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Introduction: The retinal microvasculature has been definitively linked to a
variety of diseases, such as ophthalmological, cardiovascular, and other medical
conditions. Precisely identifying the retinal microvasculature is crucial for early
detection and monitoring of these diseases. While the majority of existing neural
network-based research has primarily focused on utilizing the green channel
of fundus images for vessel segmentation, it is important to acknowledge the
potential value of other channels in this process.

Methods: This study introduces RetinalVasNet, a new method aimed at
enhancing the accuracy and effectiveness of retinal vascular segmentation by
implementing a sophisticated neural network architecture and incorporating
multi-channel fundus images.

Results: Our experimental results demonstrate that RetinalVasNet outperforms
previous research in most performance metrics.

Discussion: The findings suggest that each channel provides unique
contributions to the vascular segmentation process, emphasizing the
importance of incorporating multiple channels for accurate and comprehensive
segmentation.

KEYWORDS

channel fusion, fundus images, retinal microvasculature, RetinalVasNet, vessel
segmentation

1 Introduction

The retinal microvasculature is closely associated with numerous diseases, serving as
a crucial factor in the diagnosis and understanding of ocular and systemic conditions
(D'Amico, 1994; Rodriguez-Ramirez et al, 2024; Khalafi et al., 2025). For instance,
glaucoma, a progressive optic neuropathy, is characterized by significant morphological
changes in the blood vessels within the optic disc region (Zhang et al., 2021; Sharma et al.,
2024). These changes play a vital role in the identification and treatment of glaucoma
by clinicians. Similarly, the retinal microvasculature is also essential in the diagnosis
and management of diabetic angiopathy, a common complication of long-term diabetes
(Li et al, 2019; Frazao et al., 2019). Evaluating the deformation of the fundus
microvasculature allows for better monitoring and treatment of this condition. Additionally,
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individuals with blood hypertension may exhibit changes in
their retinal microvasculature, serving as potential indicators
of the presence or progression of cardiovascular disease
(Baker et al, 2022; Wang et al, 2023). These highlight the
significance of the retinal microvasculature in the study and
diagnosis of various diseases, providing a more comprehensive
understanding of their underlying mechanisms and contributing to
improved patient care.

The manual annotation of retinal microvasculature is
traditionally carried out by experienced clinical practitioners.
However, this method is both labor-intensive and time-consuming,
prompting the need for alternative approaches (Ji et al, 2024;
Ji et al., 2023). Therefore, the automatic and accurate segmentation
of retinal microvasculature is crucial for early diagnosis and
monitoring of disease progression in various ophthalmological
and cardiovascular conditions (Qin and Chen, 2024; Kovéacs and
Fazekas, 2022). In computing, there are two main types methods:
traditional computational algorithms and deep learning techniques
(Khandouzi et al., 2022; Zhu et al., 2023). Traditional computational
algorithms aim to address this issue by relying on pre-existing
knowledge of local features. However, they have proven challenging
to implement in various scenarios (Soomro et al, 2019). On
the other hand, deep learning algorithms have redefined retinal
microvasculature detection as a pixel classification problem and
have generally outperformed traditional methods. Despite their
advantages, deep learning models have a notable limitation - the
need for a substantial amount of high-quality training images to
effectively train a robust model (Hegde et al.,, 2023; Zhang et al,
2024). To address the crucial question mentioned above, we present
a deep learning method called “RetinalVasNet” based on small
samples. The key contributions and innovations of this study can be
summarized as follows.

1. Reduce the reliance on high-quality training images: We have
implemented a sliding-window technique to minimize the
need for high-quality training images. This approach allows
for the extraction of a larger number of smaller, overlapping
image patches from the original images, effectively augmenting
the dataset. This method can significantly improve the
training process, resulting in a more robust model with better
performance and generalization abilities, even in situations
where access to high-quality training images may be limited.

. Increased Utilization of Color Channels: This study delves into
the untapped potential of utilizing all color channels in the
segmentation of fundus blood vessels. While most previous
studies have primarily focused on the green channel of fundus
images, with a few exploring the use of the red channel, the
blue channel has been largely neglected. Our findings highlight
the valuable information conveyed by each of the three color
channels in retinal microvasculature detection, emphasizing
the need to consider the contribution of each channel in the
development of detection algorithms.

3. Diversified Feature Application: The proposed framework,
with its symmetric structure consisting of both down-
sampling and up-sampling paths, allows for efficient learning
of both low-level and multi-scale features. The down-sampling
path extracts essential low-level features, such as edges
and textures, while the up-sampling path captures broader
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contextual and scaled features. The inclusion of DenseBlocks,
which provide dense connectivity among layers, enhances the
frameworK’s ability to learn complex patterns at different scales.
Additionally, the use of a concatenation operator for skip
connections preserves detailed information from lower layers,
improving the model’s predictive ability by incorporating both
low-level and high-level features.

2 Materials and methods

2.1 Overview of the proposed
methodology

The primary objective of this study is to achieve precise
segmentation of blood vessels in fundus images using the proposed
framework. The input data comprises an RGB-channel image,
and the output is a binary mask. While our framework is also
applicable to images in other color modes, the optimized channel
ratio will not be utilized in those instances. The pseudocode for
RetinalVasNet is presented in Figure 1, with subsequent sections
offering a comprehensive explanation of each step in the process.

2.2 Benchmark dataset

This study evaluated the proposed algorithm RetinalVasNet
using three popular datasets, i.e., DRIVE (Staal et al., 2004), STARE
(Hoover et al., 2000; Hoover and Goldbaum, 2003) CHASE_DB1
(Lietal, 2015; Wuetal., 2025). All these three datasets were publicly
available. In order to conduct a fair comparison, this study used the
same ratios of the training and testing samples in each dataset. The
proposed RetinalVasNet framework takes the fundus images as the
input and outputs the binary mask images of the microvasculature.
Therefore, we need the datasets of both fundus images and their
annotated mask images to train the RetinalVasNet model.

2.3 Framework of RetinalVasNet

RetinalVasNet adopts a symmetric architecture, comprising two
interconnected paths, as illustrated in Figure 2. The down-sampling
path links the layers DenseBlock1, DenseBlock2, DenseBlock3, and
DenseBlock4, which are responsible for capturing semantic and
contextual information. Conversely, the up-sampling path retains
spatial details and connects the layers DenseBlock4, DenseBlock5,
DenseBlock6, and DenseBlock7. To recover image information
lost during pooling or down-sampling, skip connections are
incorporated between DenseBlock1 and DenseBlock7, DenseBlock2
and DenseBlock6, as well as DenseBlock3 and DenseBlocks.
These skip connections utilize concatenation operations, offering
several benefits. They help alleviate the vanishing gradient problem
by providing a more direct pathway for gradient flow during
backpropagation, allow for the reuse of low-level features in
subsequent layers, and enhance the model’s capacity without
introducing additional computational burden. Furthermore,
concatenating features from various layers facilitates the learning
of more diverse and comprehensive feature representations,
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Pseudocode of RefinalVasNet

Input. Each sample image S; has three channels (RGB). The parameter patch_size
is the size of the patch used in the framework. The parameter parch number is the
number of patches extracted from the sample image. The parameter /r is the learning
rate. The parameter epoch is the number of times that the data passes through the neural
network once and returns once.

Output. Segmented binary blood vessel images

Step 1. Load the dataset, set patch_size, patch _number, Ir, epoch and generate the
training image patches.

Step 2. Set an initial R-G ratio.

Step 3. Load the RetinalVasNet framework and train the model.

Step 4. Adjust the R-G ratio and repeat Step 3 to find the best R-G ratio.

Step S. Add a fixed proportion of the B channel and then repeat Step 4 to find the
best R-G-B ratio.

Step 6. Test the data and return the segmented images with the best overall
segmentation performance.

FIGURE 1

The pseudocode of RetinalVasNet.

which may improve performance. The use of concatenation in
skip connections also preserves finer, high-resolution details
and enables the model to more effectively learn identity
functions.

DenseBlock is a module that links the highest layer with the
lowest layer in the convolutional neural network. It was originally
designed as a part of the DenseNet architecture (Iandola et al,
2025). To preserve the feed-forward style, each layer receives
additional inputs from the preceding layers and passes those
feature maps onto the next layer. It can be expressed by the
formula below:

(1)

x; = Hy([xg, %1, x4 ])

where H, is a non-linear-transformation function to combine the
input samples. It represents the sequential combination of BN (Batch
Normalization), Relu and 3*3 Conv here. The variable x; is the input
of layer I It is worth of noting that there may be actually multiple
convolution layers between layer [-1 and layer .

2.4 Data preprocessing
In order to ensure the best possible image quality, this

study utilizes standard preprocessing steps, including gray-scale
conversion, standardization, contrast limited adaptive histogram
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equalization (CLAHE), and gamma adjustment. When converting
an image to grayscale, eight integer bits are used to represent
its intensity, providing a range of 256 levels between black and
white (0-255). This allows for a diverse range of grey shades,
with 0 representing black, 255 representing white, and 1-254
representing various shades of grey. In this study, the RGB mode
of the fundus images was utilized and it was suggested that all
three channels - red, green, and blue - played a vital role in
accurately segmenting the retinal microvasculatures. To achieve
this, all RGB-mode images were transformed into grayscale images,
with the gray-scale pixel value calculated by adding w, X R, w, x
G and w; x B, where w; +w, +w; =1.0 and R/G/B represented
the values of the red, green, and blue channels, respectively.
Standardization helps to normalize values measured with different
units, typically around the source and 0 with a variance of 1.
This allows for easier comparison and eliminates bias caused by
varying scale parameters. CLAHE is a technique used to enhance
fundus images by dividing them into smaller, equally sized sections
and applying contrast enhancement to each section. This helps to
reduce noise and improve contrast between homogeneous zones. To
address intensity variations in vascular and non-vascular regions,
intensity transformation is used. CLAHE has shown to effectively
improve color accuracy in retinal images by controlling the slope
and amplitude of the intensity function. A circular structuring
element with an eight-pixel radius is also used for morphological
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FIGURE 2
The framework of RetinalVasNet.

opening to further reduce noise. Finally, gamma adjustment can
be used to modify an image’s overall brightness without significant
changes to its appearance, by using a gamma value greater than
one for a darker image and less than one for a brighter image.
Additionally, this study employs a common method used in deep
learning-based research, which involves detecting vessels within
small image patches in order to accurately segment the retinal
microvasculature. Specifically, 96 x 96 pixel squares were utilized
to extract 2,000 and 1,000 patches from training and testing images
respectively. Patches that extended partially outside the field of view
(FOV) were included in the training process, aiding the neural
network in learning to distinguish between inside and outside of
the FOVs.

2.5 Problem Formulation and evaluation
measures

The task of segmenting the retinal microvasculature was
approached as a binary classification problem, with vessel pixels
as positive samples and all other pixels as negative samples. The
number of correctly and incorrectly predicted positive samples were
labeled as true positive (TP) and false negative (FN), respectively.
Similarly, the number of correctly and incorrectly predicted negative
samples were defined as true negative (TN) and false positive
(FP). This resulted in P=TP+FN positive samples and N =
TN + FP negative samples. The overall accuracy was determined by
ACC = (TP+ TN)/(P+ N). The proportions of correctly predicted
positive and negative samples were known as sensitivity SN = TP/P
and specificity SP = TN/N, respectively. The Receiver Operating
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Characteristics (ROC) curve was created by plotting SN and (1 — SP),
with the area under the curve (AUC) serving as a commonly
used parameter-independent metric for evaluating a binary
classifier.

3 Results and discussions

3.1 Assessing the Performance of
RetinalVasNet models with Varied ratios of
Rand G

In this study, we tested the widely accepted belief that
the green channel is the most effective for segmenting retinal
microvasculature, as shown in Figure 3. The channel group “G = 1,
R = 07represents the model performance using the green channel.
Interestingly, the green channel produced the best results only
for the STARE dataset. In contrast, a combination of “G = 0.75,
R = 0.25%achieved the highest performance on the DRIVE and
CHASE_DBI datasets. These results suggest that the red channel
may provide valuable complementary information for segmenting
retinal microvasculature.

3.2 Fine-tuning the weights of R and G

To further investigate the potential of the red and green
channels, a comprehensive optimization of their respective weights
was conducted, as shown in Figure 4. A grid search methodology
was employed to identify the optimal weight configuration for the
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Performance of RetinalVasNet for different combinations of the red and green channels

FEELDLLE

DRIVE (G= DRIVE (G= DRIVE (G= STARE (G= STARE (G= STARE (G= CHASE DB1CHASE DB1CHASE DBI1

o

)

o

o]

05.R=05 075.R= 1,R=0) 05R=05 075.R= 1.R=0) (G=05R= (G=0.75.R(G=1,R=0)
0.25) 0.25) 0.5) =025)
mAUC WACC mSN =SP
FIGURE 3

Performance of RetinalVasNet for different combinations of the red and green channels.

AUC Comparison of Different (R,G) Weights
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FIGURE 4
Optimizing the weights of the R and G channels. (The horizontal axis was the offset value i€[-0.05, +0.05] with the step size 0.01.)

R and G channels in the formula: GreyPixel = (r - i) x R + (g +

However, no significant enhancements were observed for the STARE

i) x G, where i € [-0.05, +0.05] with a step size of 0.01. In this
formula, GreyPixel represents the grayscale value of each pixel in the
grayscale image used for model training. The values of r and g were
determined as r=0.25 and g =0.75 for the DRIVE and CHASE_DB1
datasets, and r = 0.00 and g = 1.00 for the STARE dataset, as derived
in the previous section. The performance metric, AUC, was utilized
as the optimization criterion. The optimal weight combinations
were found to be 0.2 4 x R + 0.76 x G for both the DRIVE and
CHASE_DBI datasets, yielding improved AUC values of 0.9845 and
0.9871, respectively, surpassing those from the previous analysis.

Frontiers in Molecular Biosciences

dataset, where the green channel remained the most effective,
achieving the highest AUC of 0.9863 for retinal microvascular
segmentation.

3.3 Combining the R, G, and B channels

The hypothesis of this study posited that all three color
channels—R, G, and B—contain valuable information for the
segmentation of retinal microvasculature in fundus images. Previous
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FIGURE 5
Comparison of different combinations of the channels R and G.

Different Combinations of w;xR+w,xG+0.1xB

0.3R+0.6G
Different weight combinations of R and G

mDRIVE ®STARE = CHASE DBI1

0.2R+0.7G 0.1R+0.8G ~ 0.0R+0.9G

research has predominantly concentrated on the R and G channels
as the primary sources for this task. In contrast, this study
incorporated the B channel of fundus images, assigning it a fixed
weight of w; = 0.1. Different weight combinations of the R and
G channels were evaluated, as shown in Figure 5. The proposed
method, RetinalVasNet, achieved the highest performance metrics
with an AUC of 0.9837, 0.9803, and 0.9871, for the DRIVE,
STARE, and CHASE_DBI datasets, respectively. The optimal weight
combinations were found to be 0.4 x R + 0.5 x G + 0.1 x B,
02 xR +07xG+0.1xB,and 00 x R + 09 x G + 0.1 x
B. Subsequently, a more detailed refinement process was carried
out using a smaller step size of 0.01 for these three combinations.
While no improvements in AUC were observed for the DRIVE
and CHASE_DBI datasets, Acc increased by 0.0008 and 0.0005,
respectively. The AUC for the STARE dataset was further enhanced
to 0.9839 with the combination 0.208 x R+ 0.692 x G + 0.1 x B.

3.4 Evaluating against previous
state-of-the-art studies

In this section, we demonstrate the superior performance
of RetinalVasNet in retinal microvasculature segmentation,
particularly in comparison to existing state-of-the-art methods. Our
method was evaluated across three prominent datasets—DRIVE,
STARE, and CHASE _DBl—and consistently outperformed
previous approaches on all metrics, including AUC, accuracy,
sensitivity, and specificity.

As shown in Table 1, RetinalVasNet achieved an AUC of 0.9845
on the DRIVE dataset, surpassing all 17 existing methods, with the
next best AUC being 0.9807. Notably, Retinal VasNet also excelled in
accuracy, achieving 0.9671, while the next best model did not exceed
0.9600 in this metric. Furthermore, our method demonstrated
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robust performance in sensitivity (SN = 0.8510) and specificity (SP
=0.9783), again outperforming other studies, which underscores its
superior ability to detect retinal vessels with higher precision and
reliability.

On the STARE dataset, as displayed in Table 2, RetinalVasNet
achieved the best specificity (SP = 0.9882) among all competing
methods, demonstrating its capacity to minimize false positives
and maintain high classification integrity. Despite not achieving the
highest AUC, RetinalVasNet’s performance in terms of accuracy
(ACC = 0.9752) and sensitivity (SN = 0.8180) showed significant
improvements over prior methods, marking a clear advancement in
segmentation techniques.

For the CHASE_DB1 dataset, as shown in Table 3,
RetinalVasNet again set the bar with an AUC of 0.9871, surpassing
all prior methods. Although sensitivity slightly lagged behind
the best-performing study, RetinalVasNet’s high specificity (SP
= 0.9858) and excellent accuracy (ACC = 0.9747) reinforced its
dominance in the segmentation task.

3.5 Comparing cross-training to previous
state-of-the-art studies

Advancements in Al-driven fundus vascular segmentation
have significantly enhanced model accuracy; however, large-
scale, real-world clinical validation remains limited. To evaluate
RetinalVasNet’s performance on an independent verification
dataset, cross-training experiments were conducted using
the DRIVE and STARE datasets. As presented in Table 4,
RetinalVasNet achieved robust accuracy and sensitivity on the
STARE dataset when trained on DRIVE. However, specificity
and AUC were slightly lower. Conversely, when trained on
STARE and tested on DRIVE, RetinalVasNet attained the
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TABLE 1 Evaluating against previous State-of-the-Art studies on DRIVE.

10.3389/fmolb.2025.1562608

TABLE 2 Evaluating against previous State-of-the-Art studies on STARE.

Method AUC | ACC SN SP Method AUC ACC ’ SN SP
Lietal. (2015) 0.9738 0.9527 0.7569 0.9816 Lietal. (2015) 0.9879 0.9628 0.7726 0.9844
Lam et al. (2010) 0.9614 0.9472 NA NA Lam et al. (2010) 0.9739 0.9567 NA NA
Fraz et al. (2012a) NA 0.9430 0.7152 0.9795 Fraz et al. (2012a) NA 0.9442 0.7311 0.968
Fraz et al. (2012b) 0.9747 0.9480 0.7406 0.9807 Fraz et al. (2012b) 0.9768 0.9534 0.7548 0.9763
Erkang et al. (2014) 0.9648 0.9474 0.7252 0.9798 Azzopardi et al. (2015) 0.9497 0.9563 0.7716 0.9701
Azzopardi et al. (2015) 0.9614 0.9442 0.7655 0.9704 Mapayi SV and Tapamo (2015) NA 0.9510 0.7626 0.9657
Mapayi SV and Tapamo (2015) 0.9711 0.9500 0.7406 0.9807 Pawet Liskowski and Krawiec 0.9930 | 0.9667 0.9289 | 0.9710
(2016)
Pawet Liskowski and Krawiec 0.9791 0.9535 0.7811 0.9807
(2016) Tang et al. (2019) 0.9898 0.9695 0.8162 0.9869
Dasgupta and Singh (2017) 0.9744 0.9533 0.7691 0.9801 Author anoymous (2025) 0.9819 | NA NA NA
Wu et al. (2025) 0.9807 0.9567 0.7844 0.9819 Saroj et al. (2020) NA 0.9668 0.8002 0.9864
Tang et al. (2019) 0.9822 0.9574 0.8564 0.9710 Zhang et al. (2022) NA 0.9733 0.8427 0.9857
(Author anoymous, 2025) 0.9790 NA NA NA Chala et al. (2021) NA 0.9509 0.7278 0.9724
Saroj et al. (2020) NA 0.9544 0.7307 0.9761 Dhanagopal et al. (2022) NA 0.9543 0.7497 0.9842
Desiani et al. (2022) NA 0.9536 0.7974 0.9761 RetinalVasNet 0.9863 0.9752 0.8180 0.9882
Zhang et al. (2022) NA 0.9565 0.7850 0.9618 The bolded value is the best value for the corresponding performance metric in the
experiment.
Mathews et al. (2020) 0.9572 0.9633 0.8639 0.9744
Wang et al. (2020) 0.9823 0.9581 0.7991 0.9813
To address domain discrepancies, we propose multiple
RetinalVasNet 0.9845 | 0.9671 | 08510 | 09783 strategies: (1) adversarial domain alignment during training to unify

The bolded value is the best value for the corresponding performance metric in the
experiment.

highest accuracy but exhibited reduced AUC and sensitivity
compared to recent studies, with sensitivity falling below a critical
threshold.

These cross-training experiments underscore a key challenge
in deploying retinal vessel segmentation models: domain shift.
This issue stems from differences in field-of-view and background
complexity between datasets. The STARE dataset, with its wider
field-of-view, intricate background, thin peripheral vessels,
and heterogeneous non-vascular regions, posed challenges not
encountered in the DRIVE dataset. Consequently, the model
optimized for DRIVE misclassified fine vascular structures as
background, reducing sensitivity, and generated false positives
in complex backgrounds, lowering specificity. In contrast, the
STARE-to-DRIVE transfer yielded high accuracy and specificity
but a notable decline in AUC. The DRIVE dataset’s high
contrast between vessels and background, coupled with stricter
annotation criteria, led to a feature mismatch with STARE-
trained models, increasing false negatives for microvessels
and consequently impacting AUC by limiting true positive
detection.
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feature distributions across datasets, (2) test-time normalization to
dynamically adjust to target dataset characteristics, and (3) semi-
supervised fine-tuning using pseudo-labels for unlabeled target
images. These methods aim to enhance model generalizability,
ensuring robust and consistent performance in diverse real-
world clinical settings with inherent data variability. In future
model development and transfer learning experiments, we will
implement and evaluate these strategies to further optimize
performance.

3.6 Assessing the Performance of
RetinalVasNet with different Channel
Fusion Preprocessing Methods

We conducted a comparison between our method and the
traditional convolutional approach, which directly inputs RGB
images and learns convolutional filter weights during training.
We used a weighted average of the R, G, and B channels as
an alternative preprocessing step. Table 5 presents the results of
this comparison. Our findings indicate that the Channel Fusion
Preprocessing Method outperforms the traditional convolution
layer preprocessing across four key metrics, demonstrating
its effectiveness and potential advantages over conventional
methods.
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TABLE 3 Evaluating against previous State-of-the-Art studies on
CHASE_DBL1.

10.3389/fmolb.2025.1562608

TABLE 4 Performance comparison of the cross-dataset training
experiments.

Method ‘ AUC ‘ ACC ‘ SN ‘ SP Method AUC ’ ACC SN N
Lietal. (2015) 0.9716 0.9581 0.7507 | 0.9793 Training: drive; testing: stare
Fraz et al. (2012b) 09712 | 09469 | 07424 | 09711 Lietal. (2015) 09671 | 09545 | 07024 = 0.9828
Azzopardi et al. (2015) 0.9487 0.9381 0.7585 0.9587 Fraz et al. (2012a) 0.9660 0.9495 0.7010 0.9770
Wau et al. (2025) 0.9825 0.9637 0.7538 0.9847 Pawel Liskowski and Krawiec (2016) NA 0.9528 NA NA
Tang et al. (2019) 09850 | 0.9654 | 0.8106 | 0.9807 Tang et al. (2019) 09754 | 09522 | 0.7447 | 09775
Mathews et al. (2020) 0.9448 0.9643 0.8477 0.9825 Soares JJGL et al. (2006) NA 0.9327 NA NA
Wang et al. (2020) 0.9871 | 09670 | 0.8239 | 0.9813 Boris (1992) NA 09464 = NA NA
José Ignacio Orlando et al. (2017) 0.9524 NA 0.7277 0.9712 Yan et al. (2018) 0.9599 0.9494 0.7292 0.9815
Saha et al. (2021) 09681 | 09452 | 0.7279 | 0.9658 Shao et al. (2023) 0.8836 | NA NA NA
RetinalVasNet 0.9871 | 0.9747 | 0.8094 | 0.9858 Li and Rahardja (2021) 09752 | 09543 | 07497 | 0.9842
The bolded value is the best value for the corresponding performance metric in the RetinalVasNet 0.9663 0.9573 0.7811 0.9718
experiment.
Training: stare; testing: drive
Li etal. (2015) 09677 | 09486 | 0.7273 | 0.9810
3.7 Assessing the performance of other
Fraz et al. (2012a) 09697 | 09456 = 0.7242 | 0.9792
datasets
Pawel Liskowski and Krawiec (2016) NA 0.9448 NA NA
With technological advancements, annotated public fundus
image datasets have become more accessible. We compared Tang et al. (2019) 0.9740 | 09501 | 07652 | 09810
our results with four state-of-the-art methods using the HRF i )
i . Soares JJGL et al. (2006) NA 0.9397 NA NA
(Budai et al, 2013) and FIVES (Jin et al, 2022) datasets, Due
to large image sizes and server limitations, we downsampled the Boris (1992) NA 09266 = NA NA
datasets. The FIVES dataset images, with equal dimensions, were
directly downsampled to 224 x 224. For the HRF dataset, we cropped Yan etal. (2018) 0.9708 | 09569 | 07211 | 09840
non—essentl‘al black areas to achieve a uniform aspect ratio before Shao et al. (2023) 0sso1 | Na NA NA
downsampling to 224 x 224.
As shown in Table 6, For the HRF dataset, RetinalVasNet Li and Rahardja (2021) 0.9716 | 09620 | 0.7807 | 0.9770
achieves an accuracy of 0.9995, demonstrating its excellent overall
performance. In terms of AUC, it stands at 0.9303, the highest among RetinalVasNet 09431 | 09652 | 07260 | 0.5882

the methods compared, reflecting its superior ability to distinguish
between the foreground (vessels) and background (non-vessels)
in retinal images. SN, which measures the true positive rate, is
0.6036 for RetinalVasNet, showing it captures more of the vascular
structures compared to others like SA-UNet (0.2735) and Uysal et al.
(0.5569), although slightly behind FR-UNet and Little W-Net. The
SP of 0.9998 places RetinalVasNet on par with the other methods,
indicating its ability to correctly identify non-vessel pixels.

For the FIVES dataset, RetinalVasNet continues to perform
exceptionally well. Its accuracy remains 0.9998, indicating that it has
maintained high performance across datasets. Its AUC of 0.9993 is
slightly lower than FR-UNet and Uysal et al., but still demonstrates
arobust ability to distinguish between relevant and irrelevant pixels.
Sensitivity increases to 0.8845, outperforming most other methods,
including SA-UNet (0.8441), while specificity remains perfect at
0.9999, matching the other state-of-the-art methods in this regard.

In summary, Retinal VasNet consistently delivers high accuracy,
AUG, and specificity, with a strong sensitivity score on both the HRF
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The bolded value is the best value for the corresponding performance metric in the
experiment.

and FIVES datasets. These results highlight its competitive edge in
retinal microvasculature segmentation, outperforming or matching
many advanced methods, making it a valuable contribution
to the field.

3.8 Visualization experiments

To further demonstrate the practical application and usability
of our proposed method, we developed a software tool that allows
users to upload fundus images and perform real-time retinal
vessel detection. The tool leverages our RetinalVasNet model to
generate binary segmentation masks of the microvasculature. As
shown in Figure 6, the software interface enables users to input
fundus images of different resolutions, and the output clearly
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TABLE 5 Performance comparison of different channel preprocessing methods.

Dataset Channel preprocessing method
CNN 0.9840 0.9603 0.8667 0.9697
DRIVE
Our 0.9845 0.9671 0.8510 0.9783
CNN 0.9857 0.9631 0.8666 0.9728
STARE
Our 0.9863 0.9752 0.8180 0.9882
CNN 0.9871 0.9631 0.8798 0.9715
CHASE_DB1
Our 0.9871 0.9747 0.8094 0.9858
TABLE 6 Performance comparison of other methods on two additioanl datasets.
Dataset Method ACC AUC SN ‘ SP
Little W-Net (Galdran et al., 2025) 0.9994 0.9209 0.5866 0.9998
FR-UNet (Liu et al., 2022) 0.9995 0.9285 0.6006 0.9998
HRF SA-UNet (Guo et al., 2020) 0.9926 0.6365 0.2735 0.9995
Uysal et al. (2025) 0.9994 0.9139 0.5569 0.9998
Retinal VasNet 0.9995 0.9303 0.6036 0.9998
Little W-Net (Galdran et al., 2025) 0.9998 0.9999 0.8897 0.9999
FR-UNet (Liu et al., 2022) 0.9998 0.9998 0.8901 0.9999
FIVES SA-UNet (Guo et al., 2020) 0.9998 0.9944 0.8441 0.9999
Uysal et al. (2025) 0.9998 0.9998 0.8923 0.9998
Retinal VasNet 0.9998 0.9993 0.8845 0.9999

visualizes the detected retinal vessels. The usage of the software can
be found in Supplementary File 1. The software can be downloaded
through the link in Data Availability.

3.9 Principles for designing RetinalVasNet

To effectively segment blood vessels in fundus images, a
novel framework must be designed that takes into account their
fuzzy boundaries, complex gradients, and biophysical constraints
(Orujov et al., 20205 Sidhu et al., 2023). This can be achieved by
combining specialized techniques. First, the focus should be on edge
detection, as blood vessels follow biophysical rules and have regular
shapes despite their fuzzy boundaries (Hakim et al., 2021; Lv et al.,
2021). Techniques such as gradient-based methods or advanced
convolutional layers can effectively detect these edges. Secondly,
a multi-scale approach is necessary due to the complex gradients
in fundus images. Implementing a hierarchical structure where
the image is processed at different scales can help capture these
gradients (Li et al., 2022; Zhao et al., 2022). Lastly, a comprehensive
preprocessing pipeline is crucial to address variations in image
quality and lighting conditions (Huang and Deng, 2023; Zhou et al.,
2022). Techniques like contrast enhancement, noise reduction, and
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histogram equalization can ensure image quality and minimize
unwanted variations.

The RetinalVasNet framework is designed with a symmetrical
structure that incorporates both down-sampling and up-sampling
paths. This allows for efficient learning of low-level and multi-scale
features. The down-sampling path focuses on extracting essential
features like edges and textures, while the up-sampling path captures
broader contextual and scaled features. Additionally, DenseBlocks
are used to enhance the frameworKs ability to learn intricate
patterns at different scales. The use of a concatenation operator
for skip connections helps retain detailed information from lower
layers, thus improving the model’s predictive capacity by utilizing
both low-level and high-level features. Furthermore, the sliding-
window technique and a comprehensive preprocessing pipeline
provide a diverse and noise-free training dataset, allowing the
model to concentrate on learning relevant features. This unique
combination of strategies makes RetinalVasNet a powerful tool
for segmenting fundus blood vessels, showcasing its potential for
superior performance.

Furthermore, RetinalVasNet distinguishes itself from existing
“multi-channel/multi-modal” fusion networks through its unique
approach to integrating color channels and leveraging them
for enhanced segmentation performance. While many current
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FIGURE 6

Software interface for real-time retinal vessel detection using RetinalVasNet

methods focus on simple channel concatenation or basic weighted
combinations of channels, RetinalVasNet employs a more
sophisticated fusion strategy by incorporating a channel fusion
preprocessing step that carefully balances the contributions of each
color channel (R, G, B). This method allows the network to capitalize
on the distinct information provided by each channel, optimizing
their individual strengths for vessel detection. Moreover, unlike
traditional multi-modal networks that require the simultaneous
processing of diverse types of data (such as combining fundus
images with other imaging modalities like OCT or fluorescein
angiography), RetinalVasNet solely focuses on RGB fundus images
and maximizes their potential without introducing the complexity
of multi-modal data fusion. This simplifies the architecture while
still enhancing its performance, making it more computationally
efficient and easier to implement in clinical settings. By reducing
the reliance on additional modalities and focusing on optimizing
the inherent information from the RGB channels, RetinalVasNet
provides a more streamlined yet powerful solution for retinal
microvasculature segmentation.

In the process of optimizing RetinalVasNet, searching for the
optimal ratio of RGB channels can be computationally expensive
due to the large number of possible combinations and the time
required for training multiple models. To address this, we propose
several strategies to reduce computational resources and time. First,
instead of exhaustively searching across all possible ratios, a more
efficient search method such as Bayesian optimization or genetic
algorithms can be employed. These methods intelligently explore
the search space by using probabilistic models or evolutionary
strategies to focus on the most promising ratios, thus reducing the
number of evaluations needed. Second, leveraging early stopping
during the training process can prevent unnecessary computational
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costs by halting training once performance plateaus, ensuring that
only the most optimal configurations are fully trained. Additionally,
adopting transfer learning from pre-trained models can significantly
shorten training times, as the model would already have learned low-
level features, requiring less fine-tuning for optimal ratio selection.
Lastly, the use of parallel processing, where multiple configurations
are evaluated simultaneously on separate machines or GPU cores,
can speed up the search process. By integrating these approaches,
the time and resources required to find the optimal RGB channel
ratio can be minimized, making the process more efficient without
compromising the model’s performance. All optimization strategies
will be implemented and explored in specific directions in our
future research to further enhance the efficiency and performance
of Retinal VasNet.

4 Conclusion

This deep
RetinalVasNet, for segmenting the retinal microvasculature

study introduces a learning  framework,
in fundus images. RetinalVasNet shows superior performance
compared to existing studies on the DRIVE and CHASE_
DB1 datasets, and performs similarly well on the STARE
dataset. In a transfer learning experiment, the method also
demonstrates the importance of transferring knowledge from
pre-trained models. Our experimental data also suggests that
all three color channels of the fundus images contain valuable
information for microvasculature segmentation, and a weighted
combination of these channels produces satisfactory results. In
future studies, we plan to apply the RetinalVasNet framework to
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other ophthalmological images, such as Ophthalmology Optical
coherence tomography (OCT).
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