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Background: Heart failure (HF) is the end stage of various cardiovascular
diseases. Identifying new biomarkers is essential for early diagnosis,
prognosis, and treatment. This study applied bioinformatics to identify
potential HF biomarkers and explore the role of the immune
microenvironment.

Methods: Gene expression data were obtained from the Gene Expression
Omnibus (GEO) database. Differential expression analysis and Weighted Gene
Co-expression Network Analysis (WGCNA) were used to identify key genes.
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Set Enrichment Analysis were performed. Feature genes were further
determined using two machine learning algorithms, Random Forest (RF) and
Least Absolute Shrinkage and Selection Operator (LASSO), with diagnostic
accuracy assessed via Receiver Operating Characteristic (ROC) curves and
nomograms to screen hub genes, and external datasets further were used for
validation. Quantitative reverse transcription polymerase chain reaction (RT-
qPCR) was used to validate the expression levels of hub genes in clinical
samples. Single SampleGene Set Enrichment Analysis andCIBERSORT algorithm
were applied to evaluate immune cell infiltration in HF and its relationship
with hub genes.

Results:Differential analysis identified 165 differentially expressed genes (DEGs),
and WGCNA revealed the “blue” module showing a significant correlation
with HF. Integration of the DEGs and the “blue” module genes identified 28
common genes. KEGG pathway enrichment analysis suggested that these genes
may be involved in the cytoskeleton in muscle cells pathway. Lasso and RF
algorithms confirmed 7 key genes as potential biomarkers for HF, and further
analysis using the ROC curve identified 4 hub genes with good diagnostic value,
namely, High mobility group N 2 (HMGN2), Myosin Heavy Chain 6 (MYH6), High
temperature requirement A1 (HTRA1), and Microfibrillar-associated protein 4
(MFAP4), which were validated in an external dataset and by RT-qPCR. Immune
infiltration analysis revealed significant infiltration of immune cells in HF. T
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cells, NK cells, monocytes, and M2 macrophages play important roles in the
development of HF, and the hub genes were closely associated with multiple
immune cell types.

Conclusion: This study identifies HMGN2, HTRA1, MFAP4, and MYH6 as novel
diagnostic biomarkers and potential therapeutic targets for HF. These genes are
closely related to the immune microenvironment, providing new insights into
the early diagnosis, treatment, and mechanistic exploration of HF.

KEYWORDS

heart failure, biomarkers, bioinformatics, weighted gene co-expression network
analysis, machine learning, immune infiltration

1 Introduction

Heart failure (HF) is a chronic and complex clinical syndrome
resulting from myocardial damage or dysfunction, characterized
by a reduced ability of the heart to pump blood, which fails to
meet the metabolic demands of body tissues (McDonagh et al.,
2021). This leads to a range of symptoms, including shortness of
breath, edema, and fatigue. As one of the main manifestations
of end-stage heart disease, the incidence and mortality of HF
have been steadily increasing, particularly among the elderly, who
account for 80% of all HF patients (Triposkiadis et al., 2022).
Current epidemiological data estimate a global prevalence of
1%–3%, affecting over 56 million individuals, with projections
indicating a 46% increase by 2030. This growing burden imposes
substantial economic and resource pressures on society and
healthcare systems, resulting in reduced quality of life, frequent
hospitalizations, increased healthcare costs, and high premature
mortality rates (Virani et al., 2021; Yan et al., 2023; Bui et al., 2011).
Despite significant advancements in clinical treatments—including
pharmacotherapy, implantable devices, and surgical interventions
that have improved survival rates and quality of life for HF
patients, the 5-year survival rate after diagnosis remains below
50%, which is worse than that of certain malignant cancers
(Jones et al., 2019; Mamas et al., 2017). Emerging evidence
underscores the critical role of immune dysregulation in HF
progression. Chronic inflammation and immune cell infiltration
(e.g., T lymphocytes, macrophages) have been implicated in
myocardial remodeling, fibrosis, and ventricular dysfunction
(Zhang et al., 2017; Wrigley et al., 2011). However, the interplay
between immune microenvironment dynamics and molecular
biomarkers remains poorly characterized.

Early diagnosis of HF continues to be a major challenge.
Currently available biomarkers, such as brain natriuretic peptide

Abbreviations: HF, Heart failure; AUC, area under the curve; BNP, brain
natriuretic peptide; BP, biological process; CC, cellular component; DEGs,
differentially expressed genes; GEO, Gene Expression Omnibus; GO, Gene
Ontology; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation
Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO,
Least Absolute Shrinkage and Selection Operator; ME, module eigengene;
MF, molecular function; MSigDB, Molecular Signatures Database; NT-
proBNP, N-terminal pro-brain natriuretic peptide; ROC, Receiver operating
characteristic; RT-qPCR, reverse transcription polymerase chain reaction;
ssGSEA, Single Sample Gene Set Enrichment Analysis; TOM, topological
overlap matrix; WGCNA, Weighted Gene Co-expression Network Analysis.

(BNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP),
play an important role in clinical practice. However, their
sensitivity and specificity have certain limitations, making them
insufficient for precise differentiation across HF subtypes or
disease stages (Panagopoulou et al., 2013; Don-Wauchope and
McKelvie, 2015). While previous studies have identified candidate
biomarkers through single-omics approaches (e.g., transcriptomics
or proteomics) (Guo et al., 2020; Kurniawan et al., 2024), these
efforts often rely on conventional statistical methods that prioritize
individual gene-level associations, overlooking network-level
interactions and immune microenvironment dynamics. To address
these gaps, we integrate multi-omics data with computational
frameworks to prioritize robust biomarkers while elucidating their
immune-pathological relevance. In recent years, the development
of omics technologies, such as genomics, transcriptomics, and
proteomics, alongside advancements in bioinformatics, has
introduced novel strategies for identifying biomarkers based on
high-throughput data. Meanwhile, machine learning algorithms
have become increasinglymature in the biomedical field, optimizing
data features and enhancing the accuracy and robustness of
predictive models. Integrating bioinformatics analyses with
machine learning models facilitates the identification of biomarkers
with higher diagnostic and prognostic value, providing new
perspectives for the early diagnosis, treatment, and management
of HF (Xu et al., 2023; Wang et al., 2023; Zhu et al., 2023).
Researchers now see immune system malfunctions as vital
components of HF pathology which resembles their impact on
cancer treatment resistance. PD-1 immune checkpoint molecules
control T cell performance in oncology which affects both
tumor progression and therapeutic responses. Heart failure
disease severity and therapeutic response can be affected by
immune system changes that cause T cell exhaustion and ongoing
inflammation (Mustafa et al., 2024).

Based on this, the present study aims to integrate gene
expression data from the Gene Expression Omnibus (GEO) using
Weighted Gene Co-expression Network Analysis (WGCNA) and
machine learning algorithms to identify potential immune-related
HF biomarkers. Crucially, we further employ single-sample gene set
enrichment analysis (ssGSEA) to quantify immune cell infiltration
and elucidate its correlation with candidate biomarkers, thereby
bridging molecular signatures and immune pathophysiology. This
research seeks to provide innovative theoretical support for
clinical practice in HF management. Figure 1 illustrates the
study workflow.
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FIGURE 1
The study flowchart.

2 Materials and methods

2.1 Data processing and differential
analysis

Gene expression data for heart failure were obtained from
the GEO database by searching with the keyword “heart failure”.
Only datasets that met specific criteria were included in the study:
1) Species: Homo sapiens; 2) Data: Expression profiling by array;
3) Sample: each dataset contained ≥10 samples. Four datasets
(GSE5406, GSE9128, GSE120895, and GSE21610) along with their
corresponding platform annotation files were downloaded. The
Perl programming language was used to annotate the data with
official gene symbols and to group the samples. The R package
“limma” was used with the “normalizeBetweenArrays” function to
normalize the raw count expression data. Batch effects across the
four datasets were removed using the “ComBat” function from
the “sva” package. Differential expression analysis was performed
using the Bayesian multiple testing correction method from the

“limma” and “Bioconductor” packages, with the cutoff criteria for
differentially expressed genes (DEGs) set as adj.P.Val <0.05 and
|LogFC| > 0.5. The volcano plot was generated using the R package
ggplot2, while clustering heatmaps of the top 50 upregulated and top
50 downregulated DEGs were created using the pheatmap package.

2.2 Gene functional enrichment analysis

Gene Ontology (GO) functional enrichment analysis includes
three components: biological process (BP), cellular component
(CC), and molecular function (MF). The correlation between
genes and biological functions is explored by identifying the
main enriched GO items (Ashburner et al., 2000). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a knowledge base
for analyzing gene functions through systematic studies of gene
and molecular networks. It explores the enrichment of genes in
pathways such as cellular metabolism, signal transduction, and
the cell cycle (Ogata et al., 1999). Gene Set Enrichment Analysis
(GSEA) is a computational method based on molecular marker
databases to interpret gene expression data. It is commonly used
to analyze and explain pathway-level changes between normal and
disease groups (Subramanian et al., 2005). The immune-related
gene sets were downloaded from the Molecular Signatures Database
(MSigDB) as the reference gene set, namely, “immunesigdb.gmt”
file. Using the R package “org.HS.e.g.,.db”, “clusterProfiler”, DEGs
were analyzed for GO, KEGG and GSEA enrichment. Enrichment
results with p ≤ 0.05 and q ≤ 0.05 were considered statistically
significant. Visualization of the enrichment results was performed
using R packages such as “enrichplot”, “ggplot2″, “circlize”, and
“ComplexHeatmap”.

2.3 Weighted gene co-expression network
analysis

WGCNA is a systems biology method used to describe gene
association patterns across different samples. WGCNA can be
employed to identify clusters (modules) of highly correlated
genes, summarize these clusters using module eigengenes or
intramodular hub genes, correlate modules with each other
and with external sample traits (using eigengene network
methodology), and calculate module membership measures. Based
on the interconnectivity of gene sets and their associations with
phenotypes, this approach can be utilized to identify candidate
biomarkers or therapeutic targets (Langfelder and Horvath, 2008).
Therefore, WGCNA analysis serves as a powerful complement
to DEG analysis, providing a more comprehensive perspective
on pathogenic gene profiles. The GSE57345 dataset and platform
annotation file were downloaded using the “getGEO” function in R.
The “goodSamplesGenes” function from the “WGCNA” packagewas
used to check for missing values in the gene expression data, and
genes below the weight threshold were removed. The top 5,000
genes by average expression were selected for further analysis.
Sample clustering was performed on the gene expression matrix
to remove outlier samples. The “pickSoftThreshold” function was
used to determine the soft threshold, and the “scaleFreePlot”
function was employed to plot the scale-free distribution and
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the fitting line to evaluate whether the network exhibited scale-
free topology. Based on the optimal soft threshold and average
connectivity, the “blockwiseModules” and “plotDendroAndColors”
functions from the “WGCNA” package were used to construct a
gene co-expression network, identify gene modules, and plot the
gene clustering dendrogram. The minimum gene number within
a module was set to 50, and the module merging threshold was
set to 0.5. Then, the module eigengene (ME) for each module was
calculated, and the correlation between theMEand sample traits was
assessed. The linear correlation coefficient (cor (ME, dataTraits))
between each module’s ME and corresponding sample traits was
computed, and modules with statistically significant p-values were
selected for further analysis. Based on the soft threshold, the
“TOMsimilarityFromExpr” function was used to obtain topological
overlap matrix (TOM). A random selection of 400 genes was made,
and the topological overlap heatmap was plotted based on the
TOM-based dissimilarity measure.

2.4 Machine learning based feature gene
screening

Genes associated with both DEGs and WGCNA were
intersected for feature selection. The Least Absolute Shrinkage and
Selection Operator (LASSO) regression model was constructed
using the “glmnet” function, and the LASSO feature gene
set that minimizes the error was obtained (Friedman et al.,
2010). Random forest (RF) analysis was performed using the
“randomForest” function, with cross-validation error used to
determine the optimal number of trees (Hu and Szymczak, 2023).
The “importance” function was used to calculate and rank the
importance of genes, with a threshold of importance score >2
used to identify feature genes. The intersection of the results
from the two algorithms was taken to obtain the final set of
feature genes.

2.5 The assessment of biomarkers
prediction model and validation

We first performed differential expression analysis with the
“limma” package and then generated box plots with the “ggpubr”
package to visually depict the differences in gene expression across
groups. Receiver operating characteristic (ROC) is a method used
to assess the performance of classification models, and area under
the curve (AUC) is commonly used as a metric to evaluate model
performance. The value of AUC ranges from 0 to 1, with higher
values indicating better performance. The “pROC” function was
used to plot the ROC curve of feature genes and calculate the
AUC value. The construction of a nomogram provides valuable
reference for the diagnosis and prognosis of clinical HF. The “rms”
and “regplot” functions were used to plot the nomogram and the
calibration curve of the model to assess the model’s predictive
performance. Finally, to validate the model’s generalizability, we
used the external validation dataset GSE57345 and re-evaluated
their expression level and diagnostic value through box plots and
ROC curves. Hub genes were selected from the training set and
validation set using the criterion of AUC>0.8.

2.6 Immune cell infiltration analysis

Gene set variation analysis (GSVA) is a method used to analyze
gene sets and assess the variation of gene sets in samples. Single
sample gene set enrichment analysis (ssGSEA) is a variation of
GSVA, used to evaluate the enrichment level of specific gene sets
in a given sample. The “GSVA” function was used to perform
ssGSEA analysis based on gene sets for 28 immune-related cell
types, evaluating the infiltration levels of immune cells in different
samples. To further validate immune infiltration patterns, we applied
the CIBERSORT algorithm via the ‘CIBERSORT’ R package. This
method used to evaluate the percentage and abundance of 22
immune cells in tissues or cells. The “pheatmap” and “vioplot”
functions were employed to generate heatmaps and box plots,
displaying the infiltration abundance of immune cells between
the normal and HF groups. Spearman correlation analysis was
performed to assess the correlation between immune cells and hub
genes, and the results were visualized using a correlation plot.

2.7 Clinical sample collection

To validate the results, 20 blood samples from healthy subjects
(CON) and 20 blood samples from HF patients (HF) were collected
from clinical sources (Wei et al., 2023). The inclusion criteria for
HF patients were as follows: a. meeting the diagnostic criteria for
chronic heart failure outlined in the “2024 Chinese Guidelines for
the Diagnosis and Treatment of Heart Failure”. b. age between 18
and 80 years c. New York Heart Association (NYHA) class equal to
or greater than II; d.NT-proBNP levels are higher than 450 pg/mL e.
hospitalized for acute heart failure exacerbation. Exclusion criteria
included severe infection, significant liver or kidney dysfunction,
malignancy, severe endocrine or autoimmune diseases, and mental
disorders. The control group consisted of age- and sex-matched
healthy individuals from the health check-up department at our
hospital during the same period. Whole blood samples (5 mL per
participant)were collected in EDTAanticoagulant tubes after fasting
for≥8 h. Plasma was isolated by centrifugation at 3,000 × g for
10 min within 2 h of collection, aliquoted, and stored at −80°C.
The research was approved by the medical ethics committee of
the Nanyang Second General Hospital (No:2024-LY051-01-H01).
All participants voluntarily participated in the study and provided
informed consent. Supplementary Table S1 contains the clinical data
of the enrolled patients.

2.8 RNA extraction and quantitative
real-time polymerase chain reaction

RNA extraction and RT-qPCR were performed following
standard protocols. Total RNA was isolated from the samples
using TRIzol. RNA concentration and purity were measured
using the NanoDrop®ND-1000, and RNA integrity was assessed
by denaturing agarose gel electrophoresis. Then RNA was
reverse transcribed into cDNA using the SuperScript™ III
Reverse Transcriptase(Invitrogen). RT-qPCR was subsequently
conducted with 2x PCR Master Mix (Arraystar). Primer
sequences for PCR are listed in Table 1. Each experiment was
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TABLE 1 Primer sequences.

Primer Forward (5′-3′) Reverse (5′-3′)

HMGN2 TGCTAAACCTGCTCCTCCAA CTGTGCCTGGTCTGTTTTGG

MYH6 GCCCTTTGACATTCGCACTG GGTTTCAGCAATGACCTTGCC

HTRA1 TCCCAACAGTTTGCGCCATAA CCGGCACCTCTCGTTTAGAAA

MFAP4 TACCAGTCAGACGGCGTGTA CCACTCGCAGCTCATACTTCT

Cel-miR-39 TCACCGGGTGTAAATCAGCTTG TGGTGTCGTGGAGTCG

conducted in triplicate, and relative gene expression levels
were calculated using the 2–△△Ct method and normalized
to cel-miR-39.

2.9 Statistical analysis

All bioinformatics analyses were performed using R language.
Statistical analysis was conducted using GraphPad Prism 8.0.2
software. Correlations were assessed using Pearson’s correlation or
Spearman’s correlation test, with statistical significance defined as a
p-value less than 0.05.

3 Results

3.1 Identification of DEGs related to HF

Four datasets (GSE5406, GSE9128, GSE120895, and GSE21610)
were downloaded from the GEO database, including their
expression matrix files and corresponding platform annotation
files (Supplementary Table S2). A total of 165 DEGs were identified
(Supplementary Table S3). Volcano plots and clustering heatmaps
of the top 50 upregulated and top 50 downregulated genes were
generated using R (Figures 2A, B).

3.2 Enrichment analysis

GO, KEGG, and GSEA functional enrichment analyses
were performed on the DEGs, and the results were
visualized (Figures 2C–F). The GO functional enrichment
analysis identified 164 BP terms, including muscle system
processes, extracellular matrix organization, regulation of leukocyte
chemotaxis, muscle contraction. It also revealed 24 CC terms,
such as collagen-containing extracellular matrix, collagen trimer,
fibrillar collagen trimer, and banded collagen fibril, and 11 MF
terms, including extracellular matrix structural constituent,
heparin binding, integrin binding, collagen binding, and growth
factor binding. Additionally, KEGG pathway enrichment analysis
identified six pathways, including cytoskeleton in muscle cells,
AGE-RAGE signaling pathway in diabetic complications, cytokine-
cytokine receptor interaction, and PI3K-Akt signaling pathway.

Additionally, GSEA enrichment analysis identified
57 pathways (Figures 2E, F). Among them, 22 pathways were
highly expressed in the HF group, including the calcium signaling
pathway, cytoskeleton in muscle cells, Vascular smooth muscle
contraction, and the renin-angiotensin system. In contrast, 35
pathways were highly expressed in the control group, such as the
PI3K-Akt signaling pathway, MAPK signaling pathway, lipid and
atherosclerosis, TNF signaling pathway, HIF-1 signaling pathway,
and NF-kappa B signaling pathway.

3.3 WGCNA

The GSE57338 dataset and its platform annotation files were
obtained using R. Gene annotation was performed to derive gene
expression data. Due to the large dataset size, the top 5,000 genes
were selected based on their average expression values. Outlier
samples GSM1379815 and GSM1380018 were removed, and the
gene expression matrix was re-clustered (Figure 3A). A scale-free
topology fit index R2 of 0.85 was set, and the soft-threshold power
was determined to be 5. The scatter plot indicates that beyond a
power value of 5, the trend becomes stable with minimal changes
(Figure 3B). To assess whether the network exhibits a scale-free
topology, a scale-free topology plot and fitted line were generated,
showing a linear relationship between the logarithmof themean and
the logarithm of frequency (Figure 3C).

Using the determined soft-threshold power, a gene co-
expression network was constructed with the blockwiseModules
function (Figure 3D). The minimum module size was set to 50
genes, and the module merging threshold was set to 0.5. After
clustering, nine distinct modules were identified. To further
identify gene modules significantly associated with clinical traits,
correlation analysis was performed between gene modules and
clinical features. The ME score for each module was calculated,
and the linear correlation coefficients between the MEs and
corresponding sample traits were analyzed. The results were
visualized as heatmaps (Figures 3E, F). The heatmaps revealed that
the blue module had the strongest correlation with heart failure,
comprising 967 genes. Consequently, the blue module genes were
selected for further analysis (Supplementary Table S4). Finally, a
TOM was visualized by randomly selecting 400 genes to generate
a TOM heatmap (Figure 3G). In the TOM heatmap, darker colors
represent stronger correlations between genes.
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FIGURE 2
Differential analysis based on the GEO database. (A) Heatmap of DEGs (DEGs). (B) Volcano plot of DEGs. (C) GO enrichment analysis of DEGs. (D)
KEGG enrichment analysis of DEGs. (E) GSEA analysis for the HF group. (F) GSEA analysis for the control group.

3.4 Enrichment analysis

The intersection of 165 DEGs and the 967 genes from the
blue module associated with HF obtained through WGCNA
resulted in 28 common genes (Figure 4A; Supplementary Table S5).
The 28 common genes underwent GO and KEGG functional
enrichment analyses using R (Figures 4B, C). The GO analysis
identified 153 BP, mainly enriched in muscle system processes such
as contraction, development, and responses to transforming growth
factor β, actomyosin structure organization, complement activation.
In terms of CC, 37 terms were identified, mainly enriched in
collagen-containing extracellularmatrix, myofibril, contractile fiber,
sarcolemma and serine-type endopeptidase complex. Regarding
MF, 32 terms were enriched, including extracellular matrix
structural constituent, structural constituent of muscle, binding to
heparin, protein kinase B, growth factor, serine transmembrane
transporter activity and oxidoreductase activity. KEGG pathway
analysis revealed 3 significant pathways, including cytoskeleton
in muscle cells, malaria, and virion - ebolavirus, lyssavirus and
morbillivirus pathway.

3.5 Machine learning based feature gene
screening

To ensure that the selected common genes reflect actual
biological information as accurately as possible, two machine
learning algorithms, RF and LASSO regression, were employed

to further filter feature genes. LASSO regression identified
16 genes strongly associated with HF (Figures 5A, B). The RF
algorithm identified 10 genes with importance scores greater than
2 (Figures 5C, D). The intersection of results from the two machine
learning methods yielded seven feature genes (Figure 5E).

3.6 Prediction model construction and
biomarkers selection

To evaluate the diagnostic significance of biomarkers for HF,
a nomogram and calibration curve were constructed using R
(Figure 6). The calibration curve demonstrated a good fit between
the predicted and actual probabilities. ROC curves were then
generated to further assess the diagnostic specificity and sensitivity
of the biomarkers (Figure 7A), with an AUC value >0.8 considered
indicative of excellent diagnostic performance. The ROC analysis
identified five biomarkers with AUC values >0.8, namely, High
mobility groupN 2 (HMGN2), Myosin heavy chain 6 (MYH6), High
temperature requirement A1 (HTRA1), Latent transforming growth
factor beta binding protein 2 (LTBP2) and Microfibrillar-associated
protein 4 (MFAP4).

To further validate the expression levels of the five biomarkers
in HF, differential expression analysis was performed on the
dataset samples. The results showed that, compared to normal
samples, HMGN2, HTRA1, LTBP2, and MFAP4 were significantly
upregulated in heart failure, while MYH6 was downregulated (p
< 0.001) (Figure 7B).
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FIGURE 3
WGCNA-based analysis. (A) Sample clustering after removing outlier samples. (B) Scatter plot of soft-thresholding analysis. (C) Scale-free topology plot
with a soft-threshold power of 5. (D) Gene co-expression network, with each color representing a distinct gene module. (E) Heatmap showing the
correlation between MEs and clinical traits; darker colors indicate higher correlations. (F) The blue module. (G) TOM heatmap for a subset of genes in
the blue module; lighter colors indicate lower overlap, while darker colors indicate higher overlap.

3.7 External validation of the key
biomarkers

To ensure the accuracy of the results, an external dataset
(GSE57345) was used to validate the five biomarkers. ROC curves
and box plots were generated to assess their diagnostic value and
expression levels (Figure 8). The results showed that the expression
patterns of the five biomarkers were consistent with those in the
training dataset. HMGN2, HTRA1, MFAP4, and MYH6 exhibited
AUC values greater than 0.8, indicating high diagnostic performance,
whereas LTBP2 had an AUC value of 0.785, suggesting moderate
diagnostic accuracy.Therefore,HMGN2,HTRA1,MFAP4, andMYH6
were selected as key biomarkers for further analysis and validation.

To further confirm the accuracy of the above integrated
bioinformatics analysis, we analyzed the mRNA expression of the

four key biomarkers in plasma samples from healthy individuals
and HF patients using RT-qPCR. RT-qPCR results showed that
the mRNA expression of HMGN2, HTRA1, and MFAP4 was
significantly downregulated in the plasma of HF patients compared
to the control group, while MYH6 was significantly upregulated
(Figure 9; Supplementary Table S6).

3.8 Immune cell infiltration and its
correlation with key biomarkers

To further investigate the immune status differences between
HF patients and healthy controls, immune infiltration analysis was
performed by ssGSEA and CIBERSORT algorithms. Figure 10A
illustrates the distribution of 28 immune cell types in the dataset
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FIGURE 4
Functional enrichment analysis. (A) The intersection of genes obtained from WGCNA with the set of DEGs. (B) GO enrichment terms. (C)
KEGG pathways.

based on ssGSEA. Among 28 immune cells, the infiltration rates
of Activated CD8+ T cells, Effector memory CD4+ T cells, Central
memory CD4+ T cells, and Central memory CD8+ T cells were
significantly higher in HF samples than in normal samples. In
contrast, the infiltration rate of Activated dendritic cells was
significantly lower in HF samples (Figure 10B). Correlation analysis
between key genes and immune cells revealed thatHMGN2,HTRA1,
and MFAP4 were positively correlated with T follicular helper
cells, regulatory T cells, plasmacytoid dendritic cells, natural killer
T cells, monocytes, myeloid-derived suppressor cells, mast cells,
macrophages, CD56 dim natural killer cell, activated dendritic
cells, and activated B cells. In contrast, MYH6 was negatively
correlated with effector memory CD8+ T cells and central memory
CD8+ T cells (Figure 10C).

Histogram showed the composition of 22 different immune
cell types in each sample based on the CIBERSORT (Figure 10D).
The color representation corresponds to the percentage of each
immune cell type in each sample, with the total sum equaling 1.
The analysis results indicated that T cells and NK cells occupy a
larger proportion. Among 22 immune cells, the HF samples were
associated with significantly decreased abundances of Monocytes
and Macrophages M2 (Figure 10E). Correlation analysis between
key genes and immune cells revealed that HMGN2 was positively
associated with T cell gamma delta and Eosinophils, and negatively
associated with T cells regulatory (Tregs) and T cells CD8. HTRA1

was positively associated with Plasma cells and Dendritic cells
resting, and negatively associated with T cells regulatory (Tregs).
MFAP4 was positively associated with Plasma cells, Macrophages
M2 and B cells memory,and negatively associated with T cell CD8,
T cells regulatory (Tregs), Neutrophils, Dendritic cells activated, B
cells naive. MYH6 was positively associated with NK cells resting,
and negatively associated with B cells memory (Figure 10F). These
findings further support the regulatory role of immune cells in the
molecular mechanisms underlying heart failure progression.

4 Discussion

Heart failure is a severe cardiac condition whose seriousness
and prevalence pose a significant challenge to global public
health. Currently, the treatment of HF primarily focuses on
alleviating symptoms and slowing disease progression, yet there
is a lack of effective early diagnostic methods and targeted
therapies. In clinical practice, various biomarkers have been
utilized for the diagnosis and prognosis assessment of heart
failure, such as BNP, NT-proBNP, cTn, galectin-3, sST2, and
growth differentiation factor-15. However, their clinical application
remains limited by issues related to sensitivity, specificity, and
their ability to identify early-stage populations (Wang et al., 2017;
Wang et al., 2018). For instance, a systematic review showed
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FIGURE 5
Identification of biomarkers using machine learning. (A) LASSO coefficient path plot, each curve represents the trajectory of a biomarker, with the
vertical axis indicating gene values, the lower horizontal axis representing log(λ), and the upper horizontal axis showing the number of nonzero
biomarkers in the model. (B) Ten-fold cross-validation plot for LASSO regression. (C) Relationship between the number of decision trees and error rate
in the RF algorithm. (D) Bar plot of feature gene importance in the RF model. (E) Venn diagram of key biomarkers identified by both methods.

that BNP exhibits a sensitivity ranging from 91% to 95% but a
specificity limited to 55%–80%, while NT-proBNP demonstrates a
sensitivity of 90%–96% and a specificity of approximately 55%–74%,
which may still be influenced by factors such as age and renal
dysfunction (Hill et al., 2014). In this study, we conducted
bioinformatics analyses on public databases and validated the
findings using blood samples from heart failure patients. We
identified four diagnostic biomarkers for HF, namely, HMGN2,

HTRA1, MFAP4, and MYH6, which demonstrated diagnostic
performance comparable to conventional biomarkers (AUC>0.8)
in external validation. Furthermore, unlike traditional biomarkers,
the association of these genes with immune microenvironment
dynamics may provide novel insights into molecular subtyping of
HF, offering new perspectives for future research.

HMGN proteins are a class of non-histone chromatin
architectural proteins located in the nucleus and exclusively
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FIGURE 6
Nomogram and calibration curve of key biomarkers. (A) Prognostic nomogram diagram. (B) Calibration curve plot for the nomogram. The X-axis
represents the predictable probability, and the Y-axis represents the actual probability.

expressed in eukaryotes, playing roles in regulating transcription
and DNA repair (Murphy et al., 2017). As a member of the HMGN
family, HMGN2 is a key regulator of transcriptional activation
in gene expression and has been shown to significantly inhibit
tumor cell proliferation, migration, and angiogenesis, exerting
anti-tumor effects (Fan et al., 2019; Xu et al., 2020). The role of
HMGN2 in HF has not been fully elucidated, but studies suggest
that endogenous HMGN2 acts as a positive regulator of NF-κB
signaling and modulates intracellular ROS homeostasis through
the Nrf2 pathway, thereby regulating oxidative stress and actin
cytoskeleton rearrangement (Liu et al., 2017). These findings imply
that HMGN2 may influence myocardial cell homeostasis and stress
responses by participating in chromatin structure regulation,
gene transcription, and oxidative stress, thereby impacting HF.
Moreover, previous research has identified HMGN2 as one of the
HF signature genes (Li et al., 2020), which is consistent with our
results. Validation using external datasets and analyses revealed that
HMGN2 is highly expressed in myocardial tissues of HF patients,
while RT-qPCR results indicated low expression of HMGN2 in the
plasma of HF patients. This discrepancy may be attributed to the
following reasons: HF-related oxidative stress and inflammation
may upregulateHMGN2 expression in myocardial tissues to protect
cardiomyocytes from damage; mechanical stress induced by HF
may promote HMGN2-mediated actin rearrangement to adapt to
changes in cardiomyocyte morphology and function, leading to
its high expression in myocardial tissues. The low expression of
HMGN2 in the plasma of HF patients could be explained by several
factors: HMGN2 primarily functions as a chromatin regulatory
protein within the nucleus, modulating gene transcription and
thus is less likely to be released into the bloodstream, remaining
localized in myocardial tissues to regulate local antioxidant stress
and autophagy; in HF, changes in the vascular microenvironment
may affect HMGN2 release, such as reduced secretion by
smooth muscle cells and endothelial cells, thereby lowering

HMGN2 levels in the blood; HMGN2 in plasma may be rapidly
degraded or cleared.

HTRA1 is a member of the HTRA family and a serine protease
involved in critical biological processes such as cell proliferation,
mitochondrial homeostasis, and apoptosis. Abnormalities in its
structure and function can influence the expression of transforming
growth factor-beta (TGF-β), thereby affecting the progression of
cardiovascular diseases (Zhao et al., 2023; Fasano et al., 2020).
Studies have shown that HTRA1 is significantly elevated in Dilated
cardiomyopathy (DCM), and its inhibition can effectively prevent
the transformation of cardiac fibroblasts into myofibroblasts,
thereby significantly suppressing myocardial fibrosis and improving
left ventricular function in DCM mice (Shi et al., 2024). These
findings suggest that HTRA1 may reduce TGF-β-mediated
fibroblast activation and collagen production by modulating TGF-
β activity, thereby suppressing myocardial fibrosis and improving
left ventricular function. A study found that increased circulating
HTRA1 levels are causally associated with a reduced risk of coronary
artery disease. The mechanism may involve increased HTRA1
expression in smooth muscle cells and endothelial cells, which
inhibits TGF-beta signaling in atherosclerosis, thereby preventing
neointima formation and pathological endothelial-mesenchymal
transition. HTRA1 was identified as a potential therapeutic target
for coronary artery disease (Lee et al., 2024). Another study
also highlighted the central role of HTRA1 in coronary artery
disease, discovering that a common causal variant (rs2672592)
regulates circulating HTRA1 mRNA and protein levels, increasing
the risk of ischemic stroke, small vessel stroke, and coronary
artery disease (Dichgans et al., 2023). Validation using external
datasets and analyses revealed that HTRA1 is highly expressed
in myocardial tissues of heart failure patients, while RT-qPCR
results indicated low expression of HTRA1 in the plasma of HF
patients. This discrepancy may be due to the following reasons: in
HFpatients, the progression ofmyocardial fibrosis leads to increased
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FIGURE 7
ROC curves and expression levels of biomarkers. (A) ROC curve analysis of biomarkers. (B) Box plot of biomarker expression levels in dataset samples
(∗∗∗p < 0.001).

local enrichment of HTRA1 in myocardial tissues rather than its
release into the bloodstream, resulting in relatively lower plasma
levels; HTRA1 may be locally consumed during the myocardial
fibrosis process and not sufficiently released into the circulation;
or endothelial dysfunction associated with HF may affect the
expression and release of HTRA1, with chronic oxidative stress
leading to its degradation in the circulatory system.

MFAP4 is an extracellular matrix (ECM) glycoprotein,
abundantly expressed in elastin-rich tissues such as skin, arteries,
lungs, and the heart (Mohammadi et al., 2022). MFAP4 is
closely associated with various remodeling-related diseases, such
as atherosclerosis and arterial injury-induced remodeling. Its
expression is significantly increased in heart failure animal models
and TGF-β-stimulated cardiac fibroblasts, while the deletion of this

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1580880
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Jin et al. 10.3389/fmolb.2025.1580880

FIGURE 8
ROC curves and expression levels of biomarkers validated using the external dataset GSE57345. (A) Box plot of biomarker expression levels (∗∗∗p <
0.001). (B) ROC curve analysis of biomarkers.

gene can attenuate left ventricular remodeling and dysfunction in
heart failure (Wang et al., 2020). A clinical cohort study revealed that
MFAP4 protein is primarily located on elastic fibers within blood

vessels, with its synthesis mainly derived from vascular smooth
muscle cells (VSMCs). The study also noted that serum MFAP4
levels in patients with stable atherosclerotic disease were lower than
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FIGURE 9
Results of RT-qPCR analysis (∗p < 0.05,∗∗∗p < 0.001).

in healthy individuals.Thismay be due to the release ofMFAP4 from
VSMCs in the medial layer into the circulation, or the increased
elastase activity in atherosclerosis, which reduces elastin content
in atherosclerotic vessels, leading to decreased MFAP4 synthesis
bound to elastin in the ECM (Wulf-Johansson et al., 2013). A
study has found that knockout of the MFAP4 gene exacerbates age-
related elastin/collagen ratios, leading to elastin degradation, while
improving Ang II-induced diastolic hypertension by reducing the
stiffness of mesenteric resistance arteries (Christensen et al., 2024).
It also reduces susceptibility to AF by inhibiting the activation of
the PI3K-AKT and MEK1/2-ERK1/2 signaling pathways, thereby
suppressing Ang II-induced atrial fibrosis and AF progression
(Wang et al., 2022). Analysis suggests that circulating MFAP4
exhibits bidirectional changes in cardiovascular diseases, decreasing
in stable atherosclerosis but increasing in ST-segment elevation
myocardial infarction (STEMI) and non-STEMI patients, indicating
that circulating MFAP4 levels depend on the degree of vascular
wall calcification and injury in the context of cardiovascular
disease. Furthermore, the role of MFAP4 in cardiac remodeling
presents conflicting data. On one hand, MFAP4 deficiency reverses
aortic constriction and isoproterenol-induced cardiac dysfunction
without affecting cardiac hypertrophy in these models (Wang et al.,
2020). On the other hand, MFAP4 is considered protective in
stress-induced cardiac hypertrophy (Dorn et al., 2021a). Although
some studies suggest that MFAP4 is involved in cardiac fibrosis
(Wang et al., 2020), others have found no observed effect of MFAP4
deficiency on the development of local fibrosis (Dorn et al., 2021b).
This implies that the role of MFAP4 in cardiac remodeling may
depend on cell type. In early disease stages, MFAP4 signaling in
cardiomyocytes may be beneficial, but in advanced disease, it may
activate pro-fibrotic pathways in non-myocytes such as endothelial
cells and cardiac fibroblasts (Kanaan et al., 2022). The application
of MFAP4 in heart failure requires further validation. External
dataset validation and analyses indicate that MFAP4 is highly
expressed in myocardial tissues of heart failure patients, consistent
with previous studies (Wang et al., 2020), while RT-qPCR results
show low expression of MFAP4 in the plasma of HF patients. This
discrepancy may be due to significant ECM remodeling in HF
patients, causing MFAP4 to preferentially bind to the ECM rather
than being released into the bloodstream; increased activity of

ECM-degrading enzymes (e.g., elastase) accelerates MFAP4
degradation; and HF-associated vascular remodeling, changes in
vascular elastin structure, and vascular dysfunction may impair
MFAP4 entry into the circulation.

The MYH6 gene encodes the α-heavy chain subunit of cardiac
myosin (αMyHC), a key protein in myocardial contraction. In
normal hearts, αMyHC mRNA accounts for 20%–30% of total
myosin mRNA, and its protein constitutes approximately 7% of
total MyHC. In heart failure, both αMyHC mRNA and protein
levels are significantly downregulated to around 10% (Lv et al.,
2011; Theis et al., 2015). Changes in MYH6 gene expression
can lead to alterations in myocardial structure, thereby affecting
ventricular remodeling, resulting in cardiac enlargement and sinus
node dysfunction, which are closely associated with ischemic
cardiomyopathy andHF (Chen et al., 2021). αMyHC is closely linked
to the phenotypes of both DCM and hypertrophic cardiomyopathy
(HCM). Studies have shown that αMyHC mRNA expression is
downregulated in DCM patients, and β-blocker therapy can restore
αMyHCfibers, thereby improvingmyocardial function (Lowes et al.,
2002). Additionally, MYH6 mutations can lead to a spectrum of
dilated and hypertrophic phenotypic changes, ranging from DCM
to HCM, including myocardial hypertrophy progressing to dilation
and systolic dysfunction (Carniel et al., 2005), as well as severe
adverse outcomes in DCM patients, such as sudden death and
heart failure (Merlo et al., 2013). External dataset validation and
analyses indicate that MYH6 is lowly expressed in myocardial
tissues of heart failure patients, while RT-qPCR results show that
MYH6 is highly expressed in the plasma of HF patients. This
discrepancy may be due to the fact that MYH6 is primarily an
intracellular structural protein, with its expression largely confined
to cardiomyocytes in healthy individuals. In the context of heart
failure, cardiomyocyte damage or apoptosis may lead to the release
of intracellular MYH6 into the bloodstream, resulting in elevated
plasma MYH6 levels. Additionally, the inflammatory and immune
responses accompanying heart failure may also influence the
expression and release of MYH6.

Furthermore, KEGG pathway enrichment analysis of the
hub genes revealed that they are primarily concentrated in the
“Cytoskeleton in muscle cells” pathway. The cytoskeleton of
cardiomyocytes is composed of actin, intermediate filament proteins
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FIGURE 10
Immune infiltration analysis. (A) Heatmap of immune scores for 28 immune cell types in ssGSEA, with the x-axis representing sample names, the y-axis
representing different immune cells, and the clustering tree on the left indicating the clustering of units on the vertical axis. Red represents immune cell
infiltration, while blue indicates immune cell suppression. The intensity of the color represents the degree of cell infiltration. (B) Boxplot of 28 immune
cells abundance. Blue represents control and red represents heart failure. (C) The correlation heat map between key biomarkers and immune cells in
ssGSEA. Red represents positive correlation and blue represents negative correlation. (D) Bar graph of 22 immune cells percentages in CIBERSORT.
Horizontal coordinates represent samples, vertical coordinates represent percentages, and colors represent immune cells. (E) Boxplot of 22 immune
cells abundance in CIBERSORT. (F) The correlation heat map between key biomarkers and immune cells in CIBERSORT (∗p < 0.05,∗∗p < 0.01,∗∗∗p
< 0.001).

such as desmin, and α- and β-tubulins, which polymerize to
form microtubules. These components provide structural support,
regulate cell shape, ensure mechanical integrity, and stabilize
sarcomeric proteins. Additionally, the cytoskeletal framework
mediates biomechanical and biochemical signaling between
the intracellular and extracellular environments, influencing
gene expression, post-translational regulation, and protein
synthesis, ultimately leading to direct myocardial remodeling
(Sequeira et al., 2014). Alterations in the cytoskeleton, particularly

changes in microtubules and desmin, play a significant role
in cardiac hypertrophy and heart failure. Studies have shown
that in human hearts with chronic heart failure caused by
DCM, the morphological basis of reduced contractile function
is the disorganization and accumulation of cytoskeletal and
membrane-associated proteins (Hein et al., 2000).

HF is often accompanied by complex immune responses,
including the infiltration of inflammatory cells and the release of
cytokines. The activation of cardiac immune response mechanisms
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triggers adverse cardiac remodeling and leads to left ventricular
dysfunction. Understanding the molecular mechanisms by which
immune responses interfere with cardiac remodeling in HF may
open new avenues for designing biomarkers or drug targets
(Zhang et al., 2017). The ssGSEA immune infiltration analysis
revealed a higher abundance of T cells in HF compared to the
control group. CIBERSORT immune infiltration analysis suggested
that T cells and NK cells constituted a larger proportion, while
monocytes and M2 macrophages showed significantly reduced
abundance in HF. Correlation analysis of key genes with immune
cells indicated that HMGN2, HTRA1, and MFAP4 might exert
diverse regulatory effects on T cells and macrophages. MYH6
was found to potentially regulate both T cells and NK cells.
This suggests that these immune cells play important roles in
the development of HF. Research indicates that end-stage HF is
characterized by the accumulation of T cells in the ventricles,
and infiltration of T cells can be observed in animal models of
failing hearts (Laroumanie et al., 2014). T cells activation, coupled
with LV endothelial activation, promotes T-cell infiltration into the
LV. This process exacerbates HF through mechanisms involving
cytokine release and induction of cardiac fibrosis and hypertrophy
(Nevers et al., 2015). Clinical samples further demonstrate a
positive correlation between inflammatory cytokines produced
by T cells and the severity of LV dysfunction in HF patients
(Fukunaga et al., 2007). Experimental evidence found that inmurine
HF models, blockade of T-cell costimulation significantly delayed
disease progression and reduced cardiac dysfunction severity. This
therapeutic effect was attributed to suppressed activation and
cardiac infiltration of T cells, ultimately decreasing cardiomyocyte
death (Kallikourdis et al., 2017). Emerging evidence indicates
that NK cells can limit cardiac inflammation and fibrosis, and
ameliorate postinfarct cardiac remodeling and failure (Sobirin et al.,
2012; Ong et al., 2015). Specifically, NK cells mitigate cardiac
fibrosis progression through directly restricting collagen formation
of cardiac fibroblasts and the accumulation of specific inflammatory
populations and eosinophils in the heart (Sun et al., 2021).
Macrophages, a major cell population involved in cardiac immune
response and inflammation, are polarized into M1 and M2 types.
M1 macrophage releases inflammatory factors and chemokines to
activate the immune response, while M2 macrophage releases anti-
inflammatory factors to inhibit the overactive immune response
and promote tissue repair (Zhu et al., 2024). A study found that
M1 macrophages were elevated, while M2 macrophages decreased
inHFmice (Zhang et al., 2021).The above results are consistent with
our findings.

This study has several limitations. For instance, the sample size
is limited, and further expansion is needed to validate the reliability
of the results. The inconsistency in the validation of gene differential
expression levels may be attributed to differences between datasets
and validation samples. Myocardial tissues reflect local pathological
changes, while gene levels in plasma may be influenced by systemic
metabolism, clearance rates, and release mechanisms, reflecting
changes at different biological levels. Additionally, limitations in
RT-qPCR detection, such as sample processing, RNA extraction
efficiency, and the stability of circulating RNA, may contribute
to inaccurate results. Future studies should focus on detecting
protein levels in both myocardial tissues and plasma, as well
as conducting more in-depth experimental research, such as

cell or animal model experiments (e.g., knockout/overexpression
models), to comprehensively evaluate expression changes and
further explore the potential mechanisms of these biomarkers
in the development and progression of HF. In summary, this
study utilized bioinformatics methods to identify a group of
potential biomarkers associated with HF. These biomarkers hold
promise for providing new tools for the early diagnosis, prognosis
assessment, and personalized treatment of HF. However, these
findings require further experimental validation and confirmation
through clinical studies.

5 Conclusion

In this study, we employed bioinformatics andmachine learning
methods to identify four potential diagnostic biomarkers for HF,
namely, HMGN2, HTRA1, MFAP4, and MYH6. Using ROC curve
analysis and nomogram construction, we developed diagnostic
and predictive models that demonstrated excellent diagnostic
performance and HF risk prediction capabilities. The expression
levels of these biomarkers were further validated using blood
samples from clinical patients. Finally, we applied the ssGSEA
and CIBERSORT algorithm to analyze immune infiltration in
HF patients, and correlation analysis revealed that the hub genes
are involved in the immune response of HF. In summary, these
four biomarkers may play critical roles in the development and
progression of HF and hold promise for early diagnosis and
prognosis assessment of HF, identifying high-risk populations, and
guiding personalized treatment strategies.
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