug delivery vehicles has the potential to enhance
intervention accuracy, efficacy, and patient outcomes in TNBC and
other malignant diseases, representing an attractive area for future
research and clinical exploration.
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