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Background: Medulloblastoma (MB) and ependymoma (EM) in children share
similarities in terms of age group, tumor location, and clinical presentation,
which makes it challenging to clinically diagnose and distinguish them.

Purpose: The present study aims to explore the effectiveness of T2-weighted
magnetic resonance imaging (MRI)-based deep learning (DL) combined with
clinical imaging features for differentiating MB from EM.

Methods: Axial T2-weighted MRI sequences obtained from 201 patients across
three study centers were used for model training and testing. The regions
of interest were manually delineated by an experienced neuroradiologist with
supervision by a senior radiologist. We developed a DL classifier using a
pretrained AlexNet architecture that was fine-tuned on our dataset. To mitigate
class imbalance, we implemented data augmentation and employed K-fold
cross-validation to enhance model generalizability. For patient classification,
we used two voting strategies: hard voting strategy in which the majority
prediction was selected from individual image slices; soft voting strategy in
which the prediction scores were averaged across slices with a threshold of 0.5.
Additionally, a multimodality fusion model was constructed by integrating the
DL classifier with clinical and imaging features. The model performance was
assessed using a 7:3 random split of the dataset for training and validation,
respectively. The key metrics like sensitivity, specificity, positive predictive
value, negative predictive value, F1 score, area under the receiver operating
characteristic curve (AUC), and accuracy were calculated, and statistical
comparisons were performed using the DeLong test. Thereafter, MB was
classified as positive, while EM was classified as negative.

Results: The DL model with the hard voting strategy achieved AUC values of
0.712 (95% confidence interval (CI): 0.625–0.797) on the training set and 0.689
(95% CI: 0.554–0.826) on the test set. In contrast, the multimodality fusion
model demonstrated superior performance with AUC values of 0.987 (95% CI:
0.974–0.996) on the training set and 0.889 (95%CI: 0.803–0.949) on the test set.
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The DeLong test indicated a statistically significant improvement in AUC values
for the fusion model compared to the DL model (p < 0.001), highlighting its
enhanced discriminative ability.

Conclusion: T2-weightedMRI-based DL combinedwithmultimodal clinical and
imaging features can be used to effectively differentiate MB from EM in children.
Thus, the structure of the decision tree in the decision tree classifier is expected
to greatly assist clinicians in daily practice.

KEYWORDS

deep learning, magnetic resonance imaging, medulloblastoma, ependymoma, T2-
weighted imaging

1 Introduction

Primary tumors of the central nervous system (CNS) are
very rare in children and have an estimated globally standardized
incidence rate of 12 cases per million as of 2018. Despite
their rarity, brain tumors are the second leading cause of
death after acute lymphoblastic leukemia in children under the
age of 15 years (Patel et al., 2018). The estimated globally
standardized mortality rate for primary CNS tumors was 0.7
deaths per million in 2018 (Girardi et al., 2019). The majority of
pediatric posterior fossa tumors (PPFTs) account for approximately
55%–70% of these cases, where medulloblastoma (MB) and
ependymoma (EM) comprise significant portions (Mengide et al.,
2023). Both EM and MB are commonly found in the fourth
ventricle as well as share similarities in terms of location and
morphological appearance on magnetic resonance imaging (MRI)
scans, along with heterogeneous enhancement of the solid portion.
Differentiating MB from EM in pediatric patients is of paramount
importance owing to their distinct biological behaviors, similar
clinical presentations, different treatment strategies, and different
prognostic implications. MBs are highly malignant embryonal
tumors that typically originate in the midline cerebellum and
frequently disseminate via the cerebrospinal fluid (CSF). In contrast,
EMs originate from the ependymal cells lining the ventricular
system,most commonly in the fourth ventricle, and are less prone to
CSF dissemination. Clinically, both these types of tumors manifest
with signs of increased intracranial pressure. Therapeutically,
MBs require maximal resection, craniospinal irradiation, and
chemotherapy, with the treatment tailored to molecular risk
stratification, whereas EMs require maximal resection followed
by focal radiotherapy as craniospinal irradiation is generally
unnecessary. The prognoses for these two conditions vary widely,
where the MB outcomes depend on molecular subgroups while
EM outcomes hinge on resection completeness and tumor location.
Accurate differentiation between these types is needed for precise
and risk-adapted treatment strategies (de Bont et al., 2008;Menyhárt
and Győrffy, 2020).

Currently, the gold standard for tumor classification remains
pathological analysis following biopsy or surgical resection
(Khatua et al., 2018). However, this method has limitations, such as
sampling errors, variations in interpretation, and potential risks of
morbidity and mortality associated with biopsies (Almenawer et al.,
2015). Hence, preoperative imaging is used for diagnosing,

differentiating between the two conditions, and determining the
precise anatomical locations of the tumors.

MRI plays a crucial role in the diagnosis of brain tumors
owing to its ability to provide detailed images of the brain with
high contrast and resolution (Abd-Ellah et al., 2019). MRI allows
visualization of the size, location, and characteristics of a brain
tumor, thereby aiding clinicians in determining themost appropriate
treatment plan for the patient. In particular, T2-weighted imaging
(T2WI) is a valuable sequence in MRI scans that is sensitive to
the presence of edema, inflammation, and necrosis within the brain
tissue (Obenaus and Badaut, 2022). In the diagnosis of brain tumors,
T2WI is essential for identifying areas of high signal intensity as
they indicate the presence of tumor-associated edema and changes
in tissue composition. Additionally, T2WI can help differentiate
between different types of brain tumors based on their unique
imaging characteristics (Martín-Noguerol et al., 2021).

Radiomics is an advanced computer-aided diagnostic method
that utilizes quantitative features extracted from medical images for
disease diagnosis, prognosis, and prediction (Lambin et al., 2012).
This technique has shown promise in distinguishing between benign
and malignant tumors (Zheng et al., 2021), outperforming visual
assessments by experienced radiologists. However, the complexity
of radiomics analysis, which involves feature extraction, selection,
and modeling, can lead to variability in results among different
studies. Additionally, existing studies often focus on linear or
simplistic algorithms for feature selection, overlooking the intricate
non-linear relationships between features across different imaging
modalities (Yimit et al., 2023). Further investigations are thus
needed to explore these complex interactions while improving
the consistency and reliability of radiomics-based diagnostic
approaches in clinical practice.

Deep learning (DL) offers a transformative approach by
integrating feature extraction, selection, and model development
into a unified framework, thereby streamlining radiomics analysis
(Xie et al., 2022). DL models have shown exceptional performances
in various diagnostic tasks, including distinguishing between benign
and malignant renal tumors (Afshar et al., 2019), grading of non-
small cell lung cancer (Zhou et al., 2019), and predicting lymph
nodemetastasis in breast cancer (Hosny et al., 2018). Specifically, DL
can be used to analyze high-dimensional data and uncover intricate
patterns thatmay be invisible to traditionalmethods, thus enhancing
the diagnostic accuracy and efficiency significantly.

Despite these achievements, there is a notable gap in research
regarding the application of DL models to differentiate between MB
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and EM brain tumors, especially in children. This is an area where
the capabilities of DL are yet to be explored and evaluated fully in
medical image analyses.

The aim of the present study was to assess the effectiveness of
the multimodality fusion model with T2WI-based DL signatures
combined with clinical and imaging features in discriminating
betweenMB andEMaccurately to provide a useful tool for clinicians
and radiologists.

2 Methods

The study was conducted at three centers, namely, The
First People’s Hospital of Kashi Prefecture, The Third Affiliated
Hospital of Xinjiang Medical University, and The First Affiliated
Hospital of Xinjiang Medical University, and received ethical
approval from their respective institutional review boards. Written
informed consent from the participants was waived as this is a
retrospective study.

2.1 Patient population

A total of 201 patients were enrolled in this multicenter study
that encompassed data from three different hospitals:

Center 1: The First People’s Hospital of Kashi Prefecture
contributed to the majority of the dataset; accordingly, information
from 151 patients (93 MB, 58 EM) was collected between 1
December 2009 and 30 July 2024.This dataset formed the backbone
of the model training process.

Center 2: The Third Affiliated Hospital of Xinjiang Medical
University provided information from 37 patients (34 MB, 3 EM)
between January 2018 and June 2024.

Center 3: The First Affiliated Hospital of Xinjiang Medical
University contributed information from 13 patients (all diagnosed
with MB) between February 2021 and February 2024.

Given this distribution, it is important to acknowledge that
the performance of the proposed model may be influenced by the
unequal representation of EM and MB cases. This imbalance could
particularly affect the evaluation metrics, such as sensitivity and
specificity, potentially leading to a bias in favor of themore prevalent
class (MB).

The inclusion criteria for the study were as follows: (1) tumors
located in the posterior fossa; (2) histologically verified MB or EM;
(3) patients aged under 18 years; (4) availability of axial T2WI
sequences; (5) absence of prior brain tumors; (6) availability of
relevant clinical information.

The exclusion criteria of the study were as follows: (1) lack
of surgical pathology; (2) unavailability of non-enhanced T2WI
sequences; (3) poor image quality; (4) previous treatment history.

2.2 Imaging data acquisition

The study utilized three 3.0-TMRI scanners. Specifically, Center
1 utilized the Signa Hdx MR scanner from General Electric
(USA). The imaging protocol included axial contrast-enhanced T1-
weighted imaging (CE-T1WI), axial T2WI, axial fluid-attenuated

inversion recovery (FLAIR), sagittal T2WI, as well as contrast-
enhanced axial, sagittal, and coronal T1WI sequences. For the axial
T1WI sequence, the key parameters were set as follows: repetition
time (TR) = 200 ms; echo time (TE) = 12 ms; and slice thickness
= 6 mm. The T2WI image acquisition parameters included TR =
3,900 ms; TE = 120 ms; slice thickness = 6 mm; and a field of view
(FOV) of 256 × 256 matrices. Centers 2 and 3 utilized the Siemens
Trio 3-T scanner from Siemens Healthcare (Erlangen, Germany),
with the axial T1WI parameters set at TR = 450 ms; TE = 15 ms; and
slice thickness = 5 mm; the T2WI sequence parameters were TR =
5,800 ms; TE = 110 ms; and slice thickness = 5 mm.

Image retrieval from the picture archiving and communication
system (PACS) utilized the Digital Imaging and Communications in
Medicine (DICOM) format.

2.3 Workflow

The overall workflow of this study is shown in Figure 1. The T2
MRI scans of 190 patients were randomly divided into the training
(133 patients) and validation (57 patients) cohorts in the ratio of 7:3.
Theworkflow consisted of region of interest (ROI) segmentation and
DL model construction to generate the MB and EM DL classifier,
followed by development of the multimodality fusion model to
combine the DL signatures, clinical features, and imaging character
features using the decision tree method.The DL signatures were the
classification results generated from the DL model.

2.4 ROI segmentation

The ROIs used for model construction were manually
segmented from the MRI scans by a radiologist with 5 years of
radiological reading experience and blinded to the histopathological
results using the Deepwise Multimodal Research Platform version
2.3 (https://keyan.deepwise.com, Beijing Deepwise and League of
PHDTechnology Co., Ltd., Beijing, China). A senior radiologist also
checked and revised these segmented results.

2.5 DL model

The workflow for obtaining the DL signatures
is shown in Figure 1. The ROIs of the 2D slices with tumors were
used as input data per patient to the DL model to fully utilize the
information from all layers.

To enhance the generalization capability and classification
performance of the model, we standardized the imaging data from
the different scanners; this included normalizing pixel values to the
range of [0, 255] and adjusting the resolution to [1, 1, 1].We adopted
the pretrained AlexNet architecture comprising five convolutional
layers and three fully connected layers to fine-tune the model
using the training cohort. Data augmentation techniques, such
as mirroring, elastic deformation, rotations, scaling, resampling,
brightness and contrast adjustments, gamma correction, Gaussian
noise addition, and center cropping, were applied to the images prior
to training to enrich the dataset.
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FIGURE 1
Analytical workflow suggested in this study. Conv, convolutional layer; FC, fully connected layer. (A): Image segmentation workflow; (B): Schematic of
the deep learning model architecture; (C): Multi-modality fusion model visualization; (D): Model evaluation dashboard.

The network was trained with the cross-entropy loss function
and Adam optimizer with a learning rate of 0.01 and implemented
on the Deepwise Multimodal Research Platform version 2.3
(https://keyan.deepwise.com, Beijing Deepwise and League of PHD
Technology Co., Ltd., Beijing, China). As depicted in Figure 1,
the DL signatures needed to build the models for differentiating
MB and EM were obtained as follows. The DL model was first
trained on the 2D slices of all patients in the training group
to effectively increase the sample size; in addition, K-fold cross-
validation was incorporated in the DL classifier training set to
ensure that there was no overlap between the training and test
sets for promoting generalizability. The prediction results were first
acquired by implementing the DL model on all 2D slices; then, the
classification result of each patient was obtained by ensembling the
prediction results on all the slices of the patient.

To address the potential impact of class imbalance duringmodel
training, we employed several strategies. First, data augmentation
techniques were applied to the training cohort, which aimed to
enhance the representation of the less-frequent class (EM) and
improve the model’s ability to learn distinguishing features from
both classes more effectively.

Additionally, we implemented K-fold cross-validation for more
robust evaluation of the model’s performance across various subsets
of the data, thereby helping to mitigate the effects of class imbalance
on the overall evaluation metrics.

As depicted in Figure 2, we experimented with two voting
strategies: the hard and soft voting strategies. For the soft voting
strategy, we considered the prediction scores of the images based
on the DL model (ranging from 0 to 1) as inputs to calculate
their average value as the final prediction score for each patient;
here, a threshold of 0.5 was used for classification. For the
hard voting strategy, we followed the majority rule; here, for
each patient, the classifier prediction for each image slice was
considered as one vote, and the prediction that accounted for
over half of all votes was considered as the final result for
the patient.

2.6 Multimodality fusion model

In this step, we first collected the clinical characteristics of
each patient, including gender, body mass index (BMI), age,
and symptoms like headache, vomiting, and gait instability. A
radiologist then conducted a detailed evaluation of the MRI scans
and assessed key imaging features, such as the involved quadrants,
orbital area involvement, lesion shapes and borders, and signal
intensity, from the T1WI and T2WI.Then, a senior neuroradiologist
evaluated these assessments for confirmation; this evaluation was
the basis for recording the imaging characteristics relevant to routine
diagnosis, including lesion morphology, shape regularity, signal
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FIGURE 2
Workflows of the hard and soft voting strategies.

intensities on the T1WI and T2WI, enhancement patterns on the
contrast-enhanced T1WI (CET1), and apparent diffusion coefficient
(ADC) values.

Next, we implemented the multimodality fusion model to
validate the diagnostic ability to differentiate MB from EM by
combining the DL signatures, clinical characteristics, and imaging
features. The seven clinical features, six imaging features, and
DL signatures were first combined and selected using the least
absolute shrinkage and selection operator (LASSO) feature selection
algorithm with parameter C = 0.05; it is worth noting that
K-fold cross-validation was also incorporated using the LASSO
algorithm. After applying the feature selection, the selected
features were combined with the DL model prediction results
using the decision tree model. This model was trained by
considering the Gini loss function.

2.7 Statistical analysis and model
evaluation

2.7.1 Statistical analysis
The performances of the DL classifier and multimodality fusion

model were evaluated using statistical metrics, including area under
the curve (AUC), accuracy (ACC), sensitivity (SEN), specificity
(SPE), positive predictive value (PPV), and negative predictive value
(NPV).The confidence intervals (CIs) for the AUCs were calculated
using the DeLong method to assess the robustness and reliability of
the model. For continuous variables, the Mann–Whitney U test was
applied, while the categorical variables were analyzed using the Chi-
squared or Fisher’s exact test. A p-value <0.05 was considered to be
statistically significant for all analyses. Finally, MBwas designated as
the positive class and EM was considered as the negative class.

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1570860
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Yimit et al. 10.3389/fmolb.2025.1570860

2.7.2 Model evaluation
The models were trained and validated using a 7:3 random

split of the data. In addition to this split, we employed K-fold
cross-validation while training the DL classifier; this ensures that
the model is assessed on multiple subsets of the data, thereby
enhancing its generalizability to unseen cases. Each fold allows a
robust evaluation of the model’s performance, thereby providing a
more reliable estimate of its predictive capabilities.

To rigorously compare the receiver operating characteristic
(ROC) curves of different models, the DeLong test was employed;
this method provides a statistically robust comparison of the AUCs
between two correlated ROC curves, enabling the evaluation of
whether observed differences in the model performance were
statistically significant. The DeLong test results were expressed as
p-values, which served as critical indicators of the likelihood of
observing the current or a more extreme difference under the
null hypothesis that the two models have equivalent diagnostic
accuracies.

For the hard and soft voting strategies, the performance metrics
were compared on both the training and validation sets. The
hard voting strategy demonstrated superior diagnostic accuracy
than the soft voting approach, as reflected by higher AUC values
with corresponding confidence intervals. The multimodality fusion
model combining DL signatures, clinical features, and imaging
features using the decision tree framework was further evaluated
for statistical significance to confirm its enhanced diagnostic
performance over the standalone DL classifier.

3 Results

3.1 Interpretation of the clinical imaging
features

As is shown in Table 1, a total of 201 patients were included
in this study. Among these, male patients were more common
than female patients (p = 0.017). The BMI, vomiting, headache,
and gait instability features did not show any statistical differences.
In terms of morphology, solid components were common in MB,
whereas cystic or mixed masses were more common in EM (p =
0.005). On the contrast-enhanced T1WI sequences, MB showed
a predominantly significant enhancement pattern, whereas EM
mainly showed mild or moderate enhancement (p < 0.001). The
ADC value for MB was significantly lower than that for EM (p <
0.001). The other features like shape and signal intensities on the
T1WI and T2WI showed no statistical differences.

3.2 Evaluation of predictive voting
strategies for different DL models

For the DL model, we adopted two voting strategies for
predicting the results of the slice assembly: hard and soft voting. We
assessed those two voting strategies using the AUC and confusion
matrix. As shown in Table 2, the DL results generated by hard
voting were superior to those obtained using soft voting across all
model performance evaluation criteria, except specificity, on both
the training and test sets. The model based on hard voting achieved

AUC values of 0.712 (95% CI: 0.625–0.797) on the training set and
0.689 (95% CI: 0.554–0.826) on the test set; in comparison, the
model based on soft voting achieved AUC values of 0.705 (95% CI:
0.615–0.794) on the training set and 0.633 (95% CI: 0.497–0.767)
on the test set. Moreover, the DL prediction performances based
on hard voting on the training and test sets showcase remarkable
model generalization. Based on the model performances, we chose
the prediction results generated by the DL model based on hard
voting as the inputs to the multimodality fusion model.

3.3 Performance differences between the
image-based DL and multimodality fusion
models

For the multimodality fusion model, we selected five imaging
features (signal intensities on the T1WI and T2WI, morphology,
shape regularity, and enhancement pattern on CET1), one clinical
characteristic (vomiting), and one DL signature (Pred_hard_
voting). The diagnostic performances of the multimodality fusion
model on the training and test sets are shown in Table 3. The AUC
values for this model were 0.987 on the training set and 0.889 on
the test set, presenting considerable model generalization.The ROC
curves were also compared between the DL model based solely
on images and multimodality fusion model shown in Figure 3, for
which the performance of the multimodality fusion model was
noted to surpass that of the image-based DL model, indicating
a better discrimination ability. Furthermore, the multimodality
model showed notable capability to designate positive and negative
individuals based on the sensitivity of 0.910 and specificity of 0.974
on the training set.

3.4 Decision tree structure and feature
importance of the multimodality fusion
model

To understand the relative influences of the model variables, we
visualized the decision tree structure in the decision tree classifier
(Figure 4). The distributions of the features categorized by the
dependent variable “label” are presented in Figure 5. Notably, the
DL signature was identified as the most relevant predictive factor,
following which the feature indication of “vomiting,” CET1, and
signal intensity on the T1WI contributed significantly to the Gini
information increment.

4 Discussion and limitations

To distinguish between MB and EM, we developed a DL model
integrating the radiomics features of T2WIwith clinical and imaging
characteristics. The model shows promising performance, with a
hard voting strategy outperforming the soft voting approach to
yield AUC values of 0.71 on the training set and 0.69 on the
test set. Furthermore, the multimodality fusion model achieved
impressive AUC values of 0.99 on the training set and 0.89 on
the test set. These results highlight the potential of combining
radiomics with clinical data in alignment with previous studies that
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TABLE 1 Clinical and imaging characteristics used in this study.

Variable MB (n = 136)
M (P25, P75), n (%)

EM (n = 65)
M (P25, P75), n (%)

H/χ2 p

Gender 5.745 0.017

 Male 81 (59.6) 27 (41.5)

 Female 55 (40.4) 38 (58.5)

Body mass index 21.75 (19.40, 23.00) 21.50 (19.40, 23.00) −0.385 0.700

Age (years) 5.00 (4.00, 7.00) 5.00 (3.00, 7.00) −1.722 0.085

Headache 2.944 0.086

 No 50 (36.8) 16 (24.6)

 Yes 86 (63.2) 49 (75.4)

Vomiting 0.019 0.889

 No 76 (55.9) 37 (56.9)

 Yes 60 (44.1) 28 (43.1)

Gait instability 3.375 0.066

 No 69 (50.7) 24 (36.9)

 Yes 67 (49.3) 41 (63.1)

Morphology 10.453 0.005

 Solid 79 (58.1) 22 (33.8)

 Cystic 26 (19.1) 21 (32.3)

 Mixed 31 (22.8) 22 (33.8)

Shape 1.003 0.309

 Irregular 67 (49.3) 37 (56.9)

 Regular 69 (50.7) 28 (43.1)

T1 0.464 0.793

 Low 60 (44.1) 29 (44.6)

 Iso 39 (28.7) 16 (24.6)

 High 37 (27.2) 20 (30.8)

T2 3.421 0.181

 Low 32 (23.5) 19 (29.2)

 Iso 49 (36.0) 15 (23.1)

 High 55 (40.4) 31 (47.7)

(Continued on the following page)
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TABLE 1 (Continued) Clinical and imaging characteristics used in this study.

Variable MB (n = 136)
M (P25, P75), n (%)

EM (n = 65)
M (P25, P75), n (%)

H/χ2 p

Contrast-enhanced T1 36.393 <0.001

 Mild 30 (22.1) 18 (27.7)

 Moderate 26 (19.1) 36 (55.4)

 Significant 80 (58.8) 11 (16.9)

Apparent diffusion coefficient 0.50 (0.41, 0.59) 0.87 (0.83, 0.94) 11.059 <0.001

TABLE 2 Diagnostic performances of the image-based deep learning models with the hard and soft voting strategies.

Voting strategy Dataset AUC (95% CI) ACC SEN SPE NPV PPV

Hard voting
Training set 0.712 (0.625–0.797) 0.786 0.936 0.487 0.792 0.785

Test set 0.689 (0.554–0.826) 0.717 0.821 0.5556 0.6667 0.742

Soft voting
Training set 0.705 (0.615–0.794) 0.778 0.923 0.487 0.760 0.783

Test set 0.633 (0.497–0.767) 0.674 0.821 0.444 0.615 0.697

ACC, accuracy; AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.

TABLE 3 Diagnostic performance of the multimodality fusion model.

Model Dataset AUC (95% CI) ACC SEN SPE NPV PPV

Multimodality fusion model
Training set 0.987 (0.975–1.000) 0.932 0.910 0.974 0.844 0.986

Test set 0.889 (0.798–0.980) 0.848 0.750 1.000 0.720 1.000

ACC, accuracy; AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.

FIGURE 3
ROC curves of the image-based deep learning model and multimodality fusion model.
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FIGURE 4
Visual decision tree structure of the multimodality fusion model.

FIGURE 5
Feature importance for the multimodality fusion model.
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emphasize the importance of multimodal approaches in improving
the diagnostic accuracies of brain tumors. The superior results
from the multimodality fusion model compared to the image-based
DL model suggest that integrating diverse data sources can better
capture complex tumor characteristics, offering a promising strategy
for clinical decision-making.

MB and EM are prevalent pediatric brain tumors with
notable similarities in their imaging and clinical presentations.
However, MB and EM differ in their treatment approaches and
prognoses. MB treatment typically involves surgical resection,
radiation therapy, and adjunctive chemotherapy post-surgery
along with radiation (Sun et al., 2020). In contrast, EM
exhibits limited sensitivity to chemotherapy, primarily relying
on surgery and radiation for treatment (Gwynne et al., 2022).
Prognostically speaking, MB is associated with poor outcomes
and high metastatic risk with reported 5-year survival rates of
30%–50% (Rutkowski et al., 2005). Conversely, EM generally has a
more
favorable prognosis.

Accurate preinterventional diagnosis is essential for optimal
tumor management. Although surgical pathological biopsy is
commonly used for accurate diagnosis, it entails inherent risks
such as hemorrhage and damage to normal brain tissue. Hence,
the importance of non-invasive diagnostic approaches cannot
be overstated in clinical practice. Radiomics leverages machine-
generated quantitative features from medical images for disease
evaluation and shows potential in diverse medical areas. However,
traditional radiomics analysis, with its complex steps like manual
feature extraction and selection, often yields inconsistent results
owing to stochasticity (Lambin et al., 2012). In contrast, DL
directly learns relevant information from images by combining
feature extraction, selection, and model building within a single
neural network via end-to-end learning (Gojo et al., 2020). In
our previous study (Yimit et al., 2024), we explored the potential
of radiomics for differentiating MB from EM and achieved
considerable distinguishability; however, there were problems with
delineating lesions as well as extracting and selecting features, which
limited its clinical application. Furthermore, our previous study does
not involve the use of imaging and clinical features in decision-
making. The proposed integrated approach streamlines radiomics
analysis, offering a more efficient and effective method for deriving
insights from medical imaging data (Rudà et al., 2022).

The present study is a pioneering effort to utilize DL with
clinical and imaging features to distinguish MB from EM, thereby
streamlining radiomics analysis by extracting features directly
from MRI scans via end-to-end learning. In this study, different
imaging features, clinical features, and T2WI-extracted features
were incorporated to establish a multimodal fusion model for
classification. Among the clinical features, gender showed a slight
statistical difference, with male patients being more common than
female patients, consistent with previous studies (Weil et al., 2017).
There were no statistically significant differences in terms of age,
BMI, headache, vomiting, and gait instability. Regarding the imaging
features, MB exhibited a higher prevalence of solid masses, while
cystic andmixedmasses were less common; in contrast, EM showed
a higher prevalence of cystic and mixed masses, with solid masses
being less frequent; this difference was statistically significant (p =
0.041). The predominance of solid masses in MB can be attributed

to its cellular composition characterized by densely packed cells
(Zhou et al., 2023), while the histological features of EM, such as
necrosis and cyst formation, contribute to the prevalence of cystic
and mixed masses in these tumors (Zhao et al., 2023).

In the contrast-enhanced T1WI sequences, EM predominantly
showed moderate and mild enhancement, whereas MB had less-
common mild and moderate enhancement patterns. Significant
enhancement was more prevalent in MB with a statistically
significant difference (p < 0.001). This distinct contrast-
enhancement pattern can be attributed to the histological
characteristics of these tumors. MB is known for its high vascularity
and rapid growth, so it typically exhibits significant enhancement
owing to pronounced uptake of the contrast agent (Xia et al., 2024).
Conversely, the more heterogeneous nature of EM may contribute
to the observed moderate and mild enhancement patterns in this
tumor type. In addition, if CE-T1WI were used instead of T2WI
in the DL model, it is likely that the results could be improved,
potentially enhancing the model’s predictive power and specificity.
Thus, the diagnostic efficiency of CE-T1WI should be investigated
in future research.

The ADC value is significantly lower in MB than EM, with
a p-value of less than 0.001. These differences can be attributed
to variations in the cellular density and microscopic structure of
these tumors. MB tumors are characterized by higher cellularity and
densely packed cells, which restrict the diffusion of water molecules
and result in lower ADC values. Conversely, EM tumors typically
have lower cellularity and more open cellular structures, leading to
higher ADC values. This result is consistent with the findings of
previous studies (Medulloblastoma, 2019).

In the present study, predictive voting strategies like hard and
soft voting were used, which are commonly employed in ensemble
learning, particularly in the context of DL models. In hard voting,
each base model or classifier in an ensemble makes a prediction
based on the input data; the final prediction is then determined
by a majority vote, where the class that receives the most “votes”
from the individual classifiers is selected as the predicted class label
(Weil et al., 1998; Gilbertson and Ellison, 2008). On the other
hand, soft voting involves considering the predicted probabilities
or confidence scores provided by each classifier individually for
the various classes. Rather than selecting the majority vote, soft
voting averages these probabilities to arrive at a final prediction;
then, the class with the highest average probability across all
classifiers is chosen as the predicted class label (Koeller and
Rushing, 2003; Waldron and Tihan, 2003).

The decision tree classifier is a popular machine learning
algorithm that utilizes a tree-like model of decision rules to
make predictions. The Gini index shows that DL is the most
important predictive factor in our study, followed by the feature
indicators vomiting, CET1, and T1 enhancement pattern. In clinical
practice, doctors can use these indicators and logic to accurately
diagnose MB and EM.

The observation that “vomiting” contributes significantly to
the Gini information increment in the decision tree model, despite
its lack of statistical significance in traditional analyses (Table 1),
reveals a critical methodological distinction. This reflects the
different principles underlying statistical tests and machine
learning-based feature-importance assessments.
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Decision tree models prioritize features that reduce impurity,
such as the Gini index, thereby capturing complex non-linear
interactions and conditional dependencies among the variables.
Although “vomiting” as a feature may lack a robust independent
relationship with the outcome variable, its integration with
other features (e.g., CET1 intensity or T1WI signal) enhances
the model’s predictive capacity. This divergence arises because
traditional significance testing typically evaluates features in
isolation under linear assumptions, whereas decision trees uncover
synergistic effects and latent relationships that remain undetected
in parametric models.

The contextual relevance of “vomiting” suggests its role
as a secondary or interaction-based predictor, contributing to
unique decision pathways within the model. Its inclusion in our
model demonstrates the utility of decision trees in exploring
multidimensional non-linear data relationships.

This observation underscores the importance of complementing
traditional statistical approacheswithmachine learningmethods. By
integrating both paradigms, researchers can achieve amore nuanced
understanding of feature relevance, fostering advancements in
multimodality modeling and data interpretability.

In the results, the low specificity of the DL model refers to
its tendency to make broad and generalized predictions that may
lack precision for certain tasks. Although DL models excel in
recognizing patterns across large datasets, they often struggle with
fine-tuning of predictions for specific nuanced cases. This is partly
attributable to their reliance on vast amounts of training data, which
can cause overfitting to common patterns while underperforming
on rare or edge cases. Enhancing the specificity requires tailored
model architectures, improved diversity of the training data, and
better regularization techniques to focus on more precise decision
boundaries.

Although our study demonstrates promising discrimination
capabilities using DL in combination with clinical and imaging
features, several limitations should be noted. Despite collecting
patient data from three centers, the sample size remained
relatively small, without a separate external validation set.
Future research should thus focus on large-scale multicenter
studies to validate these findings. Additionally, the absence
of pathological whole-slide images in our study suggests that
incorporating such data could enhance the model’s differentiation
performance. Overfitting remains a challenge with most learning-
based models and necessitates further investigation, particularly
through multicenter studies with balanced sample sizes, to address
this issue.

5 Conclusion

The T2WI-based DL model combining clinical and imaging
features is shown to be able to differentiate MB from EM
in children in this study. The proposed model exhibits high
predictive accuracy and stability, showcasing its potential
to improve precision in oncology while offering practical
applications in clinical settings. In addition, the use of CE-
T1WI instead of T2WI in the DL model is expected to provide
improved results, which is suggested as the direction for further
investigations.
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