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Introduction: Obesity and overweight are linked to metabolic disturbances,
which contribute to the onset of diseases like type 2 diabetes (T2D) and
cardiovascular disorders. Metabolic health is also closely linked to autonomic
function, as measured by heart rate variability (HRV), making HRV a potential
non-invasive indicator of metabolic status. While studies have examined
metabolic changes with body mass index (BMI), the link between HRV and
specific metabolic profiles in normal-weight (NW), overweight (OW), and obese
(OB) individuals is less understood. Additionally, whether HRV can reliably
predict key metabolites associated with metabolic dysregulation remains largely
unexplored.

Methods: This study uses targeted metabolomics to profile amino acids and
acylcarnitines in a group of academic employees across BMI categories (NW,
OW, and OB) and investigates correlations between HRV variables and these
metabolites. Finally, a machine learning approach was employed to predict
relevant metabolite levels based on HRV features, aiming to validate HRV as a
non-invasive predictor of metabolic health.

Results: NW, OW, and OB subjects showed different metabolic profiles, as
demonstrated by sparse partial least square discriminant analysis (sPLS-DA). The
main upregulatedmetabolites differentiating NW fromOBwere C6DC and C8:1,
while C6DC and C10:2 were higher in OW than NW. Time- and frequency-
domain HRV features show a good correlation with the regulated metabolites.
Finally, our machine learning approach allowed us to predict the most regulated
metabolites in OB and OW subjects using HRV metrics.

Conclusion: Our study advances our understanding of the metabolic and
autonomic changes associated with obesity and suggests that HRV could serve
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as a practical tool for non-invasively monitoring metabolic health, potentially
facilitating early intervention in individuals with elevated BMI.
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obesity, metabolic disturbances, heart rate variability, amino acids, acylcarnitine

Introduction

Obesity and overweight have emerged as leading health
concerns, posing significant challenges to healthcare systems
worldwide (Hruby and Hu, 2015). These conditions are associated
with a substantial increase in the risk of developing numerous
chronic diseases, notably T2D and cardiovascular diseases (CVDs),
which collectively contribute to a high percentage of global
morbidity and mortality rates (Powell-Wiley et al., 2021).

At the molecular level, excess body fat is linked to profound
metabolic alterations that disrupt lipid, amino acid, and energy
metabolism. These alterations contribute to insulin resistance,
chronic low-grade inflammation, dyslipidemia, and hypertension,
which are major features of metabolic syndrome (Ruze et al., 2023).
As the understanding of these metabolic disruptions has deepened,
the importance of profiling specific metabolic pathways has gained
prominence in the study of obesity.

The metabolomics-based approach provides an opportunity
to analyze specific classes of metabolites, facilitating an in-depth
assessment of biochemical variations (Danzi et al., 2023). Amino
acids have been shown to have robust associations with obesity and
insulin resistance, suggesting their critical role in metabolic health.

Among amino acids, both branched-chain amino acids
(BCAAs) and aromatic amino acids (AAAs) have shown robust
associations with obesity and insulin resistance, suggesting their
critical roles in metabolic health (Sun et al., 2020). Notably,
aromatic amino acids—including phenylalanine, tyrosine, and
tryptophan—have been increasingly recognized for their role in
metabolic dysregulation. Elevated levels of phenylalanine and
tyrosine have been strongly associated with impaired glucose
metabolism, systemic inflammation, and cardiovascular risk
(Adams, 2011). Their accumulation may reflect dysfunction in the
catabolism of amino acids and altered signaling pathways, making
them highly relevant biomarkers for metabolic health assessment.
Elevated levels of BCAAs and other essential amino acids have
been identified in individuals with higher body mass index (BMI),
often correlating with an increased risk of metabolic disorders
(Adams, 2011; Yoon, 2016). These amino acids are implicated in
insulin signaling pathways and are known to influence energy
balance and lipid metabolism, potentially aggravating metabolic
dysregulation.

Acylcarnitines, which facilitate the transport of fatty acids
into mitochondria for beta-oxidation, are also increasingly
recognized for their role in obesity-related metabolic dysfunction
(Longo et al., 2016). When lipid oxidation becomes impaired,
intermediate metabolites, including various acylcarnitine species,
accumulate, reflecting mitochondrial stress and reduced metabolic
flexibility (Kankuri et al., 2023).

Targeted metabolomics using tandem mass spectrometry allows
the simultaneous determination of multiple metabolites. Notably,

this analysis can be performed on capillary blood collected as
dried blood spot (DBS) samples using a non-invasive and simple
approach, which is suitable for large-scale studies.

The autonomic nervous system (ANS) plays a fundamental role
in regulating metabolic processes, acting as a bridge between the
central nervous system and peripheral organs such as the heart,
pancreas, and adipose tissue (Imai and Katagiri, 2022). Through its
sympathetic and parasympathetic branches, the ANS exerts rapid and
adaptable control over key physiological functions, including glucose
homeostasis, lipid mobilization, and thermogenesis (Ruud et al.,
2017). In individuals with obesity ormetabolic syndrome, the balance
between sympathetic and parasympathetic activity is often disrupted,
leading to a phenomenon known as sympathetic overactivity, which
can further exacerbate metabolic dysfunction (Malpas, 2010).

Heart rate variability (HRV) serves as a practical, non-invasive
marker for autonomic balance. By measuring the variations in the
intervals between heartbeats, HRV reflects the dynamic interplay
between sympathetic and parasympathetic inputs to the heart (Shaffer
and Ginsberg, 2017; Di Credico et al., 2022; Di Credico et al., 2024a).
A higher HRV generally indicates healthy autonomic function with
a greater ability to adapt to physiological demands, while a lower
HRV is often observed in conditions associated with metabolic
dysfunction, such as obesity, diabetes, and CVD (Supriya et al., 2021;
Di Credico et al., 2024b). Research has highlighted that reducedHRV
is associated with insulin resistance, inflammation, and increased
cardiovascular risk, underscoring the potential ofHRVas an indicator
of metabolic health (Zeid et al., 2024).

Given its ease of measurement and established link with
autonomic regulation, HRV has gained attention as a potential
tool for assessing metabolic health non-invasively. Studies have
found significant correlations between HRV variables and specific
metabolic markers, supporting the hypothesis that HRV could
reflect underlying metabolic status (Azulay et al., 2022).

In this regard, targeted metabolomics using tandem mass
spectrometry allows the simultaneous determination of multiple
metabolites, including key aromatic amino acids and acylcarnitines,
providing critical insights into metabolic dysfunctions associated
with obesity. Notably, this analysis can be performed on capillary
blood collected as DBS samples using a non-invasive and simple
approach that is suitable for large-scale studies.

However, research exploring the relationship between HRV and
targeted metabolite profiles across BMI categories remains limited.

The present study seeks to bridge this gap by examining
the correlation between HRV variables and targeted metabolites
(specifically amino acids and acylcarnitines, two classes of
metabolites critically involved in energy balance, lipid metabolism,
and cellular signaling pathways) in a sample of academic employees
grouping them by BMI into normal-weight (NW), overweight
(OW) and obese (OB) categories. Finally, we employ a machine
learning (ML) approach to explore whether HRV variables can
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predict relevant metabolites. Indeed, predictive modeling offers the
potential to use HRV as a non-invasive tool for estimatingmetabolic
alterations, providing a cost-effective alternative for assessing
metabolic health. By doing so, this study aims to explore whether
HRV can serve as a surrogate marker for metabolic disturbances,
providing clinicians with an accessible method to assess metabolic
health in individuals at risk for metabolic disorders.

Materials and methods

Study design and ethical considerations

Twenty-eight subjects (14 men and 14 women) were included in
thepresentcross-sectional study.Forstudypurposes,participantswere
divided into three groupsbasedon theirBMIcategory: normalweight:
NW (n = 15), overweight: OW (n = 7), and obese: OB (n = 6). After
overnight fasting, capillary finger blood was collected on filter paper
cards to obtain DBS samples. Briefly, after warming and disinfecting,
thefingerprickwasdonewithanearlypainlessdevice.Thefirstdropof
bloodwas removed by a sterile gauze pad, and then two or three drops
of bloodwere soaked into the filter paper. Collection cards were left to
dryhorizontallyforat least3 h(Cicalinietal.,2022).Onthesameday,5-
min HRVandbioimpedancedatawereobtainedatrest.Datacollection
took place in a controlled environmentwith no external noise, and the
ambient temperature was maintained between 20°C and 25°C during
all analyses to avoid environmental stressors that could affect cardiac
autonomicresponsesandbioimpedancemeasurements.Thestudywas
approved by the Research Ethics Board of the University of Chieti-
Pescara (approval number: 1479, date of approval: 03/05/2017), and it
followed theprinciples of theDeclarationofHelsinki. Eachparticipant
signed the informed consent, and participants could withdraw from
the experiment at any time.

Targeted metabolomics profiling and data
analysis

Targeted metabolic profiling of DBS samples was performed by
flow injection analysis-tandem mass spectrometry (FIA-MS/MS).
DBS samples were punched out into 3.2-mm-diameter disks to
extract a panel of metabolites, including amino acids, free carnitine
and acylcarnitines, ketones, and nucleosides. Details of DBS
sample preparation using NeoBaseTM 2 Non-derivatized MSMS kit
(Revvity, Turku; Finland) have been already described. In particular,
the procedure involves the extraction of analytes from the punched
disks with a solution containing labeled internal standards and
analysis using an MS/MS system (Cicalini et al., 2021; Rossi et al.,
2020). The FIA-MS/MS system consisted of a RenataDX Screening
System (Waters Corporation, Milford, MA, United States). The
system operates in positive electrospray ionizationmode bymultiple
reaction monitoring (MRM) acquisition. A 10-μL aliquot of each
extracted sample was injected into the ion source, and the run
time was 1.1 min, injection-to-injection. Processing of the data was
carried out by MassLynxTM (IVD) Software V4.2 with IonLynxTM
Application Manager (Waters Corp., Wilmslow, United Kingdom).

The metabolite concentration dataset was uploaded as a.csv
file in MetaboAnalyst version 6.0. Metabolite concentration

was normalized by the median before any further analysis. A
spare partial least square-discriminant analysis (sPLS-DA) was
implemented to classify the three groups based on the entire
metabolite set. A list of the metabolites used in the present study
is reported as Supplementary Material (Supplementary Table S1).
Volcano plot analysis for the two-group analysis (i.e., NW vs. OW
and NW vs. OB subjects) and the enrichment analysis and graphs
were obtained using MetaboAnalyst, version 6.0.

HRV measurement and analysis

The RR intervals were acquired using a Bodyguard 2 (Firstbeat
Technologies Ltd., Jyväskylä, Finland) wearable device that was
positioned according to the manufacturer’s instructions. Bodyguard
2 records the ECG signal with electrodes, processes the signal with
an integrated algorithm, and provides beat-to-beat RR intervals
as an output with a 1 ms resolution. Participants were instructed
to avoid stimulant foods and drinks, including coffee, as well
as strenuous physical exercise in the days leading up to the
data acquisition day to minimize potential confounding factors.
For female participants, HRV data collection was controlled for
the menstrual cycle. All assessments were performed during the
mid-follicular phase (between day +5 and +10, with the onset
of menses considered day +1) when progesterone levels are low
and stable, following established guidelines (Schmalenberger et al.,
2020). The device end was attached to the right side of the body
under the collarbone, whereas the cable end was attached to the
left side of the body on the rib cage. A continuous 5-min HRV
recording was used for analysis, following a standardized 10-
min rest period to ensure that participants reached a homeostatic
balance. The HRV data were analyzed using Kubios HRV Standard
3.4.0 software. All the signals were visually inspected for artifacts,
and the threshold-based algorithm (low-threshold) available in
Kubios software was applied if needed. This approach has been
shown to have minimal impact on HRV data integrity, as low-level
corrections are sufficient to remove artifacts without significantly
altering the results (Cutrim et al., 2024). Regarding time-domain
analysis, mean RR intervals, standard deviation of NN intervals
(SDNN), root mean square of successive differences (RMSSD), and
the stress index (i.e., the square root of Baevsky’s stress index) were
obtained. Regarding the frequency domain, low-frequency (LF) and
high-frequency (HF) data were obtained.

Whole-body bioimpedance assessment

Bioimpedance analysis was performed using BIA (BIA 101
Anniversary AKERN s.r.l., Florence, Italy) with an electric current
at a frequency of 50 kHz (±1%). The device was calibrated before
assessment using the standard control circuit supplied by the
manufacturer with a known impedance (resistance [R] = 380 Ω;
reactance [Xc] = 45 Ω). The device’s accuracy was 0.1% for R
and 0.1% for Xc. For the bioelectrical impedance measurement,
each participant was positioned supine for a minimum of 2 min to
distribute the body fluid evenly. During this time, the legs were
positioned at 45° relative to the midline of the body, while the upper
limbs were positioned 30° away from the trunk. After cleaning the
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skin with alcohol, two electrodes (Biatrodes, AKERN s.r.l., Florence,
Italy) were placed on the back of the right hand and two electrodes
on the neck of the corresponding foot (Di Credico et al., 2021a). Fat
mass data were obtained using Bodygram software.

Machine learning procedures

A multivariate regression analysis was conducted to predict
the metabolite concentrations based on HRV parameters. While
various ML methodologies may be appropriate for this objective,
the restricted number of participants necessitated a simplified
procedure; thus, a support vector regression (SVR) with a linear
kernel was used to mitigate the risk of overfitting. Moreover,
to further mitigate the potential overfitting resulting from an
excessive number of features relative to the sample size, a
feature selection technique (i.e., minimum-redundancy maximum-
relevance method, MRMR) was implemented inside the cross-
validation (CV) framework. The first six features were used for the
regression of the metabolite concentrations. The study sample was
randomly split into a train set (23 participants) and a test set (five
participants). The performance of the model was tested to evaluate
the correlation between the estimated and measured metabolite
concentrations.The analysis was performed usingMATLABR2023b
(MathWorks, Inc., Natick, MA, United States).

Statistical analysis

Metabolites were considered up- or downregulated when the
fold change between groupswas >1.5 and p<0.05.TheShapiro–Wilk
test was run to check for data normality. When the normality
was violated, a non-parametric test was selected. One-way analysis
of variance (ANOVA) or Kruskal–Wallis was used to check for
differences between the three groups. When a difference was
found, Tukey’s post hoc test for multiple comparisons was used.
Independent t-tests or Mann–Whitney tests were performed to
check for differences in the two-group comparisons. Pearson’s r
or Spearman rho was used to measure the correlation between
metabolites andHRVmetrics, and partial correlation was computed
to check for the influence of sex and age. Correlation analysis
was performed to evaluate the performance of the applied ML
model and the regression equation, and R2 values were obtained.
Inferential statistics and related graphs were made using Prism
10.1.1 (GraphPad Software, LLC). All the results were considered
statistically significant when p < 0.05.

Results

Participants’ characteristics

Table 1 summarizes theparticipant characteristics, grouping them
by BMI. The study sample consisted of 28 participants (14 men,
mean age 50.231 ± 6.784; 14 women, mean age 51.929 ± 8.435),
furtherdividedinto15normal-weight, sevenoverweight,andsixobese
subjects considering BMI and body composition. No difference was
foundinthemeanage,height,andrestingminimumheartratebetween

the three groups. Conversely, weight, BMI, fat mass percentage, and
high frequency (HF peak) of HRV were significantly different. All
participants did not report any acute cardiovascular conditions, and
they were non-smokers in apparently stable health.

Dried blood spot metabolomic profile of
the three subgroups

When comparing the fasting plasma metabolome profiles of
OB and OW with NW, a clear separation of the two groups from
NW was observed in the spare partial least square-discriminant
analysis (sPLS-DA), and this was especially evident between OB
(blue dots) and NW (red dots) subjects (Figure 1A). Components
1 and 2 together explained 26.9% of the variation (component 1
= 14.4%; component 2 = 12.5%) (Figure 1A). The loading plots
show that the three metabolites most involved in the variance in
component 1 were adipylcarnitine (C6DC), phenylalanine (PHE),
and tyrosine (TYR) (Figure 1B). On the other hand, the first
three metabolites most responsible for the group classification in
component 2 were adenosine (ADO), propionylcarnitine (C3), and
3-hydroxy-octadecenoylcarnitine (C18:1OH) (Figure 1C).

Hierarchical clustering was performed to obtain a preliminary
view of how the metabolites were regulated in the three groups.
Considering the entiremetabolite dataset, the hierarchical clustering
dendrogram for samples groupedNWandOWclasses, while theOB
class was the most divergent (Figure 1D), thus confirming the visual
net separation demonstrated by the sPLS-DA. Indeed, the heatmap
showed that at least 33 of 46 metabolites were more abundant in the
OBgroup than in theNWgroup,while their concentrationwasmore
similar between NW and OW (Figure 1D).

The correlation pattern analysis of the 25 most correlated
compounds showed that the concentration of a major part
of metabolites was positively correlated with BMI. Specifically,
C6DC, PHE, methylmalonylcarnitine/3-hydroxy-valerylcarnitine
(C4DC/C5OH), and TYR show a Pearson’s correlation coefficient of
0.5 and higher, while ADO showed an opposite trend, being slightly
negatively correlated with BMI (Figure 1E).

Considering the most correlated metabolites, inferential
statistics were performed to assess differences between the
three subgroups. One-way ANOVA showed that C6DC, PHE,
C4DC/C5OH, and TYR metabolites were significantly different
between groups. Tukey’s post hoc test demonstrated that C6DC
was higher in OW and OB than NW. Differently, PHE and
C4DC/C5OH were only significantly higher in OB than in NW.
Finally, TYR showed higher values in OW subjects than the NW
counterpart (Figure 1F).

Differentially regulated metabolites in NW
versus OB, NW versus OW, and enrichment
analysis

For the two-group comparison analysis, volcano plots were
created to check for differently regulated metabolites between
OB/NW and OW/NW groups (settings were FC >1.5 and p < 0.05).
Results showed that compared to NW, in the OB subgroup, C6DC
and octenoylcarnitine (C8:1) were significantly more abundant
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TABLE 1 Participant characteristics based on the BMI category.

Variables NW OW OB p

n 15 7 6

Age (years) 50.267 ± 9.067 53.143 ± 6.986 52.500 ± 4.461 0.684

Weight (kg) 61.180 ± 6.446 78.886 ± 10.701 96.600 ± 16.617 <0.001

Height (cm) 165.267 ± 6.867 168.686 ± 10.453 168.717 ± 10.710 0.588

BMI 22.351 ± 1.200 27.653 ± 1.493 34.002 ± 5.455 <0.001

Fat mass (%) 24.607 ± 6.017 33.650 ± 3.829 35.650 ± 8.127 0.002

Minimum heart rate (bpm) 67.511 ± 8.583 75.337 ± 8.380 70.583 ± 11.675 0.209

Mean RR (ms) 806.242 ± 95.028 740.167 ± 76.159 788.610 ± 113.513 0.338

RMSSD (ms) 36.805 ± 15.205 26.663 ± 3.026 26.390 ± 3.746 0.059

SDNN (ms) 33.863 ± 11.335 25.354 ± 5.904 28.062 ± 7.733 0.132

Stress index 12.623 ± 3.031 16.472 ± 4.796 15.721 ± 4.038 0.069

HF peak (Hz) 0.293 ± 0.082 0.276 ± 0.094 0.182 ± 0.023 0.046

LF peak (Hz) 0.083 ± 0.034 0.083 ± 0.036 0.208 ± 0.292 0.575

ANOVA or Kruskal–Wallis (for weight, BMI, RMSSD, SDNN, HF peak, and LF peak) were performed, and p-values were reported. Results are reported as mean ± standard deviation, and they
were considered significant when p < 0.05. Significant p-values are highlighted in bold.
NW, normal weight; OW, overweight; OB, obese.

(Figures 2A,C). Similarly, C6DC and decadienoylcarnitine
(C10:2) were also significantly more abundant in the OW than
in the NW subjects (Figures 2B,D). Interestingly, C6DC was
found to be upregulated in both the OB and OW subgroups
compared to NW (Figures 2A,B).

Afterward, an enrichment analysis was performed to
explore the profile of functionally relevant metabolites and
determine a link between changes in metabolite expression
and the biological meaning. Interestingly, for both enrichment
analyses (OB vs. NW and OW vs. NW), results showed the
highest enrichment of metabolites involved in “phenylalanine
metabolism,” “phenylalanine, tyrosine and tryptophan biosynthesis,”
“ubiquinone and other terpenoid-quinone biosynthesis,” and
“tyrosine metabolism,” suggesting alterations in these metabolic
processes (Figures 2E,F).

The data collectively indicate significant metabolic differences
between NW, OW, and OB individuals. Specific metabolites, such
as C6DC and C8:1, showed significant differences between these
groups. The enrichment analyses suggest that pathways involved in
amino acid metabolism, quinone biosynthesis, and other metabolic
processes are altered in individuals with overweight and obesity.

Correlation between metabolites and HRV
features

To investigate the relationship between metabolic state and
autonomic state tuning, the upregulated metabolites found in

the two-group comparison (C6DC, C8:1, and C10:2) were used
to compute correlation analysis with clinical-relevant time and
frequency-domain HRV metrics (mean RR intervals; RMSSD,
SDNN, stress index, HF peak, and LF peak). Correlations were also
adjusted for sex and age to check for their influence. Considering
adjusted values, significant moderate negative correlations were
observed between C6DC and mean RR interval (r = −0.478, p =
0.016). RMSSD and SDNN were also negatively correlated (ρ =
−0.434, p = 0.030, ρ = −0.397, p = 0.049). Conversely, a positive
correlation was observed between C6DC and stress index (r = 0.474,
p = 0.017) (Figure 3A).

Similarly, regarding the metabolite C8:1, a positive correlation
was found with the stress index (r = 0.497, p = 0.011). C8:1
was also positively correlated with the frequency-domain LF
peak (r = 0.527, p = 0.007) (Figure 3B). Finally, no significant
correlation was noted between C10:2 and the selected HRV
metrics, demonstrating that among the upregulated metabolites in
overweight and obese individuals, C10:2 is less related to autonomic
cardiac regulation (Figure 3C).

Prediction of relevant metabolites through
ML applied to HRV data

The HRV features extracted were used to train an ML
model to predict the most regulated metabolites in our
OB and OW samples, namely, C6DC (Figures 4A,B), C8:1
(Figures 4C,D), and C10:2 (Figures 4E,F). The ML validation was
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FIGURE 1
(A) Spare partial least square-discriminant analysis (sPLS-DA) of blood metabolites from the 15 normal-weight, seven overweight, and six obese
subjects involved in the study. The 2D plot reports the sample projection of the first and second components of the sPLS-DA. (B)Metabolite loadings of
principal component 1. (C) Metabolite loadings of principal component 2. (D) The hierarchical clustering graph reports the difference in metabolite
abundance in the three different groups analyzed and their clustering; the whole panel of 46 metabolites detected is included in the heatmap. Both
dendrogram (to show groups and metabolite clustering) and heatmap (to show metabolite abundance) are reported. (E) Correlation analysis was
performed in MetaboAnalyst using data from NW, OW, and OB as continuous (i.e., BMI); the top 25 correlated metabolites are reported. (F) Boxplots
show the concentration of the significantly different metabolites. The Kruskal–Wallis test was used for C6DC, while one-way analysis of variance
(ANOVA) was used for PHE, C4DC/C5OH, and TYR. Single data points and adjusted p-values are shown.

performed on data from 23 individuals, and the data from five
were used for the test. For both validation and test, the prediction
performance was evaluated using Pearson’s correlation coefficient
and calculating the R2 as well.

Regarding the validation, ML showed a good performance in all
cases, and the highest was for the prediction of C8:1 (R2 = 0.483, r
= 0.695, p = 0.002). Similarly, the best prediction for the test set was
seen forC8:1 aswell (R2 =0.569, r =0.754, p=0.141) (Figures 4C,D).
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FIGURE 2
(A) Volcano plot representing the comparison of the metabolic profiles between OB and NW. (B) Volcano plot representing the comparison of the
metabolic profiles between OW and NW. Metabolites highlighted in red were considered upregulated. (C) Histograms refer to independent t-tests for
the metabolites with different abundances between OB and NW. (D) Histograms refer to Mann–Whitney tests for the metabolites with different
abundances between OW and NW. Adjusted p-values are shown. (E) Enrichment analysis for metabolic pathways using the KEGG database comparing
OB and NW subgroups. (F) Enrichment analysis for metabolic pathways using the KEGG database comparing OW and NW subgroups.

Discussion

This study provides novel insights into the metabolic and
autonomic alterations associated with different BMI categories,
highlighting significant changes in the metabolic profile of
overweight and obese. Using targeted metabolomics, we
identified key metabolites—such as adipylcarnitine (C6DC) and
octenoylcarnitine (C8:1)—that were upregulated in individuals with
higher BMI, reflecting metabolic inflexibility and mitochondrial
stress. Correlation analysis revealed significant associations between

HRV features and thesemetabolite levels, underscoring the interplay
between autonomic regulation and metabolic health. Notably, we
employed an ML approach to predict metabolite concentrations
based on HRV metrics, demonstrating that HRV could serve as a
non-invasive biomarker for metabolic disturbances. These findings
reinforce the potential role of HRV analysis in metabolic health
monitoring and support its application in early detection strategies
for individuals at risk of obesity-related metabolic dysfunction.

Our metabolomics findings, notably the upregulation of
C6DC, PHE, TYR, and C8:1 in overweight and obese subjects,
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FIGURE 3
(A) Correlation graphs of C6DC and HRV metrics. (B) Correlation graphs of C8:1 and HRV metrics. (C) Correlation graphs of C10:2 and HRV metrics.
Scatter plots include Pearson’s r or Spearman’s ρ and level of significance corrected for age and sex. Significant correlations are highlighted (bold). Blue
dotted lines represent 95% confidence intervals. Results were considered significant when p < 0.05.
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FIGURE 4
Validation and test of the applied ML model for the prediction of most regulated metabolites in OW and OB groups using HRV features. (A,B) Prediction
of C6DC is shown by plots and tables containing the results of regression and correlation. (C,D) Prediction of C8:1 is shown by plots and tables
containing the results of regression and correlation. (E,F) Prediction of C10:2 is shown by plots and tables containing the results of regression and
correlation. Black dotted lines represent 95% confidence intervals. Results were considered significant when p < 0.05.

align with previous research identifying distinct amino acid
and acylcarnitine profiles in obesity. Elevated amino acid levels,
including phenylalanine and tyrosine, have been consistently
associated with insulin resistance, inflammatory states, and
increased cardiovascular risk. Increases in PHE and TYR levels in
individuals with obesity reflect this, suggesting a shift toward amino
acid metabolism dysregulation that may contribute to obesity-
related pathologies (White and Newgard, 2019). BCAAs and AAAs
are known to impair insulin signaling and mitochondrial function
when elevated, fostering an environment conducive to metabolic
syndrome and T2D (Lynch and Adams, 2014).

The acylcarnitines, particularly the elevated C6DC and C8:1,
indicate impaired fatty acid oxidation, reflecting mitochondrial
stress and reduced metabolic flexibility in the overweight and
obese groups (McCann et al., 2021). This corroborates prior work
showing that specific acylcarnitines accumulate under conditions
of metabolic inflexibility, a hallmark of obesity and associated
metabolic disorders (Mihalik et al., 2010). These patterns support
the view that obesity profoundly disrupts both amino acid and fatty
acid metabolism, with implications for the progression of insulin
resistance, dyslipidemia, and other metabolic diseases.

The enrichment of phenylalanine and tyrosine metabolism
pathways underscores the established link between aromatic
amino acids and obesity-related metabolic dysfunction. Elevated

levels of aromatic amino acids, including phenylalanine and
tyrosine, are commonly observed in individuals with higher BMI
and have been implicated in insulin resistance and systemic
inflammation (Würtz et al., 2013). These amino acids are known
to influence insulin signaling and lipid metabolism, and their
dysregulation may contribute to metabolic disturbances that
characterize obesity and metabolic syndrome.

Theidentifiedenrichment in tryptophanbiosynthesis andtyrosine
metabolism is also notable as these pathways are precursors to key
neurotransmitters, such as serotonin and dopamine, which influence
appetite regulation, energy balance, and mood. Altered tryptophan
andtyrosinepathwayscouldcontribute tochanges inneurotransmitter
availability,potentially impacting thecentralmechanisms that regulate
energy intake and expenditure (Hildebrand et al., 2015). Additionally,
impaired neurotransmitter biosynthesismay affectmood and reward-
driven eating behaviors, which are known to be altered in individuals
with obesity (Labban et al., 2020).This link between neurotransmitter
biosynthesis and obesity suggests that metabolic alterations in
aromatic amino acidsmay extend beyond purely physiological effects,
influencing behavioral and psychological factors associated with
weight gain and obesity.

The enrichment in ubiquinone and other terpenoid–quinone
biosynthesis pathways highlights a potential link between obesity
and mitochondrial function. Ubiquinone plays a critical role in
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mitochondrial electron transport and oxidative phosphorylation,
processes essential for ATP production (Deshwal et al., 2023).
Disruptions in ubiquinone biosynthesis, which may lead to
reduced availability of coenzyme Q, could impair mitochondrial
efficiency and contribute to the observed metabolic inflexibility
in obesity (Wang and Hekimi, 2013). This impaired energy
production aligns with our findings of elevated acylcarnitines,
which are markers of incomplete fatty acid oxidation and
mitochondrial stress (Bouchouirab et al., 2018). Taken together,
these observations support the hypothesis that obesity-related
mitochondrial dysfunction, in part due to altered ubiquinone
biosynthesis, contributes to the metabolic rigidity and energy
imbalance observed in individuals with elevated BMI.

The observed pathway enrichments provide important insights
into the metabolic shifts associated with obesity and highlight
specific biochemical pathways that may serve as therapeutic
targets. Addressing the disruptions in amino acid metabolism and
mitochondrial function could help alleviate some of the metabolic
challenges faced by individuals with obesity, potentially mitigating
the risk of developing metabolic syndrome, insulin resistance, and
related disorders. These enrichment findings emphasize the need for
further research into interventions that target these pathways, aiming
to restore metabolic flexibility and improve overall metabolic health
in individuals at risk.

Our study further elucidates the relationship between HRV and
metabolic health by revealingmoderate negative correlations between
HRV metrics (e.g., mean RR interval, SDNN, and RMSSD) and
certain metabolites, particularly C6DC. Reduced HRV metrics, such
as SDNN and mean RR interval, are associated with increased
sympathetic dominance, which is common in obesity and metabolic
syndrome (Ortiz-Guzmán et al., 2023; Di Credico et al., 2024c).
The positive correlation between C6DC and stress index, as well as
C8:1 and LF peak, further highlights the potential of HRV as an
indicator of metabolic dysfunction. These findings align with those
of research indicating that obesity-induced autonomic dysregulation
may contribute to metabolic alterations (Shibao et al., 2007), as
sympathetic overactivity in obesity influences glucose and lipid
metabolism, increasing cardiovascular and metabolic risks (Kalil and
Haynes, 2012).

Despite the growing evidence for a potential surrogate for
metabolic health, our findings suggest that only select metabolites
(such as C6DC and C8:1) showed significant correlations with HRV
metrics, underscoring that HRV might selectively reflect aspects
of metabolic status, particularly those linked with sympathetic
dominance and mitochondrial function. This supports HRV as a
valuable, yet partial, marker for broader metabolic disturbances
associated with elevated BMI.

The use of ML to predict metabolite levels from HRV variables
demonstrates an innovative approach for estimating metabolic
health in overweight and obese. Our model yielded good predictive
performance, particularly for C8:1, supporting the feasibility of
using HRV features to estimate metabolite concentrations. This
approach aligns with previous studies demonstrating the utility
of machine learning in predicting valuable physiological metrics
(Di Credico et al., 2021b; Perpetuini et al., 2021; Perpetuini et al.,
2023) and indicates HRV as a potential predictive marker for early
metabolic dysregulation.

This model’s predictive accuracy for metabolites as C8:1
may indicate that certain acylcarnitines, potentially those linked
with mitochondrial β-oxidation, have a closer association with
autonomic markers than amino acids. The high predictive
performance for C8:1 suggests that HRV could be further optimized
to identify specific metabolites of interest in obesity and related
metabolic conditions.

From a clinical standpoint, identifying early alterations in C8:1
levels could serve as a biomarker for subclinicalmetabolic dysfunction
before overt symptoms or disease manifest. The ability to predict
such alterations through HRV may offer a practical approach for
early metabolic screening in at-risk populations. This presents an
opportunity for HRV-based tools that could enable non-invasive
assessment of specific metabolic alterations in clinical practice,
offering a potential approach for early risk assessment and metabolic
monitoring in populations at risk for obesity-related disorders.

Study implications and future directions

The findings of this study have several implications. First, the
distinct metabolomic profiles in overweight and obese subjects
reinforce the importance of metabolic monitoring as a means to
understand disease risk progression. Second, HRV correlations with
key metabolites and their predictive power via machine learning
suggest that HRV could serve as a useful, non-invasive marker
for metabolic health, potentially guiding early interventions. Of
note, HRV and the metabolic profile obtained by FIA-MS/MS on
DBS samples represent an approach suitable for larger-scale studies.
Future studies should consider expanding on these findings by
including larger and more diverse cohorts to validate HRV as a
predictive marker for metabolomic alterations. Additionally, research
into the longitudinal relationship between HRV and metabolic
profiles could shed light on the potential for HRV to serve as an
early indicator of metabolic dysregulation before the onset of overt
disease. Machine learning approaches could also be further refined
to enhance the predictive accuracy of HRV-derived estimates of
metabolite concentrations, potentially leading topractical applications
in healthcare settingswhere early, non-invasive screeningmethods for
metabolic dysfunction are needed (Romero-Saldaña et al., 2018).

Limitations

This study has certain limitations. For this reason, it could be
considered a preliminary research work, and the results could be
expanded in future studies. The relatively small sample size may
limit the generalizability of the findings, and future studies with
larger and more diverse populations are needed to validate our
results. Additionally, while BMI was used to classify participants,
other clinical parameters related to obesity, such as lipid profiles,
insulin resistance, and inflammatory markers, were not available,
which might have provided further insights into the metabolic
state of the participants. Another limitation is the cross-sectional
design, which precludes establishing causal relationships between
autonomic regulation and metabolic alterations. Despite controlling
for key factors such as sex and age, residual confounding variables
cannot be entirely ruled out. Finally, while our ML approach
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demonstrated promising predictive capabilities, the limited sample
size may have constrained the complexity and robustness of
the model. Nevertheless, despite these limitations, this study
offers valuable insights into the relationship between HRV and
metabolomic profiles across BMI categories. The integration
of targeted metabolomics, HRV analysis, and ML highlights
the potential for non-invasive tools to assess metabolic health,
paving the way for future research and clinical applications. The
rigorous methodology, including strict cross-validation, enhances
the reliability of our findings, and our work contributes to the
growing field of metabolic research, emphasizing the importance of
autonomic regulation in metabolic health assessment.

Conclusion

In conclusion, this study contributes to our understanding of
the metabolic and autonomic changes associated with increased
BMI and highlights the potential of HRV as a surrogate marker
for metabolic health. The integration of HRV analysis with
metabolomics and machine learning represents a promising avenue
for non-invasive assessment and personalized health monitoring
in obesity and related metabolic disorders. Future research should
aim to build on these findings to develop clinically applicable tools
for early detection and intervention in metabolic dysregulation,
ultimately improving patient outcomes and reducing the healthcare
burden associated with obesity-related diseases.
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