
TYPE Original Research
PUBLISHED 09 April 2025
DOI 10.3389/fmolb.2025.1567199

OPEN ACCESS

EDITED BY

Matteo Becatti,
University of Firenze, Italy

REVIEWED BY

Farouk Zouari,
Tunis El Manar University, Tunisia
Francisco Domingues,
Eurac Research, Italy

*CORRESPONDENCE

Fatma Hilal Yagin,
hilal.yagin@inonu.edu.tr

Mohammadreza Aghaei,
mohammadreza.aghaei@ntnu.no

RECEIVED 26 January 2025
ACCEPTED 24 March 2025
PUBLISHED 09 April 2025

CITATION

Colak C, Yagin FH, Yagin B, Alkhateeb A,
Al-Rawi MBA, Akhloufi MA and Aghaei M
(2025) Identification of metabolomics-based
biomarker discovery in individuals with down
syndrome utilizing kernel-tree
model-enhanced explainable artificial
intelligence methodology.
Front. Mol. Biosci. 12:1567199.
doi: 10.3389/fmolb.2025.1567199

COPYRIGHT

© 2025 Colak, Yagin, Yagin, Alkhateeb,
Al-Rawi, Akhloufi and Aghaei. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Identification of
metabolomics-based biomarker
discovery in individuals with
down syndrome utilizing
kernel-tree model-enhanced
explainable artificial intelligence
methodology

Cemil Colak1, Fatma Hilal Yagin1*, Burak Yagin1,
Abedalrhman Alkhateeb2, Mahmood Basil A. Al-Rawi3,
Moulay A. Akhloufi4 and Mohammadreza Aghaei5,6*
1Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya,
Türkiye, 2Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada,
3Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi
Arabia, 4Perception, Robotics and Intelligent Machines (PRIME) Lab, Department Computer Science,
Université de Moncton, Moncton, NB, Canada, 5Department of Ocean Operations and Civil
Engineering, Norwegian University of Science and Technology (NTNU), Alesund, Norway,
6Department of Sustainable Systems Engineering (INATECH), Albert Ludwigs University of Freiburg,
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Objective: This study aims to develop an explainable artificial intelligence (XAI)
model integrated with machine learning (ML) to comprehensively investigate
metabolic differences between individuals with Down syndrome (T21) and
healthy controls (D21) and to identify novel/pathway-specific biomarkers. In this
study, ML classifiers including AdaBoost, LightGBM, Random Forest, KTBoost,
and XGBoost are applied to metabolomics data obtained from metabolomic
analyses by high-resolution liquid chromatography-mass spectrometry (LC-
MS) using blood plasma samples of 316 T21 and 103 D21 individuals, and
the importance of metabolites is evaluated by XAI-based SHAP analysis.
The KTBoost model shows the highest classification performance with an
accuracy of 90.4% and area under the curve (AUC) of 95.9%, outperforming
AdaBoost, LightGBM, Random Forest, and XGBoost. Significant downregulation
and upregulation of some metabolites were observed in the T21 group
compared to the D21 group. Metabolites such as vitamin C, taurolithocholic
acid, sphingosine, and prostaglandin A2/B2/J2 are observed at low levels in the
T21 group. In contrast, metabolites such as thymidine, tau-roursodeoxycholic
acid, serine, and nervonic acid are elevated. SHAP analysis revealed that
L-Citrulline, Kynurenin, Prostaglandin A2/B2/J2, Urate, and Pantothenate
metabolites could be novel/pathway-specific biomarkers to differentiate the
T21 group. This study revealed significant metabolic alterations in individuals
with T21 and demonstrated the effectiveness of the combination of ML
and XAI methods to identify novel/pathway-specific biomarkers. The findings
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may contribute to a better understanding of Down syndrome’s molecular
mechanisms and the development of future diagnostic and therapeutic
strategies.
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1 Introduction

Down syndrome (DS) is a genetic disorder due to trisomy
of chromosome 21 and is associated with intellectual disability,
characteristic facial features, and secondary conditions. DS is the
most common chromosomal abnormality, with an incidence of
approximately one in every 700 live births worldwide. Multiple
physiological and metabolic changes are characteristics of the
syndrome and may have striking effects on the quality of life
of affected individuals. Metabolomic studies have played an
important role in DS in recent years in understanding the
molecular mechanisms in DS and discovering some biomarkers.
Metabolomics is a powerful tool for comprehensively analyzing
small biological molecules (metabolites) and understanding the
disease process better. Metabolic alterations seen in DS may
offer new insights into the syndrome’s pathophysiology and lead
to early diagnosis, prognosis, and treatment strategies (Bahado-
Singh et al., 2015; Pecze et al., 2020).

In recent years, metabolomic studies have become increasingly
important to understand the molecular mechanisms underlying DS
and to identify novel/pathway-specific biomarkers. Metabolomics
is a powerful tool for comprehensively analyzing small
molecules (metabolites) in biological systems, providing a better
understanding of disease processes. Metabolic alterations observed
in DS may shed light on the syndrome’s pathophysiology and
contribute to developing early diagnosis, prognosis and treatment
strategies. Abnormalities in various metabolic pathways have been
observed in individuals with DS, and defects in mechanisms such as
oxidative stress and antioxidant defense have been widely reported.
Altered levels of vitamin C and other antioxidants have been
associated with increased oxidative damage, which is frequently
observed in individuals with DS.

Furthermore, abnormalities in lipid metabolism, particularly
sphingolipid and cholesterol metabolism, have been identified.
These changes are associated with the neurological symptoms
observed with DS and the risk of early-onset alzheimer’s disease.
Alterations in amino acid metabolism also play an important
role in DS. For example, disturbances in homocysteine-related
metabolic pathways have been associated with an increased risk
of cardiovascular disease. Furthermore, alterations in tryptophan
metabolism and the kynurenine pathway may contribute to the
immunological and neurological abnormalities observed in DS.
Defects in energy metabolism and mitochondrial function are also
important features of DS. Changes in the levels of metabolites
such as pantothenic acid (Vitamin B5) may indicate mitochondrial
dysfunction and contribute to the various clinical features observed
in DS. Inflammatory processes and immune system dysregulation
are also important features of DS. Alterations in the levels of
inflammatory mediators such as prostaglandins may be associated

with chronic inflammation and susceptibility to autoimmune
diseases observed in individuals with DS (Pecze and Szabo, 2021;
Dierssen et al., 2020; Kiluk et al., 2021). However, the pathogenesis
of DS is complex, and the multiplicity of contributing factors,
overfitting and instability make it difficult to identify important
biomarkers using only traditional statistical methods.

Metabolomics research has attempted to determine markers
for DS through evaluations of oxidative stress together with
lipid metabolic pathways and mitochondrial dysfunctions. First-
trimester DS predictions through metabolomics profiling became
possible after a medical paper showed that changes in amino
acids and lipids indicated early signs of the syndrome (Bahado-
Singh et al., 2013). A clinical article established that Down syndrome
produced widespread disturbances in bioenergetic pathways along
with impairments in tricarboxylic acid (TCA) cycle intermediate
function and impaired mitochondrial activity, which leads to DS
neurodevelopmental and cardiac impairments (Pecze and Szabo,
2021). Multiple studies confirm that DS is associated with decreases
in vitamin C and glutathione antioxidants because of genetic
overexpression of the SOD1 gene located on chromosome 21.
Studies revealed insulin signaling along with problems in lipid
metabolism as crucial elements in DS pathway development,
which suggests therapists could utilize ceramides and phospholipids
as diagnostic markers (Muchová et al., 2014). The existing
research faced two main limitations because it used univariable
statistical examination on small sample groups, which prevented
them from studying intricate metabolic network relationships.
Research presented machine learning (ML) to effectively combine
Alzheimer’s-related DS biomarkers through multi-omics data
integration. The lack of interpretation clarity currently stands in
the way of doctors adopting this approach into clinical practice.
The research fills current scientific voids through its integration
of extensive metabolomics analysis with explainable artificial
intelligence XAI solutions, which lead to both new biomarker
discovery and practical discoveries about DS disease origins
(Dierssen et al., 2020; Petersen and O’Bryant, 2019).

In recent years, ML algorithms have been increasingly used
in the detection of complex diseases and analysis of omics
data such as metabolomics. These approaches offer powerful
tools for analyzing complex metabolic profiles and identifying
novel/pathway-specific biomarkers. In the literature, algorithms
such as KTBoost (a hybrid kernel-tree boosting algorithm),
XGBoost (gradient-boosting algorithm), and Random Forest have
been reported to perform highly in discriminating diseases using
omics panel data (Yagin et al., 2024a; Yagin et al., 2023a;
Yagin et al., 2023b). ML prediction models provide significant
advances in diagnosing genetic diseases and biomarker discovery.
Çelik et al. (2017) identified Down syndrome genes with high
accuracy by analyzing protein levels. Complementing this work,
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Petersen and O'Bryant (2019) examined blood biomarkers for
detecting Alzheimer’s disease in individuals with Down syndrome
and obtained promising results. Asif et al. (2018) were successful
in identifying genes in complex diseases such as Autism Spectrum
Disorder using Gene Ontology. This approach seems to be
applicable to other genetic disorders. In the field of image
processing, Pooch et al. (2020) achieved high accuracy rates in the
automatic detection of Down syndrome using facial features.

Zhang et al. (2021) made significant advances in biomarker
discovery using gene expression data. The PermFIT method
developed in one study improved the prediction accuracy of
ML classifiers by identifying important biomarkers in complex
human diseases such as Down syndrome. In conclusion, machine

learning techniques have shown promising results in the fields
of genetic disease detection, biomarker discovery and disease
prediction and are expected to become more important in
the future (Khalsan et al., 2022).

However, with the loss of confidence in standard machine
learning classifiers due to their lack of interpretability (Krishnan,
2020), emerging explainable artificial intelligence (XAI) excels
at processing high-dimensional data such as metabolomics and
provides better generalization and differentiation capabilities,
especially in the assessment of patient health and complications
(Bansal et al., 2021; Ribeiro et al., 2016). The use of XAI is
designed to make it easier to understand and diagnose the model
output, no matter how accurate the output is. As a result, it
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will help users understand the results of the system and provide
the model developer with insightful input to improve the model
(Utomo et al., 2023; Pratap et al., 2023).

Despite the success of standard classifiers in several DS
investigations, more research needs to be done on the application
of XAI in DS. Therefore, XAI-based research can enhance our
understanding of the complex pathogenesis of DS and aid in
the development of diagnostic and treatment strategies. XAI-
based models have the potential to reveal previously unknown
biomarkers, as well as improve diagnostic sensitivity, which leads
to more effective and personalized treatment (Cansel et al., 2023).
XAI methods such as SHapley Additive exPlanations (SHAP) are
essential for translating metabolomics data into clinically actionable
information. XAI approaches address the “black box” problem,
which increases trust in ML models, enables rapid validation of
biomarkers, and speaks to the growing interest in transparent AI
approaches in biomedical research. The use of XAI in this study
is a concrete example of the paradigm shift toward interpretable,
mechanism-driven approaches in DS research.

The present study seeks to investigate the metabolic
differences between individuals with DS and controls using high-
resolution metabolomics profiling and analytics to identify novel
metabolomics biomarkers. The aim of the proposed framework is to
explain the molecular mechanisms of DS at the pathophysiological
level using integrated bioinformatics-based methodologies and
tree-based, machine learning classifiers, including AdaBoost,
LightGBM, XGBoost, KTBoost, and RandomForest, complemented
by XAI through SHAP analysis. This integrated approach aims to
standardize the assessment of classifier performance, improvemodel
explainability and provide a solid prediction framework for DS.

2 Materials and methods

The methodology of this study is based on the STROBE
guideline and is described below in accordance with the guideline.

2.1 Study design, participants and variables

The open-access data used in this study are available
on the NIH Joint Fund’s National Metabolomics Data
Repository (NMDR) website, Metabolomics Workbench (www.
metabolomicsworkbench.org), where the project ID is designated
as ST002200. Detailed information about the study design and data
collection methods can be found in the Metabolomics Workbench
entry for the project and in prior publications from the Human
Trisome Project. The data can be accessed directly via it's Project
DOI: (10.21228/M8C99T), the original project was supported
by NIH grant, U2C- DK119886. The Inonu University Health
Sciences Non-Interventional Clinical Research Ethics Committee
approved this study (approval number: 2024/6496). The research
from which the dataset was taken was conducted in a cross-
sectional design to compare the metabolic profiles of individuals
with DS (T21 group) and healthy individuals (D21 group). In the
related study, metabolomics data from the T21 and D21 groups
were collected at a single time point. The current study focuses
on analyzing the relative abundance of available metabolites in the

blood plasma of 316 individuals with T21 and 103 healthy controls
(419 in total) (Powers et al., 2019).

Participants were carefully selected to ensure the validity of
the study. The T21 group consisted of individuals diagnosed with
Down syndrome and individuals in the D21 group were selected
from healthy individuals without any known neurological or
metabolic diseases. All participants were matched for demographic
characteristics including gender and age, thus reducing the influence
of potential confounding factors. These selection criteria ensure that
the metabolic profiles of individuals in both groups reflect only
Down syndrome-specific differences (Zhang et al., 2021).

Down syndrome status (T21 or D21) and specific metabolite
levels obtained by metabolomics profiling were considered as
primary outcome variables. Metabolite levels were evaluated as
possible biomarkers affecting the T21 group in particular.

2.2 Power analysis

A total of 419 cases, including 316 T21 individuals and 103
healthy controls, were evaluated in this study. The sample size
required for this study was determined using MetSizeR (https://
cran.r-project.org/web/packages/MetSizeR/index.html accessed on
1 March 2024) using the probabilistic principal component analysis
(PPCA) model. The calculation was based on a false discovery rate
of 0.05. As a result, a minimum sample size of 14 patients was
determined to be required, with 7 patients in each group. Although it
was challenging to recruit T21 patients andhealthy controlswhomet
the specific inclusion criteria outlined in this research, the sample
size exceeded the estimate obtained using MetSizeR, a method
commonly used to assess sample size in metabolomics studies.

2.3 Data analysis, modeling and
performance evaluation

2.3.1 Data preprocessing and normalization
The raw data obtained from metabolomics analyses were first

subjected to a quality control process. In this process, metabolites
with a signal-to-noise ratio below three (Pecze and Szabo, 2021)
and samples with more than 30% missing data were excluded from
the analysis. The remaining missing data were filled using the k-
nearest neighbor (k-NN) algorithm (k = 5). The conformity of
the data to normal distribution was assessed using the Shapiro-
Wilk test. Non-normally distributed data were log2 transformed to
stabilize variance and attenuate skewness, an approach commonly
applied in metabolomics to address heteroscedasticity. Finally, all
data were standardized with the auto-scaling method. Synthetic
Minority Oversampling Technique (SMOTE) approach was applied
to address the problem of class imbalance between groups for the
output variable. To limit the risk of excluding relevant features,
the study focused on preserving the entire metabolite profile for
ML analysis.

2.3.2 Statistical and bioinformatics analyses
Independent sample t-tests were performed to determine the

differences in metabolite levels between T21 and D21 groups.
Metabolite data were normalized by log-transformation during the
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analysis process, thus homogenizing the distribution of the data.
In analyzing metabolite levels, fold change analysis was applied to
compare groups and a volcano plot was drawn. A threshold value
of fold change (FC) = 1.2 was used to identify metabolites showing
significant differences; this value is widely preferred in the literature
for the detection of metabolites showing statistically significant up-
and downregulation.The level of statistical significancewas set at p <
0.05. A partial least squares-discriminant analysis (PLS-DA) model
was used to assess overall differences inmetabolite profiles.ThePLS-
DA model was performed based on 10-fold cross-validation, and
important metabolites were visualized using variable importance
scores. All p-values were adjusted using the Benjamini–Hochberg
procedure (DeLong et al., 1988). DeLong’s test was utilized for
the comparison of the areas under correlated receiver operating
characteristic curves.

2.3.3 Machine learning algorithms
Five different ML algorithms, namely, AdaBoost, LightGBM,

RF, KTBoost and XGBoost, were used to compare the performance
of classifying T21 and D21. AdaBoost, LightGBM, RF, KTBoost,
and XGBoost methods are algorithms to improve classification
performance using ensemble learning and various ML strategies.
AdaBoost builds a strong model by sequentially training weak
classifiers (usually decision trees) and giving more weight to errors
at each step (Freund and Schapire, 1997). LightGBM is a gradient-
boosting algorithm that works fast and efficiently on large datasets;
it uses histogram-based approaches to data sampling. RF is an
ensemble model that combines multiple decision trees and classifies
based on the vote of each tree, reducing the risk of overlearning
(Ahn et al., 2023; Guldogan et al., 2023). KTBoost combines
boosting and kernel methods, leveraging both strengths to capture
complex, non-linear relationships within the data (Sigrist, 2021).
XGBoost uses optimization and parallelization techniques to speed
up the gradient boosting process and improve accuracy, typically
offering low and highmemory usage (Yagin et al., 2024a; Yagin et al.,
2024b). These methods use different optimization and weighting
strategies to improve classification performance, resulting in robust
and reliable models. All models were implemented using Python 3.9
and the Scikit-learn 1.4.2 library. The dataset was divided into 70%
training set and 30% test set, and then this process was repeated 100
times, the performance of the models is expressed as the average of
these 100 repetitions. Calculating accuracy, sensitivity, specificity, F1
score, AUC, and Brier score metrics evaluated the performance of
the models.

2.3.4 Explainable artificial intelligence
XAI is the general name for methods developed to make

artificial intelligence andmachine learningmodelsmore transparent
and understandable. Although traditionalmachine learningmodels,
especially deep learning-based models, offer high accuracy and
performance, their decision-making processes often remain a “black
box” due to their complexity. XAI improves the understandability
of these “black box” models, enabling an understanding of why
and how model outputs arise. These explanations allow users to
assess the reliability of the model, transparently review decision-
making processes and, if necessary, fine-tune the model to improve
its performance. XAI is especially important for ethics, security
and accuracy in decision-critical fields such as medicine, law, and

finance. XAI methods make it possible to visualize the model’s
decision processes, analyze the effects of certain features on the
results, and ensure a balance of explainability and accuracy (Samek
and Müller, 2019; Arrieta et al., 2020; Zhang et al., 2022).

In this study, SHAP analysis was applied in the XAI framework
to distinguish the T21 group fromhealthy individuals and to identify
metabolites prioritized as biomarkers by classification models.
SHAP analysis was performed on the highest-performingMLmodel
using Python’s SHAP library (version 0.39.0). SHAP values were
calculated using the TreeExplainermethod to visualize the decision-
making processes of the model and to examine the effects of
metabolites on classification. As a result of this analysis, metabolites
were ranked according to their average absolute SHAP values, and
the top 20 metabolites that stand out as the most effective biomarker
candidates in distinguishing the T21 groupwere visualized in detail.

3 Results

According to FC analysis results, Vitamin C, taurolithocholic
acid, stearidonic acid, sphingosine, prostaglandin A2/B2/J2,
pantothenic acid, eicosatetraenoic acid_1, docosahexaenoic acid,
dihomog-linolenic acid/eicosatrienoic acid, cholic acid and some
carnitine derivatives (CAR DC4: 0, CAR 8:1, CAR 6:0, CAR 5:1,
CAR 5:0, CAR 5:0, CAR 5:0; OH, CAR 18:2, CAR 18:1, CAR 16:1,
CAR 14:1, CAR 12:1, CAR 12:0, CAR 10:1, CAR 10:0). Therefore,
these metabolites are at lower levels in the T21 group than in the
D21. Taurolithocholic acid (1.49 fold decrease), sphingosine (1.64
fold decrease), pantothenic acid (1.74 fold decrease), EPA (1.46
fold decrease), prostaglandin A2/B2/J2 (4.36 fold decrease), cholic
acid (1. 49-fold decrease), CAR 10:0 (1.44-fold decrease) and CAR
10:1 (1.33-fold decrease) were the metabolites with the highest fold
change among the metabolites downregulated in the T21.

On the other hand, upregulation was observed for metabolites
such as thymidine, tauroursodeoxycholic acid, serine, nervonic acid,
heptylic acid, hypoxanthine, glycine, arginine, and some carnitine
derivatives (CAR16:1, CAR14:1, CAR12:0), indicating higher levels
of thesemetabolites than in theD21.Theupregulation inmetabolites
such as thymidine and tauroursodeoxycholic acid suggests that these
components may play an important role in biological processes.
Metabolites showing significant upregulation considering the FC 1.2
threshold include thymidine (12.282-fold), tauroursodeoxycholic
acid (14.582-fold), serine (12.885-fold), nervonic acid (12.189-fold),
heptylic acid (12.265-fold), hypoxanthine (14.202-fold), arginine
(13.811-fold) and 2-aminobenzoic acid (16.627-fold) (Table 1).

The volcano plot in Figure 1 provides an overview of the data
along two important axes: log2(FC) (fold change value) and -
log10 (p-value) (statistical significance). In the plot, the log2(FC)
axis is horizontal and the log10 (p-value) axis is vertical. The
vertical lines could represent log2(FC) = −0.263 and 0.263, reflecting
the threshold FC = 1.2. Points to the left of these lines mean
downregulation (FC < 0.833), while those to the right mean
upregulation (FC > 1.2). The sizes of the dots represent the
p-value, while the colors indicate log2(FC). The color gradient
changes from darker shades of blue to shades of brown, indicating
upregulation. Dots in shades of gray in the middle represent
statistically insignificant changes, while the more distinctly colored
dots, especially in the upper left and upper right, represent

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1567199
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Colak et al. 10.3389/fmolb.2025.1567199

FIGURE 1
Volcano plot.

significant up- and downregulation. In this graph, the leftmost and
rightmost points show the strongest regulation, while those with
lower p-values are located more vertically, which implies stronger
statistical significance.

The PLS-DA model VIP plot (Figure 2) is based on VIP
scores, which indicate the importance of metabolites in the model.
Metabolites such as Lysophosphatidyl and LPA 16:1 have the
highest VIP scores and contribute the most to the classification
performance of the model. Other important metabolites include
Prostaglandin, 10(S)17(S)-DiHDHA and 15S-HETE, which have
a strong discriminative role in classification. Metabolites such as
Stearidonic acid, Glycine and CAR 5:1 are relatively less effective in
the model. The color scale reflects the levels of metabolites, with red
shades indicating high levels and blue shades indicating low levels.

According to the model performance evaluation results
(Table 2), the highest accuracy and F1 score belong to the KTBoost
model, with 90.4% and 93.1%, respectively. While KTBoost gives
the best result in AUC values with 95.9%, XGBoost shows a close
performance with 95.1%. In terms of sensitivity, XGBoost has the
highest score at 96.6%, while the KTBoost model follows at 91.1%.
In terms of specificity values, KTBoost offers a significantly higher
result than the other models, with 88.8%. Finally, when the Brier
scores are examined, it is observed that the KTBoostmodel achieved
the lowest value at 5.9%, which shows that the model is more
advantageous compared to the other models in terms of calibration
accuracy. In general, the KTBoost model stands out as the most
successful model in the classification task because it exhibits the
best performance in accuracy, AUC, F1 score, specificity, and Brier

score. The superiority of KTBoost based on AUC is statistically
significant (DeLong’s test, p < 0.01 for XGBoost, LightGBM,
and AdaBoost) after correcting for multiple comparisons using
the Benjamini–Hochberg procedure. In contrast, Random Forest
performed similarly (p = 0.682), likely as it is more stable owing
to its ensemble approach (Table 2). Figure 3 presents the confusion
matrix for the KTBoost model (Figure 3).

The performance evaluation of machine learning algorithms
for differentiating T21 from D21 appears in Figure 4 through
receiver operating characteristic (ROC) curves. Among the
examined models, KTBoost demonstrated the best performance
with a 95.9% AUC value; but XGBoost maintained an almost
equivalent AUC value of 95.1%. LightGBM performed with
an AUC at 94.1% and Random Forest achieved 95.8% while
AdaBoost had a slightly lower AUC value of 92.0% among the
compared models. The explanatory visualization demonstrates
how tree-based ensemble methods especially KTBoost effectively
recognize complicated metabolic patterns of DS with minor
differences in model performance observed between top-ranking
models (Figure 4).

The graph of Figure 5 visualizes the distribution of the
probabilities predicted by the model for the classes. The horizontal
axis shows the class probabilities predicted by the model and the
vertical axis shows the examples. Black filled circles represent the
T21 class and white hollow circles represent the D21 class. In
general, we can say that the model is successful in distinguishing
the two classes and predicting the correct probabilities. Especially
at the probability threshold of 0.5, the model is able to distinguish

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1567199
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Colak et al. 10.3389/fmolb.2025.1567199

FIGURE 2
VIP graph for PLS-DA Model.

the two classes largely and the classification accuracy seems
to be high (Figure 5).

Figure 6A shows the ranking of each metabolite in terms of
mean SHAP value, highlighting their overall level of influence in
the model. According to this ranking, the metabolites L-Citrulline,
Kynurenin, Prostaglandin A2/B2/J2, Urate, and Pantothenate are
included in the model as the most important possible biomarkers
for differentiating T21. Figure 6B shows the effect of the KTBoost
model on the classification decisions of the candidate biomarker
metabolites through their SHAP values. This graph reflects the
positive or negative contribution of each metabolite to the model
outputs, assessing its importance through global SHAP values.
Positive SHAP values indicate the contribution of the metabolite
to the positive class (individuals with DS, T21), while negative
SHAP values indicate the contribution to the negative class (healthy
controls, D21). The dots in the image are colored with normalized
values of the metabolites, with shades closer to blue representing

low levels of metabolites and shades closer to pink representing high
levels. L-Citrulline, Kynurenin, Prostaglandin A2/B2/J2, Urate, and
Pantothenate play an important role in determining the positive
class (T21) with high SHAP values. High levels of these metabolites
increase the probability of T21 (Figure 6). Information summarizing
the roles of biomarker candidate metabolites identified by XAI-
assisted methodology and their relationship with DS and other
genetic diseases is presented in Table 3 (Table 3).

4 Discussion

In this study, a comprehensive metabolomics analysis was
performed using various machine learning classifiers integrated
with XAI to examine metabolic differences between T21 and D21
groups and to identify novel/pathway-specific biomarkers. The
results of the present study revealed significantmetabolic differences
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TABLE 1 Fold change analysis results for biomarker candidate metabolites between T21 and D21 groups.

Metabolite name FC log2FC p.Adjusted log10p

Vitamin C 0.812 −0.299 0.025 15.989

Thymidine 12.282 0.296 <0.001 86.042

Tauroursodeoxycholic acid 14.582 0.544 <0.001 26.397

Taurolithocholic acid 0.669 −0.579 <0.001 15.157

Stearidonic acid 0.795 −0.329 0.001 29.309

Sphingosine 0.609 −0.714 <0.001 56.668

Serine 12.885 0.365 <0.001 77.363

Pyroglutamic acid 0.787 −0.344 <0.001 31.336

Prostaglandin A3/B3 0.824 −0.279 <0.001 26.888

Prostaglandin A2/B2/J2 0.229 −21.249 <0.001 76.325

Pantothenic acid 0.576 −0.796 <0.001 54.678

Octadecatrienoic acid 0.798 −0.323 0.036 14.407

N-Formyl-L-kynurenine 0.773 −0.371 0.014 18.461

Nervonic acid 12.189 0.285 <0.001 44.569

Lysophosphatidylinositol 0.788 −0.343 <0.001 87.034

Leukotriene B4/PGA1/PGB1 0.832 −0.265 <0.001 31.336

Kynurenine 0.762 −0.392 <0.001 81.201

Hypoxanthine 14.202 0.506 <0.001 5.817

Heptylic acid 12.265 0.294 <0.001 79.318

Glycine 12.187 0.285 <0.001 10.183

EPA 0.684 −0.546 <0.001 68.103

Eicosatetraenoic acid_1 0.757 −0.400 <0.001 54.478

Docosahexaenoic acid 0.762 −0.390 <0.001 32.563

Dihomo-g-Linolenic acid/eicosatrienoic acid 0.770 −0.376 <0.001 34.086

Deoxycholic acid 0.796 −0.328 <0.001 24.994

Cholic acid 0.670 −0.575 0.015 18.157

CAR DC4:0 0.802 −0.317 <0.001 54.678

CAR 8:1 0.778 −0.361 0.013 18.663

CAR 6:0 0.765 −0.385 <0.001 23.773

CAR 5:1 0.711 −0.491 0.013 18.663

CAR 5:0; OH 0.762 −0.391 <0.001 47.235

CAR 5:0 0.785 −0.348 <0.001 41.912

(Continued on the following page)
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TABLE 1 (Continued) Fold change analysis results for biomarker candidate metabolites between T21 and D21 groups.

Metabolite name FC log2FC p.Adjusted log10p

CAR 3:0 0.808 −0.306 <0.001 35.836

CAR 18:2 0.710 −0.493 <0.001 52.178

CAR 18:1 1.232 0.301 <0.001 47.235

CAR 16:1 12.128 0.278 <0.001 23.773

CAR 14:1 12.838 0.360 <0.001 23.011

CAR 12:1 13.567 0.440 <0.001 36.909

CAR 12:0 12.443 0.315 <0.001 22.612

CAR 10:1 0.752 −0.409 0.019 17.156

CAR 10:0 0.696 −0.521 <0.001 26.397

Arginine 13.811 0.465 <0.001 60.549

5-Hydroxyindoleacetic acid 0.755 −0.403 <0.001 86.731

2-Aminobenzoic acid 16.627 0.733 0.031 15.045

10(S)17(S)-DiHDHA/protectin D1 0.799 −0.323 <0.001 5.817

CAR DC4:0: Succinyl carnitine; CAR, 8:1: octenoyl-L-carnitine; CAR, 6:0: hexanoyl-L-carnitine; CAR, 5:1: Tiglylcarnitine; CAR, 5:0; OH: hydroxyvaleroyl carnitine; CAR, 5:0: valeroyl
carnitine; CAR, 3:0: propionyl-carnitine; CAR, 18:2: Linoleyl carnitine/Linoelaidyl carnitine; CAR, 18:1: O-octadecenoyl-L-carnitine; CAR, 16:1: Hexadecenoyl-carnitine; CAR,
14:1:Tetradecenoyl carnitine; CAR, 12:1: O-dodecenoyl-carnitine; CAR, 12:0: L-Carnitine lauroyl ester; CAR, 10:1: O-Decenoyl-L-carnitine; CAR, 10:0: O-Decanoyl-L-carnitine.

TABLE 2 Results of performance metrics for machine learning models.

Model Accuracy F1 score AUC Sensitivity Specificity Brier score

AdaBoost 0.896 0.929 0.920 0.955 0.750 0.195

LightGBM 0.880 0.918 0.941 0.933 0.750 0.100

RF 0.873 0.914 0.958 0.955 0.666 0.106

KTBoost 0.904 0.931 0.959 0.911 0.888 0.059

XGBoost 0.896 0.930 0.951 0.966 0.722 0.084

between the T21 and D21 groups, indicating novel/pathway-
specific biomarkers that could be used to characterize DS.
FC analysis revealed significant up- and downregulation of
some metabolites in the T21 group compared to the D21
group. In particular, vitamin C, taurolithocholic acid, sphingosine,
prostaglandin A2/B2/J2, pantothenic acid, and various carnitine
derivatives were downregulated. These findings suggest potential
alterations in the metabolism or utilization of these metabolites in
individuals with DS.These results are in line withmetabolic changes
observed in previously reported studies. The decrease in vitamin C
may be associated with increased oxidative stress, which is often
observed in individuals with DS. The decrease in taurolithocholic
acid levelsmay indicate potential alterations in bile acidmetabolism,
which may be associated with gastrointestinal problems observed

in individuals with DS (Muchová et al., 2014; Rueda and Martínez-
Cué, 2020).

On the other hand, a marked upregulation of metabolites such
as thymidine, tauroursodeoxycholic acid, serine, nervonic acid,
hypoxanthine and arginine was observed. The increase in these
metabolites may reflect alterations in cellular metabolism and signal
transduction in DS. For example, the increase in thymidine may
indicate potential alterations in DNA synthesis and repair, which
may be associated with the genomic instability observed in DS.
Increases in amino acids such as serine and arginine may indicate
changes in protein metabolism. This may be associated with the
neurological and immunological abnormalities observed in DS.
Increased levels of nervonic acid may reflect potential alterations
in myelin structure and function, which may be associated with
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FIGURE 3
Confusion matrix of the KTBoost model for Down syndrome
prediction.

the neurological symptoms often observed in DS (Coskun and
Busciglio, 2012; Hetman and Barg, 2022a).

In this study, various ML classifiers (AdaBoost, LightGBM,
Random Forest, KTBoost and XGBoost) were used to classify T21
and D21 groups. Among these models, KTBoost stood out with
the highest accuracy (90.4%), F1 score (93.1%) and AUC value
(95.9%). The high performance of the KTBoost model supports
the potential use of metabolomics data in DS diagnosis. These
results are in line with the performance of ML models developed
by Hao et al. (2020) using metabolomics data. Comparing the
performance of the models, KTBoost outperformed the other
models, especially in terms of specificity (88.8%) and Brier score
(5.9%). These results suggest that the KTBoost model has the
ability to minimize false positives in DS diagnosis and better
calibrate its predictions. KTBoost’s ability tomaintain high accuracy
while managing the complexities of high-dimensional data is
further supported by its integration with advanced optimization
techniques. The respective superior performance of KTBoost may
be due to the combination of the tree-based structure of the
model and the gradient boosting technique, which allows it to
efficiently handle complex and high-dimensional metabolomics
data (Khattak et al., 2023; Hussain et al., 2022).

SHAP analysis was used to improve the interpretability of
model predictions and to identify the most effective metabolites.
According to this analysis, the metabolites L-Citrulline, Kynurenin,
Prostaglandin A2/B2/J2, Urate and Pantothenate stood out as
the most important biomarker candidates to differentiate the
T21 group. The high SHAP values of L-Citrulline suggest that
this metabolite may play an important role in DS. L-Citrulline
is an important intermediate in the nitric oxide (NO) cycle
and is involved in vascular function and neurotransmission.
Alterations in L-Citrulline levels in individuals with DS is likely
associated with cardiovascular and neurological complications
(Maric et al., 2021). This finding may help us understand the
mechanisms underlying the increased cardiovascular risk and
neurological abnormalities observed in individuals with DS.
Alterations in kynurenine metabolism may contribute to the

neurological and immunological abnormalities observed in DS. The
kynurenine pathway is closely related to tryptophan metabolism
and may affect neurotransmitter balance. Further investigation
of the role of this metabolite in DS may provide new insights
into the pathophysiology of the disease. Alterations in kynurenine
metabolismmay also be associated with neuropsychiatric symptoms
often observed in DS, such as depression and cognitive impairments
(Maric et al., 2021; Morita et al., 2013). The importance of
prostaglandin A2/B2/J2 in model predictions points to the role
of inflammatory processes in DS. Prostaglandins play a critical
role in the regulation of inflammation and immune response.
The chronic inflammation and susceptibility to autoimmune
diseases observed in individuals with DS may be associated with
altered levels of these metabolites (Hetman and Barg, 2022a;
Yao and Narumiya, 2019). This finding may contribute to a
better understanding of inflammatory processes in DS and the
development of potential anti-inflammatory treatment strategies.
Changes in urate levels may indicate potential abnormalities in
oxidative stress and antioxidant defense mechanisms. Increased
oxidative stress is commonly observed in DS and may be
associated with complications such as neurodegeneration and
premature aging. Given the antioxidant properties of urate,
changes in the levels of this metabolite may be important in
understanding the protective mechanisms against oxidative stress
in DS. Alterations in pantothenate (Vitamin B5) metabolism
may indicate potential abnormalities in energy metabolism and
mitochondrial function. Mitochondrial dysfunction is commonly
observed in DS and may contribute to various clinical features
of the disease. Changes in pantothenate levels may help to better
understand energy metabolism and mitochondrial function in
DS and shed light on the development of potential therapeutic
strategies (Nachvak et al., 2010).

XAI techniques, such as SHAP values, provide a powerfulmeans
for analyzingmetabolite biomarkers for diagnosingT21.The current
study selected SHAP over LIME because of its theoretical solidness
through game-theory-based fair attribution methods along with
its ability to work with tree-based models using TreeSHAP and
its dual interpretability features for global biomarker rankings.
SHAP provides quantitative measurements about metabolite effects
such as elevated L-Citrulline levels increasing T21 risk; however,
LIME does not offer this capability because its local approximation
method suffers from inconsistent biological relevance. High
SHAP values indicate a metabolite’s contribution to the model;
but do not necessarily imply clinical relevance. As illustrated in the
present study (Figure 5), the interpretation of the KTBoost model
shows why some metabolites are more important than others in
separating the cases of T21 from D21. Finally, the model ranks
metabolites according to their mean SHAP values and L-Citrulline,
Kynurenin, Prostaglandin A2/B2/J2, Urate, and Pantothenate are
found to be the highest SHAP biomarkers. Not only does the
SHAP value visualization quantify how important (or not) each
metabolite is to the model, but also how they contribute to the
model’s decision-making process (e.g., whether metabolite levels
(high or low) lead to the model’s prediction of death or not).
Through this approach, a particular metabolic profile of T21
can be understood more meaningfully, characterized by high
concentrations of some metabolites increasing the probability
of T21 diagnosis. Transparency in the AI-driven diagnostics is

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1567199
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Colak et al. 10.3389/fmolb.2025.1567199

FIGURE 4
Different model results for ROC AUC values.

FIGURE 5
Graphical representation of the class probabilities of the optimal KTBoost model.

important for medical professionals to build trust—both for a
clear rationale behind models predictions and for demand in
the development of interpretable and accountable AI systems in
healthcare (Zhang et al., 2023).

The clinical implications of these findings are pertinent to
the progress of precision medicine in DS (T21). This case
also highlights that identifying biomarkers like L-Citrulline or
Kynurenine or Prostaglandin A2/B2/J2 could be used as a window
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FIGURE 6
KTBoost model interpretation. (A): Using the final model, we rank the stability and interpretative relevance of the top 20-biomarker metabolites (B):
Average order of importance (|SHAP value|) of the top 20 biomarker metabolites; the greater the SHAP value of a characteristic, the more probable the
patient has T21.

TABLE 3 Key metabolites identified for down syndrome and their biological roles.

Metabolite Biological role Relevance to down syndrome and
other genetic disorders

L-Citrulline Involved in the urea cycle, nitric oxide metabolism,
and endothelial function

Altered citrulline metabolism is linked to oxidative
stress and endothelial dysfunction, which may
contribute to vascular abnormalities in Down

syndrome

Kynurenine A key intermediate in tryptophan metabolism and
modulator of immune response

Elevated kynurenine levels are associated with
neuroinflammation and cognitive dysfunction, which
are relevant to the neurological impairments seen in

Down syndrome

Prostaglandin A2/B2/J2 Bioactive lipid mediators involved in inflammation
and cellular signaling

Dysregulation of prostaglandins can contribute to
immune dysregulation and increased inflammation

observed in individuals with Down syndrome

Urate An antioxidant that modulates oxidative stress and
purine metabolism

Lower urate levels in Down syndrome may contribute
to increased oxidative stress, a known factor in

neurodegeneration and aging-related phenotypes

Pantothenate (Vitamin B5) Essential for Coenzyme A synthesis, fatty acid
metabolism, and energy production

Disruptions in pantothenate metabolism could impair
mitochondrial function and energy metabolism, which

are frequently altered in Down syndrome
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for early diagnosis and as therapeutic targets, especially in
the context of antioxidant treatment and chronic inflammatory
management, which seem to be one of the many hallmarks of
T21. Depletion of vitamin C and pantothenate was consistent
with previous findings of mitochondrial dysfunction in T21,
providing rationale for antioxidant supplementation as a potential
ability (Rueda and Martínez-Cué, 2020; Baksh et al., 2023).
The merging of XAI and metabolomics demonstrated the high
accuracy (AUC = 95.9%) of the KTBoost model, which is a
transparent framework that oncologists can trust and apply to
AI diagnostic tools in practice. However, the application of
these results to clinical practice is only possible if they are
confirmed in longitudinal studies, taking into account the effects
of confounding variables such as diet and comorbidities. Future
studies should be concentrated on the interventional phases with
the established pathways, including the kynurenine and nitric
oxide cycles, for possible personalized therapies (Hetman and Barg,
2022b).Additionally, this study illustrates the power of ML-XAI
workflows to discover metabolic adaptations with relevance to
pathophysiology and to therapeutic avenues DS. The respective
dysregulations of L-Citrulline (NO cycle), Kynurenine (tryptophan
catabolism) and Prostaglandin A2/B2/J2 (inflammatory pathways)
reflect a network of interconnected dysregulated metabolisms in
DS.These pathways converge on oxidative stress and mitochondrial
dysfunction, suggesting that therapeutic interventions targeting NO
signaling or IDO inhibition might alleviate systemic comorbidities.

The results of the current research support previous
investigations from theHumanTrisome Project (Powers et al., 2019)
by adding new understanding of DS metabolomics changes. The
research studies recognize metabolic pathway and inflammatory
pathway disorders; yet utilize different experimental designs.
Through transcriptomic and proteomic profiling, the Human
Trisome Project study determined that DS patients exhibited
Alzheimer’s disease-related changes and immune dysregulation
alongwith lipidmetabolismdisturbances.These findings established
systemic inflammatory processes alongside neurodegeneration.
The present study employed KTBoost machine learning together
with SHAP analysis to locate the metabolite changes such as
reduced vitamin C and prostaglandin levels in combination with
elevated thymidine and nervonic acid levels. The current paper
at metabolite resolution has added novel biomarkers including L-
Citrulline, Kynurenine, and Urate to the biomarker set identified
by the Human Trisome Project study. These research findings
demonstrate how DS pathophysiology operates at detailed levels
as the XAI method in this study enhances research benefits from
the Human Trisome Project’s baseline multi-omics approach for
discovering biomarkers and understanding biological processes
(Powers et al., 2019).

The study results related to metabolic changes confirmed
previously established T21 research findings. Research evidence
supports the metabolic problems observed in this study since
overexpressed SOD1 gene on chromosome 21 causes redox
homeostasis disruption and antioxidant depletion in DS. The
diminished presence of sphingosine together with carnitine
derivatives (e.g., CAR 10:0) demonstrates earlier research on
metabolic abnormalities and impaired mitochondrial function,
which triggers neurodegenerative processes and energy deficits.
Erroneous expression of thymidine enhances nucleotide levels

for DNA repair since genomic instability occurs in T21 patients
as a possible response to DNA damage. The research advances
previous findings through its discovery of the biomarkers L-
Citrulline and Prostaglandin A2/B2/J2, which connect, to nitric
oxide pathways and chronic inflammation thus filling gaps in
metabolomics study understanding. The research demonstrates
that T21 causes widespread metabolic disturbances in the body
and it offers new opportunities to treat multiple system-related
consequences (Coskun and Busciglio, 2012; Yao and Narumiya,
2019). The associated metabolites are implicated in pathways
involved in Down syndrome (DS) pathophysiology (L-Citrulline,
Kynurenine, Prostaglandin A2/B2/J2, Urate, and Pantothenate).
Abnormal regulation of their activity offers mechanistic pathways
of the oxidative stress, mitochondrial dysfunctions, chronic
inflammation and neurodegenerative processes, which are
represented as the main characteristics of DS. Collectively, these
biomarkers underscore several interconnected pathways—oxidative
stress, inflammation, and mitochondrial dysfunction—that likely
contribute to DS pathogenesis. Identifying those via ML-XAI
brings actionable targets for diagnostic panels and therapeutic
interventions, providing critical translational bridges between
metabolomics and clinical application in DS research. This
study validates known metabolic disturbances uncovered in DS,
including vitamin C depletion (oxidative stress) and decreased
pantothenic acid (mitochondrial dysfunction), corroborating
data from the mentioned scientific studies earlier. We offer new
meta-information, such as thymidine upregulation (a DNA repair
compensation) and prostaglandin A2/B2/J2 downregulation,
indicative of inflammatory dysregulation and expanding the
metabolic signature of DS. These findings not only confirm the
known pathways but also report new biomarkers, affirming the
potential of plasma metabolomics for DS profiling in a noninvasive
manner compared to previously mentioned investigations based
on tissue/urine.

Although the findings of this study provide important
contributions to better understanding the metabolomics
characteristics of individuals with DS, their generalizability to
large populations may be limited. Future studies should perform
external validation studies using larger and diversified sample
groups to increase the generalizability and validity of these
findings for clinical applications. As our study was limited
to a cross-sectional design, further longitudinal studies are
recommended to support these findings. Such studies may
help us understand the dynamics of metabolic changes in DS
over time and their relationship with clinical manifestations.
Furthermore, given the phenotypic heterogeneity of DS, studies
on different phenotypic subgroups are needed. Such subgroup
analyses may enable more precise identification of specific
metabolic alterations and provide more in-depth insights into
the phenotypic diversity of DS. In order to better control for the
effects of environmental factors, especially diet and lifestyle, on
the metabolomics profile, further evaluation of these variables is
recommended. In addition, future studies could further explore
the consistency of biomarker identification by comparing feature
importance across different machine learning models, providing
additional insights into the robustness and generalizability of the
identified biomarkers. Finally, using more advanced and sensitive
technologies in metabolomics analyses may increase the likelihood
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of detecting metabolites with low concentrations or those prone to
degradation. Such advanced analysis methods could contribute
to a more comprehensive and detailed understanding of the
pathophysiological mechanisms underlying DS (Dierssen et al.,
2020; Baksh et al., 2023; Hendrix et al., 2021). Although
demographic information (sex, age) was matched between T21
and D21 groups at the time of participant selection, it was not
directly incorporated as covariates in the ML models. This reflects
a potential for residual confounding, since metabolic profiles
may differ according to age or sex independent of DS. Future
studies should include demographic variables in their feature space
or perform stratified analyses to identify DS-specific metabolic
signatures.

5 Conclusion

ML and XAI applied to the present metabolomics study
identified significant metabolic differences between T21 and
D21 groups. This research applied SHAP explainable analysis to
discover new biomarkers linking oxidative stress and mitochondrial
dysfunction in patients with DS through high-performance tree-
based models KTBoost and XGBoost. The levels of amino acids,
vitamin C, taurolithocholic acid and thymidine showed significant
changes, which may reflect defects in the control systems for
oxidative stress, bile acid metabolism and cell activities. Based
on metabolomics, DS diagnosis seems possible; the accuracy of
one model, KTBoost, in distinguishing T21 from D21 groups is
also high. The biomarkers identified by SHAP analysis explain
the basis of pathogenesis, were determined to be significant
and included L-Citrulline, Kynurenine, Prostaglandin A2/B2/J2,
Urate and Pantothenate. However, these results help to clarify the
metabolic profile of DS, but more studies are needed to clarify
the definitive conclusions. The findings of this study suggest that
the powerful combination of metabolomics and AI algorithms may
improve diagnostic tools and treatment options for DS. This study
identifies newmetabolic biomarkers (e.g., L-Citrulline, Kynurenine)
and relates them to the pathophysiology of DS, but requires
validation in independent and diverse cohorts. Additionally, it
remains unclear whether the metabolic changes observed in DS
individuals are causal or consequential. Some changes, such as
increased markers of oxidative stress, may be a direct result of
genetic trisomies, while others may be compensatory responses to
metabolic imbalances. Longitudinal studies monitoring metabolite
levels over time and experimental interventions targeting these
pathways may help to clarify whether these metabolic perturbations
contribute to DS pathology or occur as secondary effects. This
is beyond the scope of this study and could be investigated in
future studies involving clinical experts in DS. However, upcoming
studies will focus on multicenter collaborations to externally
validate these findings in a diverse population across geography
and ethnicity for generalizability. Longitudinal studies will also
assess the stability of these biomarkers over time, and integration
with multi-omics data (e.g., genomics, proteomics) will enhance
mechanistic understanding. Through these efforts, DS can benefit
from metabolomics-driven discoveries and transition to clinical
translation.
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