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Introduction: Sepsis is a life-threatening condition caused by a dysregulated
immune response to infection. Despite advances in clinical care, effective
biomarkers for early diagnosis and prognosis remain lacking. Emerging
evidence suggests that histone acetylation plays a crucial role in the
pathophysiology of sepsis.

Methods: Transcriptomic and single-cell RNA sequencing data were used to
identify histone acetylation-related genes. Differential expression analysis and
weighted gene co-expression network analysis (WGCNA) were performed,
followed by machine learning algorithms (LASSO, SVM-RFE, and Boruta) to
screen for potential biomarkers. Mendelian randomization (MR), RT-qPCR, and
functional assays were conducted for validation.

Results: BLOC1S1, NDUFA1, and SFT2D1 were identified as key biomarkers.
A predictive nomogram demonstrated strong diagnostic potential. Immune
infiltration and single-cell analyses linked the biomarkers tomacrophage activity.
MR analysis confirmed SFT2D1 as a causal factor in sepsis. Functional assays
showed that knockdown of SFT2D1 suppressed CXCL10 and IL-6 expression,
indicating its pro-inflammatory role.

Discussion: This study identifies novel biomarkers associated with histone
acetylation and immune dysregulation in sepsis. These findings deepen our
understanding of sepsis pathogenesis and may facilitate the development of
improved diagnostic and therapeutic strategies.

KEYWORDS

biomarkers, histone acetylation, Mendelian randomization, sepsis, single-cell RNA
sequencing

1 Introduction

Sepsis is a severe, life-threatening systemic inflammatory condition that arises from a
dysregulated host response to infection. It is a major global health issue, with high incidence
and mortality rates, particularly in critically ill patients (Singer et al., 2016). Sepsis can lead
to multi-organ dysfunction, with the lungs being one of the most vulnerable organs, often
affected early in the disease process (Su et al., 2024). Despite advances in antimicrobial
therapy and organ support, sepsis remains the leading cause of death in intensive care units.
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Early diagnosis and intervention are crucial to improving patient
outcomes, yet effective biomarkers for the early detection and
prognosis of sepsis are still lacking.

Recent research has highlighted the critical role of epigenetic
modifications, particularly histone acetylation, in the progression
of sepsis. Histone acetylation, a reversible post-translational
modification catalyzed by histone acetyltransferases and
deacetylases, influences chromatin structure and gene expression
(Wu et al., 2024). This process has profound effects on immune cell
function and contributes to immune reprogramming during sepsis.
Dysregulation of histone acetylation can alter the host’s immune
responses, leading to persistent immune suppression and chronic
inflammation (Li et al., 2024a; Li et al., 2024b; Sun et al., 2021).
Understanding the mechanisms of histone acetylation in sepsis
could provide new avenues for developing diagnostic biomarkers
and therapeutic targets.

In this study, we utilized bioinformatics and single-
cell RNA sequencing (scRNA-seq) to identify histone
acetylation-related biomarkers in sepsis and elucidate their
molecular and immunological mechanisms. By integrating
transcriptomic data with Mendelian randomization (MR)
analysis and immune cell profiling, we aimed to uncover
critical pathways and regulatory networks associated with these
biomarkers. These findings could contribute to improving
early diagnosis, risk stratification, and personalized therapeutic
approaches for sepsis.

2 Materials and methods

2.1 Data collection

The training cohort (GSE95233), validation cohort (GSE65682),
and single-cell RNA sequencing (scRNA-seq) dataset (GSE167363)
for sepsis were downloaded from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo). Specifically,
the GSE95233 dataset, was utilized the GPL570 platform, included
blood samples from 22 controls and 102 sepsis (Tabone et al.,
2018; Venet et al., 2017). The header of the GSE95233 dataset
was described as the robust multi-array average (RMA) signal
intensity (log base 2). The GSE65682 dataset, was based on the
GPL13667 platform, comprised blood samples from 42 controls and
51 sepsis (Scicluna et al., 2015; van Vught et al., 2016). The header
of the GSE65682 dataset was described as the RMA normalized
log2 transformed values. The scRNA-seq dataset GSE167363,

Abbreviations: AUC, area under the curve; ATCC, American type culture
collection; DEGs, differentially expressed genes; GEO, gene expression
Omnibus; GO, gene ontology; GSEA, gene set enrichment analysis; GSVA,
gene set variation analysi; HARGs, histone acetylation-related genes;
IVs, instrumental variables; KEGG, Kyoto Encyclopedia of Genes and
Genomes; LASSO, least absolute shrinkage and selection operator; LPS,
lipopolysaccharide; lncRNAs, long non-coding RNAs; MR, Mendelian
randomization; miRNAs, microRNAs; OR, odds ratio; PMA, phorbol 12-
myristate 13-acetate; PPI, protein-protein interaction; ROC, receiver
operating characteristic; RT-qPCR, reverse transcription-quantitative
polymerase chain reaction; SVM-RFE, support vector machine-recursive
feature elimination; SiRNA, small interfering RNA; scRNA-seq, single-cell
RNA sequencing; SNPs, single nucleotide polymorphisms; TFs, transcription
factors; WGCNA, weighted gene co-expression network analysis.

was derived the GPL24676 platform, contained peripheral blood
mononuclear cells from 2 controls and 10 sepsis (Qiu et al.,
2021). Detailed information about the subjects in the three
datasets were shown in Supplementary Tables S1–S3. Additionally,
77 histone acetylation-related genes (HARGs) were obtained from
the literature (Qin et al., 2024).

2.2 Differential expression analysis

The limma package (v 3.52.4) (Ritchie et al., 2015) was utilized to
perform differential analysis between sepsis and control samples on
the training cohort. The threshold for differentially expressed genes
(DEGs) was set |log2 fold change| > 0.5 and P < 0.05. The ggplot2
package (v 3.3.6) (Xu et al., 2024) was used to plot the volcano plot,
and theComplexHeatmap package (v 2.20.0) (Gu andHubschmann,
2022) was employed to generate heatmap illustrating the expression
of DEGs in Sepsis.

2.3 Weighted gene co-expression network
analysis (WGCNA)

HARGs served as the background gene set, and the ssGSEA
algorithm from the GSVA package (v 1.44.5) (Gui et al., 2024)
was used to calculate the HARGs score across all samples in the
training set, and to compare the differences in HARGs scores
between the sepsis and control groups. Based on the training set,
theWGCNApackage (v 1.72.5) (Langfelder andHorvath, 2008) was
employed to construct a co-expression network. Prior to network
construction, cluster analysis was conducted on the samples to
identify and exclude outlier samples. When selecting the soft-
thresholding power, we adhered to the criteria that the scale-free
R2 value should be close to 0.9 and the mean connectivity should
approach 0, ensuring that the network structure conformed to the
scale-free distribution characteristic. Subsequently, a minimum of
200 genes was set for each gene module as a basis for module
division. Following that, a Spearman correlation analysis was
conducted between the obtained gene modules and the HARGs
score of the samples, with the aim of identifying the key modules
and their keymodule genes that had the highest absolute correlation
with the HARGs scores.

2.4 Identification and enrichment analysis
of candidate genes

The ggvenn package (v 0.1.9) (Zheng et al., 2024) was utilized
to identify the intersection between DEGs and key module
genes, thereby determining candidate genes. Subsequently, the
clusterProfiler package (v 4.7.1.001) (Yu et al., 2012) conducted
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses for these candidate genes
with P < 0.05. The ggplot2 package was employed to visualize
the enrichment results. Additionally, the STRING database
(http://string.embl.de/) was used to construct a protein-protein
interaction (PPI) network for the candidate genes with a confidence
score of ≥0.4.
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2.5 Selection of biomarkers

Machine learning algorithmswere employed to screen candidate
genes for the identification of potential biomarkers. Initially, the
glmnet package (v 4.1.8) (Friedman et al., 2010) was used to
perform least absolute shrinkage and selection operator (LASSO)
analysis on the candidate genes, with model performance optimized
through 10-fold cross-validation. Subsequently, the e1071 package
(v 1.7.14) (Zhang et al., 2024) was utilized to conduct support
vector machine-recursive feature elimination (SVM-RFE) analysis
on the features obtained from the LASSO analysis, aiming to identify
the feature genes with the lowest error rate. Finally, the Boruta
package (v 8.0.0) (Liu Q. et al., 2023) was utilized to perform
Boruta analysis on the feature genes derived from the SVM-
RFE analysis, to screen out the final candidate biomarkers. The
selection process was required to identify the final biomarkers.
The pROC package (v 1.18.0) (Wang et al., 2023) was utilized
to plot the receiver operating characteristic (ROC) curves for
genes in the training and validation cohorts, with the aim of
evaluating the diagnostic performance of candidate biomarkers.
Subsequently, box plots were employed to illustrate the expression
differences of genes with area under the curve (AUC) values ≥0.7
between sepsis and control samples within these two cohorts.
Genes that exhibited significant and consistent trends were defined
as biomarkers.

2.6 Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)
validation and function analysis of the
selected biomarkers

2.6.1 Cell culture and sepsis model construction
The THP-1 cell line was obtained from the American Type

Culture Collection (ATCC) and cultured in RPMI-1640 medium
supplemented with 10% fetal bovine serum (FBS, HyClone)
and 100 U/mL penicillin-streptomycin in a 37°C incubator
with 5% CO2. To establish an in vitro sepsis model, THP-1
monocytes were differentiated into macrophages by treating them
with 100 nM phorbol 12-myristate 13-acetate (PMA) for 48 h.
Following differentiation, the macrophages were stimulated with
1 µg/mL lipopolysaccharide (LPS) for 24 h to induce a sepsis-like
inflammatory response.

2.6.2 Clinical sample collection
Peripheral blood samples were collected from sepsis patients

diagnosed based on Sepsis-3 criteria at The First Affiliated Hospital
of Bengbu Medical University and from healthy volunteers as
controls. Specifically, the diagnosis of sepsis was based on the
following criteria: (Singer et al., 2016) confirmed diagnosis of
sepsis based on clinical and laboratory indicators; (Su et al.,
2024) age between 18 and 75 years; and (Wu et al., 2024)
provision of written informed consent by the patient or legal
representative. Exclusion criteria included: (Singer et al., 2016)
age <18 years; (Su et al., 2024) pregnancy; (Wu et al., 2024)
presence of malignant tumors; (Li et al., 2024a) autoimmune
diseases; (Li et al., 2024b) recent surgery or trauma; (Sun et al.,
2021) acute or chronic aseptic inflammation; (Tabone et al., 2018)

chronic organ dysfunction; (Venet et al., 2017); hematological
disorders; (Scicluna et al., 2015) other infections unrelated to
sepsis; (van Vught et al., 2016); treatment with immunosuppressive
agents; (Qiu et al., 2021) patients admitted for palliative care only;
(Qin et al., 2024) existence of an advanced directive to withhold or
withdraw life-sustaining treatment; or (Ritchie et al., 2015) patients
or legal representatives unwilling or unable to provide informed
consent. Healthy controls had no history of infection, immune-
related disease, chronic illness, or medication use at the time of
sample collection.

A total of 20 samples (11 sepsis and 9 healthy controls)
were used for RT-qPCR validation (Tables 1, 2). Total RNA was
extracted from whole blood using the TRIzol reagent following the
manufacturer’s protocol. The study was approved by the hospital’s
Ethics Committee, and Informed consent was obtained from all
participants.

2.6.3 RNA extraction and RT-qPCR analysis
Total RNA was extracted from LPS-stimulated THP-1

macrophages and patient blood samples using TRIzol reagent
(Invitrogen, United States), according to the manufacturer’s
protocol. To ensure the integrity and reliability of the collected
samples, all peripheral blood specimens were processed within
2 h of collection. The concentration and purity of RNA were
assessed using a NanoDrop One spectrophotometer (Thermo
Fisher Scientific), ensuring an 260/280 ratio between 1.8 and 2.1.
For cDNA synthesis, 500 ng of total RNA was reverse transcribed
using the TransScript All-in-one First Strand cDNA Synthesis Kit
(Transgenbiotech AT-341), and RT-qPCR analysis was conducted
with SYBR Green-based detection (Transgenbiotech AQ-601) on
a Real-Time PCR system (Applied Biosystems). The RT-qPCR
conditions were initial denaturation at 94°C for 30 s, followed
by 40 cycles of 94°C for 5 s and 60°C for 30 s. All reactions were
performed in triplicate. Gene-specific primers (Table 3) were used
for the amplification of BLOC1S1, NDUFA1, SFT2D1, CXCL10, and
IL-6, with GAPDH serving as an internal control. The delta(d)CT
method was employed to calculate the relative expression levels of
the target genes relative to internal control gene (GAPDH) in a
single sample. The ddCT method, based on the dCT calculation,
was further employed to compare the relative expression changes of
the target gene between the experimental group and the control
group. Finally, the formula 2−ΔΔCt was used to calculate the
relative expression of the target gene. Data are presented as mean
± SD from at least three independent experiments (Livak and
Schmittgen, 2001).

2.6.4 SFT2D1 knockdown and inflammatory
cytokine assessment

To investigate the function of SFT2D1 in sepsis, small interfering
RNA (siRNA) targeting SFT2D1, and a scrambled siRNA control
were transfected into THP-1 macrophages using Lipofectamine
RNAiMAX (Invitrogen) according to the manufacturer’s protocol.
After 48 h of transfection, the cells were stimulated with 1 µg/mL
LPS for 24 h, followed by RNA extraction. The efficiency of SFT2D1
knockdown was confirmed by RT-qPCR. Additionally, the mRNA
expression levels of CXCL10 and IL-6 were assessed to evaluate the
inflammatory response.
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2.7 Construction of the nomogram

Based on the expression of biomarkers, the rms
package (v 6.8–1) (Wang et al., 2024) was used to construct
nomogram. To assess the accuracy of the nomogram, calibration
curve was plotted. Calibration curve is an essential tool for
evaluating the accuracy of predictive models, as they assess the
calibration of the model by comparing predicted probabilities
with actual observed outcomes. Additionally, ROC curves
for the nomogram were plotted to evaluate their diagnostic
performance.

2.8 Immune infiltration analysis

The ssGSEA algorithm from the GSVA package was employed
to calculate the scores of 28 immune cell types in all samples within
the training set. Histogram of immune infiltration was plotted to
compare the infiltration proportions of immune cell types across
different samples. Additionally, box plot was used to display the
differences in the 28 immune cell types between groups. The ggcor
package (v 0.9.8.1) (Ban et al., 2024) was utilized to generate a
correlation heatmap to analyze the correlation between biomarkers
and differential immune cells.

2.9 Drug prediction and molecular docking

Relying on the CoreMine database (https://coremine.
com/medical/?locale=zh_CN#search), drugs associated with
biomarkers were predicted. Subsequently, Cytoscape software
(v 3.7.1) (Shannon et al., 2003) was employed to construct and
visualize the network relationships between biomarkers and
drugs. Based on the ranking of network connectivity, the drug-
biomarker pairs with the highest connectivity are selected for
molecular docking. The 3D structural files of drugs were obtained
using the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/) and Babel GUI software. Concurrently, the protein 3D
structures of biomarkers were downloaded from the UniProt
database (https://www.uniprot.org). Thereafter, AutoDockTools
software was utilized to optimize these structures and perform
molecular docking. Finally, the results were visualized using
PyMOL software.

2.10 Gene set enrichment analysis (GSEA)
and gene set variation analysis (GSVA)

Utilizing the KEGG gene sets provided by the msigdbr package
(v 7.5.1) (Long et al., 2023), the clusterProfiler packagewas employed
to perform GSEA. This process was based on the expression levels
of individual biomarkers and used the correlation coefficient as the
basis for sorting, with |NES| > 1 and adj. P < 0.05. Additionally, for
the GO background gene sets provided by the msigdbr package, the
GSVA and limma packages were used to conductGSVAon the sepsis
and control samples in the training set, with thresholds of |t| > 2 and
P < 0.05.
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TABLE 2 The information of healthy people.

Number Age Gender Blood type Presence or absence of disease Past medical history and family
history of hereditary diseases

1 22 Male O — —

2 23 Male A — —

3 71 Female B — —

4 45 Male B — —

5 58 Male AB — —

6 49 Male A — —

7 62 Female A — —

8 56 Female O — —

9 46 Male B — —

TABLE 3 Primer used for qPCR validation.

CXCL10 F: GTGGCATTCAAGGAGTACCTC R: TGATGGCCTTCGATTCTGGATT

IL-6 F: TGCGCAGCTTTAAGGAGTTC R: CCCATGCTACATTTGCCGAA

BLOC1S1 F: AGGAGGCGAGAGGCTATCAC R: GGACCTGTAGGGTCTTCACCT

NDUFA1 F: GCGTACATCCACAGGTTCACT R: GCGCCTATCTCTTTCCATCAGA

SFT2D1 F: GCTCTTTGGTGGCATAAGAAGG R: GGCTATACCAGGTCATTGACAAG

GAPDH F: GTCTCCTCTGACTTCAACAGCG R: ACCACCCTGTTGCTGTAGCCAA

2.11 Construction of regulatory networks
for biomarkers

The transcription factors (TFs) corresponding to the biomarkers
were retrieved using the JASPAR database (https://jaspar.elixir.no/).
Following this, the microRNAs (miRNAs) corresponding to the
biomarkers and the long non-coding RNAs (lncRNAs) associated
with these miRNAs, with clipExpNum >60, were searched in
the Starbase database (https://rnasysu.com/encori/). To visually
represent these complex molecular networks, the biomarker-TF
and mRNA-miRNA-lncRNA networks were visualized using the
software Cytoscape.

2.12 Mendelian randomization (MR)
analysis

Utilizing biomarkers as exposure factors and sepsis as
the outcome, MR analysis was conducted. Single nucleotide
polymorphisms (SNPs) were employed as instrumental variables
(IVs), with three primary assumptions (Singer et al., 2016):
There is a significant association between SNPs and biomarkers
(Su et al., 2024); SNPs are independent of potential confounding

factors (Wu et al., 2024); The effect on sepsis occurs solely
through the biomarkers. The genome-wide association study
(GWAS) data on sepsis and expression quantitative trait
locus (eQTL) data for biomarkers (Supplementary Table S4)
were obtained from the IEU OpenGWAS database (https://
gwas.mrcieu.ac.uk/). The sepsis dataset, ieu-b-4980, included
11,643 sepsis and 474,841 control European samples, totaling
12, 243, 539 SNPs. This study followed the STROBE-MR
reporting norms (Skrivankova et al., 2021).

The TwoSampleMR package (v 0.6.3) (Chen et al., 2024)
was utilized for the reading and filtering of exposure SNPs, with
a stringent set for P < 5^10−8. The ld_clump() function from
the ieugwasr package (v 1.0.0) (Fan et al., 2024) as employed
to remove SNPs with linkage disequilibrium, with parameters
set at r2 = 0.001 and kb = 10,000. Additionally, we selected
IVs with an F-statistic greater than 10 to further exclude the
possibility of weak IVs. Confounding factors such as “smoking
status measurement”, “systolic blood pressure”, “smoking status
measurement”, “diastolic blood pressure”, “smoking behavior”, “body
mass index”, “type 2 diabetes mellitus”, “rheumatoid arthritis”,
“cardiovascular disease”, “cardiovascular disease biomarker
measurement”, “latent autoimmune diabetes in adults”, “type
2 diabetes mellitus”, “psoriasis”, “type 2 diabetes mellitus”,
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“smoking status measurement”, “rheumatoid arthritis”, “ACPA-
positive rheumatoid arthritis”, “rheumatoid factor seropositivity
measurement”, “rheumatoid arthritis”, “anti-citrullinated protein
antibody seropositivity”, and “rheumatoid factor seropositivity
measurement” were excluded through the GWAS catalog database
(https://www.ebi.ac.uk/gwas/). The harmonise_data function from
the TwoSampleMR package was used to harmonize effect alleles
and effect sizes, and to exclude IVs significantly associated with the
outcome. Five algorithms were employed for MR analysis, including
MR Egger (Burgess and Thompson, 2017) (PMID: 28527048),
weighted median (Bowden et al., 2016), inverse variance weighted
(IVW) (Ding et al., 2023), simple mode (Zeng et al., 2023), and
weighted mode (Zeng et al., 2023), with IVW considered the
definitive analytical method. In addition, Steiger test was performed
to determine the directionality of the relationship between the
biomarker and sepsis.

Heterogeneity was assessed using Cochran’s Q test, with results
considered reliable when the P was greater than 0.05. Additionally,
the MR-Egger intercept test was used to determine horizontal
pleiotropy. Finally, leave-one-out approach was utilized to identify
influential outliers by sequentially removing individual SNPs and
re-estimating the causal effects.

2.13 ScRNA-seq analysis

First, the Seurat package (v 5.1.0) (Hao et al., 2024) was utilized
for preprocessing and data filtering on the GSE167363 dataset.
The specific steps included removing genes detected in fewer than
200 cells and excluding cells with nFeature_RNA (the number of
genes in each cell) ≥ 4,000, nCount_RNA (the total RNA count
per cell) ≥ 20,000, and the proportion of mitochondrial gene
expression ≥10. Subsequently, the data underwent logarithmic
normalization, and the variance stabilizing transformation
(vst) method was applied to select genes with high variability
between cells. The top 2,000 highly variable genes (HVGs) were
selected for visualization. To reduce data dimensionality, principal
component analysis (PCA) was performed. The JackStrawPlot
and JackStraw functions were utilized to assess the significance
of the principal components (PCs), thereby selecting an appropriate
number of PCs for subsequent analysis. The FindNeighbors
and FindClusters functions within the Seurat package were
used for unsupervised clustering of cells, with a resolution set
to 0.1, and Uniform Manifold Approximation and Projection
(UMAP) clustering method was applied for cell clustering. The
cellmarker2.0 database (http://117.50.127.228/CellMarker/) and
the literature (Zhao et al., 2023) were utilized to provide detailed
annotations for the clusters obtained. Bubble plot was used to
visualize the expression of biomarkers in different cell clusters,
and box plots were employed to show the differences in biomarker
expression across cell types between sepsis and control groups.
Additionally, the monocle package (v 2.26.0) (Chen et al., 2024)
was used for pseudotime analysis of cells, and the CellChat
package (v 1.6.1) (Huang et al., 2024) was utilized for cell
communication analysis.

2.14 Statistical analysis

All analyses were conducted in R version 4.4.1, with inter-group
differences assessed using Wilcoxon test, establishing a significance
level at P < 0.05. A Spearman correlation analysis was conducted
between the obtained gene modules and the HARGs score of the
samples. For RT-qPCR validation experiments, data are presented
as mean ± standard deviation (SD) from at least three independent
biological replicates. Group comparisons were performed using a
multiple t-test when comparing two groups, and one-way ANOVA
for multiple group comparisons. Statistical significance was defined
as P < 0.05. Where applicable, P values were corrected for multiple
comparisons using the Dunnett method.

3 Result

3.1 Potential functional characteristics of
candidate genes

A total of 3,874 DEGs between sepsis and control samples
were identified from the training cohort, of which 2,114 were
upregulated while 1,760 downregulated (Figures 1A,B)Prior to
performing WGCNA, differential analysis of the HARGs score
was conducted between the sepsis and control groups. The results
revealed a significant difference (P < 0.05) between the two groups,
indicating that the HARGs score was a valid phenotypic indicator
suitable for subsequent analysis (Figure 1C). Cluster analysis of all
samples confirmed the absence of outlier samples (Figure 1D). The
optimal soft-thresholding power for achieving a scale-free network
distribution was determined to be 10 (Figure 1E). And based on
this, a minimum of 200 genes per gene module was set, ultimately
identifying 11 gene modules (Figure 1F). Among these modules,
the MEgreen module (cor = −0.48, P < 0.001) showed the highest
correlation with the HARGs score and was thus identified as the
key module, encompassing 763 key module genes (Figure 1G). By
performing an intersection analysis between DEGs and key module
genes, 281 potential candidate genes were filtered out (Figure 2A).

Enrichment analysis can identify specific features or functions
that are significantly enriched from a large amount of data, aiding
in the understanding of the functions of genes within cells, the
biological processes they participate in, and their interrelationships.
Therefore, enrichment analysis on these candidate genes was
conducted. The GO enrichment analysis yielded 332 entries, with
186 significantly enriched in biological processes, 95 enriched
in cellular components, and 51 enriched in molecular functions
(Figure 2B). Histone modification-related terms such as “histone
exchange”, “negative regulation of protein modification by small
protein conjugation or removal”, and “regulation of protein
modification by small protein conjugation or removal” were
significantly enriched, suggesting that the candidate genes might
play a key role in regulating gene expression and chromatin
structure. Additionally, mitochondrial-related pathways also
showed enrichment, including “mitochondrial ATP synthesis
coupled electron transport”, “mitochondrial protein-containing
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FIGURE 1
Differential expression analysis and weighted gene co-expression network analysis (WGCNA). (A) volcano map of differentially expressed genes (DEGs)
between sepsis and control groups in the GSE95233. (B) heatmap of top 20 DEGs between sepsis and control samples. (C) histone acetylation-related
genes (HARGs) score difference between sepsis and control groups.∗∗∗∗, P < 0.0001. (D) sample clustering tree. Red is the disease sample, white is the
control sample. (E) the network approached the scale-free distribution when the ordinate R2 on the left was close to the threshold of 0.9 and the
average connectivity on the right was close to 0. The optimal soft threshold was 10. (F) dynamic clipping tree of the 11 modules. (G) the heatmap
showed the correlation of modules with HARGs score. MEgreen, the module with the highest absolute correlation with HARGs score, was selected as
the key module, with a total of 763 genes.

complex”, “mitochondrial inner membrane”, and “mitochondrial
respirasome”, emphasizing the potential role of candidate genes
in mitochondrial function and energy metabolism. KEGG
pathway enrichment analysis identified 24 significantly enriched
pathways, mainly enriched in “proteasome”, “protein processing
in endoplasmic reticulum”, and “ribosome” (Figure 2C). These
pathways were closely related to protein degradation, processing,
and synthesis, further confirming the central role of candidate genes
in protein metabolism.

To gain a deeper understanding of the functions of the candidate
genes and their mechanisms of interaction, PPI network was
constructed for the candidate genes. This network comprised 265
nodes and 2,130 PPI pairs (Figure 2D). It was evident that multiple
genes had close relationships with other genes, reflecting their
complex interactions within the organism. For instance, genes like
RPS24, COX5B, and ETFA showed a high degree of interactivity
in the network, which might imply their significant role in cellular
functions.
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FIGURE 2
Screening and protein-protein interaction (PPI) network of candidate genes. (A) the intersection of DEGs, key module genes, HARGs resulted in 281
candidate genes. (B) Gene ontology (GO) enrichment analysis of candidate genes. Biological process, BP; cellular component, CC; molecular function,
MF. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of candidate genes. (D) PPI network of candidate genes.

3.2 Identification of BLOC1S1, NDUFA1,
and SFT2D1 as biomarkers through
machine learning

With the advancement of machine learning techniques, we
were capable of more accurately identifying genes of significant
biological importance from complex data sets. Leveraging this, we
employed a stepwise machine learning approach to screen out more
critical genes from a pool of candidates. Through LASSO regression
analysis, we successfully identified 10 genes (Lambda.min = 0.003),
including NDUFA1, BLOC1S1, UFD1L, ZMAT2, SFT2D1, SEPHS2,
JTB, RALY-AS1, C15orf54, and MYH9 (Figure 3A). Subsequently,
SVM-RFE analysis was conducted on these 10 genes, and at a
minimum error rate of 0.00595, all 10 genes were confirmed as
feature genes (Figure 3B). Furthermore, Boruta analysis reaffirmed
these 10 genes as important feature genes (Figure 3C). Thus, these
10 genes were considered candidate biomarkers. Cross-validation

through multiple methods was employed to screen for biomarkers.
Initially, BLOC1S1, NDUFA1, and SFT2D1 demonstrated AUC
values of ≥0.70 in both the training and validation sets, indicating
good diagnostic efficacy (Figure 3D). Subsequently, the expression
levels of these 10 genes in sepsis and control samples were analyzed
in the training and validation sets, and the results showed that
BLOC1S1, NDUFA1, and SFT2D1 were significantly different in the
training and validation sets, and the AUC values for these three
genes were ≥0.70 (P < 0.001) (Figure 3E). Therefore, BLOC1S1,
NDUFA1, and SFT2D1 were identified as the final biomarkers.

3.3 Characterizing the function of
biomarkers and sepsis

GSEA provides a global perspective to reveal overall
patterns of biological processes in gene expression data.
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FIGURE 3
Acquisition of biomarkers. (A) least absolute shrinkage and selection operator (LASSO) regression analysis was performed for 10-fold cross-validation
of the screened genes to obtain 10 characterized genes. (B) support vector machine-recursive feature elimination (SVM-RFE) analysis on the features
obtained from the LASSO analysis. (C) Boruta agorithm screens for candidate biomarkers from the SVM-RFE analysis. Green represents important
feature. (D) receiver operating characteristic (ROC) curves of candidate biomarkers in the training and validation sets. Genes with area under the curve
(AUC) values ≥0.7 were screened to obtain BLOC1S1, NDUFA1, and SFT2D1. (E) expression box maps of candidate biomarkers between control and
sepsis samples were used in the training dataset (left) and validation dataset (right) to screen for genes with exhibited significant and consistent
trends.∗∗∗, P < 0.001;∗∗∗∗, P < 0.0001.

Based on this, GSEA was performed on the biomarkers to
uncover gene expression patterns associated with specific
biological pathways (Figures 4A–C). The results showed that
multiple pathways, including “oxidative phosphorylation”, “antigen
processing and presentation”, “proteasome”, “ribosome”, and “FC
gamma R-mediated phagocytosis”, were significantly enriched in
BLOC1S1, NDUFA1, and SFT2D1. These findings indicated that
the biomarkers played a significant role in energy metabolism,
immune response, and protein homeostasis. Additionally, the “toll-
like receptor signaling pathway” was activated in BLOC1S1 and
SFT2D1, which might indicate a key regulatory mechanism of the
inflammatory response in sepsis.

GSVA can reveal changes in biological processes and signal
pathways by assessing the activity changes of predefined gene sets in

different samples. Using this method, we explored pathways related
to sepsis (Figure 4D). The GSVA results further revealed that T cell-
related pathways were suppressed in sepsis, including “thymic T
cell selection”, “T cell selection”, and “T cell receptor complex”. The
suppression of these pathways might be associated with abnormal
T cell function in sepsis, affecting the immune response. Moreover,
pathways related to regulation, such as “negative regulation of
telomere capping” and “regulation ofDNAdemethylation”, were also
suppressed. The suppression of these pathways might be related to
abnormalities in cellular senescence and epigenetic regulation. In
contrast, “RAGE receptor binding”, “protein repair”, and “secretory
vesicle” were activated in sepsis. The activation of these pathways
might be related to the inflammatory response, cellular damage, and
repair mechanisms in sepsis.
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FIGURE 4
Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). (A–C) GSEA of BLOC1S1, NDUFA1, and SFT2D1, respectively. (D) compare
with control group, GSVA of sepsis group.

3.4 Nomogram for predicting sepsis risk

Nomogram, as an intuitive predictive tool, can integrate
multiple biomarkers to forecast an individual’s risk of disease. By
incorporating the three identified biomarkers BLOC1S1, NDUFA1,
and SFT2D1 into the nomogram model, we have established a
comprehensive diagnostic tool (Figure 5A). To ensure the predictive
accuracy of the nomogram, calibration curve was employed for
validation. The slope of the calibration curve being close to
one indicated that our nomogram model was highly accurate in
predicting disease risk (Figure 5B). Furthermore, the diagnostic
efficacy of the model was assessed using the ROC curve. The AUC
value of the nomogram reached 1, which, while indicating that
the model has extremely high efficacy in distinguishing between
diseased and non-diseased individuals, also suggested a potential
for overfitting (Figure 5C). Nonetheless, the model’s effectiveness in
disease diagnosis remained significant, providing clinicians with a
powerful tool to aid in making more accurate diagnostic decisions.
This offered a new perspective for the early diagnosis of the disease
and personalized treatment.

3.5 Immune cells infiltration of biomarkers
in sepsis

Immune cells play a pivotal role in the complex physiological
dysregulation triggered by sepsis, with their behavior changes
being directly associated with disease progression (Wang et al.,
2022). Through immune infiltration analysis, we explored the
immunological alterations in sepsis. In addition, the histogram

of immune infiltration was constructed to visually display the
differences in immune cell scores between sepsis and control
samples (Figure 6A). Notably, there was a significant difference in
the scores of 23 immune cell types between groups (Figure 6B).
Activated B cells and Activated CD8 T+ cells showed lower
infiltration levels in sepsis, while activated dendritic cells,
neutrophils, and type 17 T helper cells exhibited higher infiltration
levels in sepsis. These findings revealed the activation status and
functional changes of specific immune cells in sepsis.The correlation
between biomarkers and immune cells was analyzed to explore
the role of biomarkers in immune infiltration (Figure 6C). Among
them, BLOC1S1 showed the strongest positive correlation with
activated dendritic cells (cor = 0.577, P < 0.001), suggesting that
BLOC1S1 might be involved in the regulation of activated dendritic
cell processes, thereby affecting the immune response in sepsis.
Concurrently, BLOC1S1 exhibited the strongest negative correlation
with central memory CD4+ T cells (cor = −0.761, P < 0.001),
indicating that BLOC1S1 might suppress the function or quantity
of central memory CD4+ T cells, playing a complex role in the
immunological dysregulation of sepsis.

3.6 Complex regulatory networks of
biomarkers

TFs play a crucial role in regulating gene transcription. Through
the prediction of TFs for biomarkers, we identified a total of
13TFs and 17 interaction pairs. Notably, FOXC1 was concurrently
predicted in BLOC1S1, NDUFA1, and SFT2D1, while GATA3 and
GATA2 were predicted in both BLOC1S1 and SFT2D1 (Figure 7A).
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FIGURE 5
Construction of a nomogram. (A) construct a nomogram based on the expression of each biomarker. (B) calibration curve of nomogram. (C) ROC
curve of nomogram.

These results suggested that these TFs might play a central role
in regulating the expression of these biomarkers. Furthermore, a
comprehensive dissection of the gene expression regulatory network
was conducted. Prediction of miRNAs for biomarkers yielded
69 miRNAs corresponding to three biomarkers. Subsequently,
prediction of lncRNAs corresponding to miRNAs resulted in 19
lncRNAs corresponding to 59 miRNAs. The construction of an
mRNA-miRNA-lncRNA network predicted a total of 69 miRNAs
and 19 lncRNAs, with a total of 186 interaction pairs (Figure 7B).
This complex network revealed the multi-level regulation of
biomarkers, where MALAT1 indirectly regulated BLOC1S1
and SFT2D1 by modulating hsa-miR-498. Multiple lncRNAs
simultaneously regulated specific miRNAs to indirectly regulate
biomarkers, such as OIP5-AS1, XIST, NORAD regulating hsa-miR-
32–5p to indirectly affect NDUFA1. Additionally, specific lncRNAs

regulated multiple miRNAs to indirectly regulate biomarkers,
including XIST regulating hsa-let-7a-5p, hsa-let-7i-5p, hsa-let-
7f-5p to indirectly affect BLOC1S1. These findings enriched our
understanding of the regulatory network of biomarkers.

3.7 Potential therapeutic strategies for
sepsis

The identification of potential drugs targeting biomarkers is
crucial for the development of personalized treatment plans. A
biomarker-drug network was constructed, which included three
biomarkers, 76 drugs, and 81 interaction pairs (Figure 7C). Notably,
sorafenib was concurrently predicted in both BLOC1S1 and
SFT2D1, while alachlor was concurrently predicted inBLOC1S1 and
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FIGURE 6
Immune infiltration analysis. (A) stacked bar chart of immune cell score between sepsis and control samples. (B) box plot of immune cell infiltration
between sepsis and control samples. ns, no significance;∗, P < 0.05;∗∗, P < 0.01;∗∗∗, P < 0.001;∗∗∗∗, P < 0.0001. (C) correlation between biomarkers and
immune cells.∗, P < 0.05;∗∗, P < 0.01;∗∗∗, P < 0.001;∗∗∗∗, P < 0.0001.

NDUFA1. These findings suggested that these drugs might play a
significant role. To further determine the binding capacity between
biomarkers and drug targets, molecular docking was performed.
The docking binding energies for BLOC1S1 with palmitic acid and
sorafenib were −2.8 and −6.15 kcal/mol, respectively; for NDUFA1
with palmitic acid, it was −5.57 kcal/mol; and for SFT2D1 with
sorafenib, it was −4 kcal/mol. These negative values indicated a
strong binding affinity. Subsequently, the binding modes were
visualized, with BLOC1S1 forming hydrogen bonds with residues
LYS-89, HIS-86 of palmitic acid and residues PRO-21, GLN-24
of sorafenib (Figures 7D,E); NDUFA1 forming hydrogen bonds
with residues GLU-35, ARG-37 of palmitic acid (Figure 7F).
And SFT2D1 forming a hydrogen bond with residue SER-134 of
sorafenib (Figure 7G). These findings provided important clues for
drug development.

3.8 SFT2D1 as a risk factor for sepsis

To explore the causal relationship between BLOC1S1,NDUFA1,
and SFT2D1 and sepsis, MR analysis was conducted. We included
280 SNPs for analysis, with the F-values ranging from 30.003 to
4717.202 (Supplementary Table S5). The IVW results indicated a
causal link, identifying SFT2D1 as a risk factor for sepsis [odds
ratio (OR) = 1.070, 95% confidence interval (CI) = 1.016–1.127,
P = 0.001] (Table 4). The forest plot further showed that the
effect size of SFT2D1 on sepsis was overall greater than 0
(Supplementary Figure S1A). A scatter plot demonstrated a positive
correlation between SFT2D1 expression and increased risk of
sepsis (Supplementary Figure S1B). To test the directionality of
the MR analysis, a Steiger directionality test was performed
(Table 5). The results confirmed the correct direction of the analysis
for SFT2D1, with no evidence of bidirectional relationships.

Sensitivity analyses further validated the accuracy of the MR
analysis. Specifically, Cochran’s Q test and pleiotropy tests showed
no evidence of heterogeneity and confounding bias (P > 0.05),
indicating that our analysis results were robust (Table 6). The
funnel plot revealed a roughly symmetrical distribution on
both sides (Supplementary Figure S1C). Leave-one-out analysis
showed that sequentially excluding each SNP had minimal
impact on the results, further confirming the robustness of
the findings (Supplementary Figure S1D). However, BLOC1S1 and
NDUFA1 did not screen suitable SNP, so MR analysis was not
performed.

3.9 Exploring the developmental trajectory
and communication network of
macrophages

ScRNA-seq analysis technology enables the tracking of cellular
lineages and destinies throughout development and disease
processes. Utilizing this technology, we have explored the expression
regulation of biomarkers at the single-cell level. After rigorous
data filtering, we obtained a total of 50,690 cells and 23,025 genes
(Supplementary Figure S2A). For in-depth analysis, the top 2,000
HVGs and the top 30 PCs were selected for subsequent analysis
(Supplementary Figure S2B–C). Through PCA dimensionality
reduction and clustering analysis, we successfully divided the
cells into 14 distinct clusters (Figure 8A) and annotated seven cell
types, including macrophage, T cell, monocyte, natural killer cell,
B cell, megakaryocyte, and erythrocyte (Figure 8B). Analysis of
the expression of biomarkers across various cell types revealed
significant differences in macrophage, natural killer cell, and
megakaryocyte among different groups (Figure 8C). Notably, in
macrophages, the expression distribution of these biomarkers was
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FIGURE 7
Construction of regulatory network, drug predition, and molecular
docking. (A) the network of transcription factors (TFs)-biomarkers. Red
is biomarkers, blue is TFs. (B) the network of mRNA-microRNA
(miRNA)-long non-coding RNA (lncRNA). Orange is biomarkers,
purple is the lncRNA, and green is the miRNA. (C) the identification of
drugs targeting biomarkers. Pink is biomarkers, green is drugs. (D,E)
molecular docking mode diagram of BLOC1S1 with Palmitic Acid and
Sorafenib, respectively. (F) molecular docking mode diagram of
NDUFA1 with Palmitic Acid. (G) molecular docking mode diagram of
SFT2D1 with Sorafenib.

more abundant (Figure 8D), leading us to select macrophages as
key cells for further in-depth analysis. Trajectory analysis can
infer the chronological order of cell development or changes,
revealing the evolutionary paths and critical turning points of cells
in different states. By capturing patterns of gene expression changes,
we reconstructed the developmental trajectories or dynamic
processes of cells. By arranging macrophages in chronological
order, we demonstrated the dynamic changes of cells over time
and divided them into seven stages (Figures 9A,B). We found

that the control group had more differentiation in state one and
7, concentrated in the early stages of differentiation, while the
sepsis group was present in all stages of macrophage differentiation
(Figure 9C). Further exploration of the expression of biomarkers
along the temporal trajectory revealed that BLOC1S1, NDUFA1,
and SFT2D1 were mainly concentrated in state one of macrophages
in the control group. In the sepsis group, these biomarkers were
more abundant during differentiation stages state 3, 4, and 5 of
macrophages (Figure 9D). Analysis of the expression trends of
biomarkers during the differentiation process of macrophages
showed that the expression of BLOC1S1 and NDUFA1 increased
with cell differentiation, while the expression of SFT2D1 did not
change significantly (Figure 9E). These results provided us with
dynamic regulatory information about these biomarkers during
the differentiation process of macrophages. Cell communication
analysis, by deeply parsing the interactions and regulatory networks
between cells, reveals the coordination mechanisms between cells
in life activities. Compared with the control group, the number
and strength of interactions between macrophages and monocytes
in the sepsis group were reduced, which might be part of the
immunosuppressive characteristics of sepsis (Figure 9F). In contrast,
the interaction strength betweenmacrophages and B cells increased,
suggesting that macrophages might promote antibody production
and the formation of immune memory by enhancing interactions
with B cells.

3.10 Experimental validation and functional
analysis of acetylation-related genes in
sepsis

To validate the expression levels of the identified acetylation-
related biomarker genes BLOC1S1, NDUFA1, and SFT2D1, we
established a sepsis model in THP-1-derived macrophages by
treating cells with phorbol 12-myristate 13-acetate (PMA) for
differentiation, followed by lipopolysaccharide (LPS) stimulation
(Figure 10A). RT-qPCR analysis revealed that the expression
of all three genes was significantly upregulated in LPS-treated
macrophages compared to controls (P < 0.01) (Figure 10B),
supporting their potential roles in sepsis pathophysiology.
Furthermore, validation using patient blood samples confirmed
the elevated expression levels of BLOC1S1, NDUFA1, and SFT2D1
in sepsis patients compared to healthy controls (Figure 10C).
Consistent with our bioinformatics analysis. These findings further
reinforced the reliability of these genes as potential biomarkers for
sepsis diagnosis and prognosis.

To assess the functional role of SFT2D1, which was identified
as a genetic risk factor for sepsis through MR analysis, we
conducted gene knockdown experiments in the LPS-induced THP-
1 sepsis model. siRNA-mediated suppression of SFT2D1 resulted
in a significant reduction in its mRNA expression(Figure 10D)
confirming effective knockdown. Further analysis demonstrated
that SFT2D1 inhibition significantly decreased the expression
levels of key inflammatory cytokines CXCL10 and IL-6 (P
< 0.05) (Figure 10E), suggesting a role for SFT2D1 in promoting the
inflammatory response in sepsis.These results indicate that targeting
SFT2D1 may have potential therapeutic implications for mitigating
excessive inflammation in sepsis.

Frontiers in Molecular Biosciences 14 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1582181
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Cheng et al. 10.3389/fmolb.2025.1582181

TABLE 4 Results of Mendelian randomization (MR) analysis of SFT2D1 and sepsis.

Exposure Outcome Method nsnp se Pval Or or_lci95 or_uci95

SFT2D1 Sepsis

MR Egger 3 0.146 0.907 0.979 0.736 1.302

Weighted median 3 0.027 0.014 1.069 1.014 1.127

Inverse variance weighted 3 0.026 0.010 1.070 1.016 1.127

Simple mode 3 0.032 0.163 1.073 1.007 1.143

Weighted mode 3 0.028 0.146 1.067 1.010 1.128

Note: nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval.

TABLE 5 Results of Steiger test.

Exposure Outcome snp_r2.exposure snp_r2.outcome correct_causal_direction steiger_pval

SFT2D1 Sepsis 0.1161 1.47E-05 TRUE 0

Note: snp, single nucleotide polymorphism; pval, pvalue.

TABLE 6 Heterogeneity and horizontal pleiotropy tests by MR analysis.

Exposure Outcome Method Q_df Q_pval se Pval

SFT2D1 Sepsis
MR Egger 1 0.751

IVW 2 0.783 0.058 0.645

Note: Q, Cochran’s Q heterogeneity statistic; df, degree of freedom; se, standard error; pval, pvalue.

Taken together, these findings provide robust experimental
evidence that the acetylation-related biomarkers identified in this
study play a significant role in sepsis progression.Moreover, SFT2D1
inhibition effectively attenuates inflammatory cytokine expression,
highlighting its potential as a novel therapeutic target for sepsis
management.

4 Discussion

Sepsis is a life-threatening condition characterized by a
dysregulated host immune response to infection, resulting in
systemic inflammation and organ dysfunction (Meziani et al.,
2024). Despite advances in understanding its pathophysiology,
the identification of reliable biomarkers for early diagnosis and
treatment remains a challenge. This study identified three histone
acetylation-related genes, BLOC1S1, NDUFA1, and SFT2D1, as
potential biomarkers for sepsis through integrated bioinformatics
analysis. These findings were validated in THP-1 cell-derived
sepsis models and clinical blood samples, confirming their
elevated expression in sepsis. Furthermore, functional experiments
demonstrated that suppression of SFT2D1 significantly reduced
the expression of inflammatory cytokines CXCL10 and IL-6,
suggesting its potential role in modulating the inflammatory
response in sepsis.

4.1 Biomarker function and enrichment
analysis

The identified biomarkers are significantly enriched in pathways
related to energy metabolism, immune response, and protein
homeostasis, such as oxidative phosphorylation, proteasome activity,
and ribosome function. For instance, mitochondrial dysfunction, a
hallmark of sepsis, disrupts oxidative phosphorylation (Pham et al.,
2024), impairingimmunecellactivityandenergyproduction.Previous
studies have linked mitochondrial dysfunction with decreased
immune responses in sepsis (Li et al., 2024c; Zou et al., 2024;Han et al.,
2025), aligningwithourfindingsof enrichedmitochondrialpathways.

BLOC1S1, also known as GCN5L1, is involved in acetyl-
CoA binding and mitochondrial protein acetylation, regulating
mitochondrial respiration and ATP synthesis (Sharma et al.,
2024). Previous studies identified BLOC1S1 as a critical gene
associated with sepsis outcomes, consistent with its role in this
study (Lai et al., 2022). NDUFA1, a component of mitochondrial
complex I, plays a pivotal role in electron transport and
energy production, highlighting its involvement in sepsis-related
metabolic dysregulation (Tian et al., 2024). SFT2D1, though less
studied, was confirmed as a risk factor for sepsis through MR
analysis, highlighting its potential role in disease progression.
Our experimental findings further demonstrated that SFT2D1
suppression mitigates pro-inflammatory cytokine expression,
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FIGURE 8
Single-cell RNA sequencing (scRNA-seq) in GSE167363. (A) cellular Uniform Manifold Approximation and Projection (UMAP) clustering map with 14 cell
clusters. (B) annotation to seven cell types. (C) box plot of the expression of biomarker in cell types between sepsis and control groups. Ns, no
significance;∗, P < 0.05;∗∗, P < 0.01;∗∗∗, P < 0.001;∗∗∗∗, P < 0.0001. (D) bubble plot of biomarkers expression in various cell types.
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FIGURE 9
Pseudotime and cell communication analysis of macrophages. (A) time trajectory differentiation of macrophages. (B) macrophage differentiation was
divided into seven stages. (C) macrophage cell differentiation locus in sepsis and control groups. (D) expression distribution of biomarkers in a
macrophage sample. (E) expression distribution of biomarkers at different differentiation stages in macrophage. (F) cell communication analysis
between sepsis and control samples. ns, no significance;∗, P < 0.05;∗∗, P < 0.01;∗∗∗, P < 0.001;∗∗∗∗, P < 0.0001.

suggesting a functional role in sepsis pathogenesis. In the present
study, GSEA revealed that SFT2D1 may exert a crucial regulatory
role in the inflammatory response of sepsis by activating the
toll-like receptor signaling pathway. Studies have shown that
the upregulation of the toll-like receptor 2 (TLR2) pathway
in keratinocytes enhances the expression of proinflammatory
cytokines and chemokines, such as IL-8, IL-1β, TNF-α, CCL5,
CXCL9, Chemokine C-X-C ligand 10 (CXCL10), and CXCL11
(Yang et al., 2024). CXCL10 is a pro-inflammatory cytokine that
promotes the recruitment and activation of immune cells to
infected areas (Kariminik et al., 2016). In addition, it has been
shown that toll-like receptors (TLRs) promote interleukin-6 (IL-
6) secretion (Xie et al., 2017). And IL-6 is a pleiotropic pro-
inflammatory cytokine (Kaur et al., 2020). Therefore, SFT2D1
may indirectly affects the expression levels of CXCL10 and IL-6
by activating the toll-like receptor signaling pathway.

Clinically, BLOC1S1, NDUFA1, and SFT2D1—have also been
implicated in various disease contexts beyond sepsis. For instance,
BLOC1S1 has been associated with mitochondrial dysfunction
and metabolic regulation in hepatocellular carcinoma, where it
plays a role in oxidative phosphorylation and cellular metabolism
(Han et al., 2023).NDUFA1, a component ofmitochondrial complex
I, has similarly been linked to neurodegenerative diseases and
multiple tumor types (Yin et al., 2025; Kim et al., 2017), reflecting its
central role in energymetabolism. Although less extensively studied,
SFT2D1 has recently attracted attention in oncology. In cervical
cancer, it was identified as an independent risk factor promote
angiogenesis, immune suppression, and tumor cell proliferation
(Kang et al., 2024). Furthermore, alternative splicing events of
SFT2D1have been significantly associatedwith increased pancreatic
cancer risk (Liu D. et al., 2023), suggesting a broader role in
tumorigenesis.
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FIGURE 10
Validation of biomarker expression and functional analysis of SFT2D1 in sepsis. (A,B) Reverse transcription-quantitative polymerase chain reaction
(RT-qPCR) confirmation of the THP-1-derived sepsis model. THP-1 monocytes were differentiated into macrophages using PMA (100 nM, 48 h) and
then stimulated with LPS (1 μg/mL, 24 h). The relative mRNA expression levels of CXCL10, IL-6, BLOC1S1, NDUFA1, and SFT2D1 were significantly
upregulated in LPS-treated cells compared to untreated controls. GAPDH was used as an internal control. (n = 4 independent experiments, mean ±
SD,∗∗P < 0.01). (C) RT-qPCR validation of biomarker expression in clinical blood samples. Peripheral blood was collected from sepsis patients and
healthy controls. The expression levels of BLOC1S1, NDUFA1, and SFT2D1 were significantly higher in sepsis patients compared to healthy controls (n =
9 for healthy and n = 11 for sepsis group, mean ± SD,∗∗P < 0.01). (D) Knockdown efficiency of SFT2D1 in THP-1-derived macrophages. THP-1
macrophages were transfected with siRNA targeting SFT2D1 or scrambled siRNA as a control. RT-qPCR analysis confirmed a significant reduction in
SFT2D1 expression after siRNA transfection (n = 3 independent experiments,∗∗P < 0.05). (E) Effect of SFT2D1 inhibition on inflammatory cytokines. After
SFT2D1 knockdown, CXCL10 and IL-6 mRNA levels were measured by RT-qPCR. SFT2D1 suppression significantly reduced the expression of both
pro-inflammatory cytokines in LPS-stimulated macrophages, indicating its role in promoting sepsis-related inflammation (n = 3 independent
experiments,∗∗P < 0.05). (Statistical significance was determined using multiple t-tests for two-group comparisons and one-way ANOVA followed by
Dunnett’s post hoc test for multiple group comparisons; P < 0.05; P < 0.01; P < 0.001. Error bars represent mean ± SD.).

4.2 Immune dysregulation and biomarker
impact

Immune cell infiltration analysis revealed significant
correlations between the biomarkers and specific immune cell types,

highlighting their roles in immune dysregulation during sepsis.
BLOC1S1 was positively correlated with activated dendritic cells,
suggesting its involvement in antigen presentation and immune
activation. Conversely, its negative correlation with central memory
CD4+ T cells indicates a potential suppressive effect on adaptive
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immunity.These findings reflect the dual roles of immune activation
and suppression in sepsis, which contribute to disease progression
and poor outcomes.

Furthermore, scRNA-seq analysis confirmed that these
biomarkers are highly expressed in macrophages, which play
a central role in immune response for sepsis. Macrophage
differentiation trajectories revealed increased expression of
BLOC1S1 and NDUFA1 during later stages of sepsis, suggesting
their involvement in immune cell reprogramming. Additionally, cell
communication analysis highlighted altered interactions between
macrophages and other immune cells, reflecting the complex
immune dysregulation in sepsis. Our functional experiments
support this notion, as SFT2D1 knockdown in macrophages led to a
reduction in pro-inflammatory cytokines, providing direct evidence
for its role in inflammation regulation.

4.3 Therapeutic implications

Beyond biomarker identification, our study explored
the therapeutic potential of targeting these genes. Drug-
biomarker network analysis identified sorafenib and palmitic
acid as potential therapeutic agents for BLOC1S1, NDUFA1,
and SFT2D1. Molecular docking studies demonstrated strong
binding affinities between these compounds and the biomarkers,
suggesting possible mechanisms for therapeutic intervention.
Importantly, our experimental results highlight the potential
of SFT2D1 inhibition in reducing inflammatory responses,
providing a new avenue for therapeutic development in sepsis
management.

4.4 Study strengths and limitations

This study integrated bioinformatics, RT-qPCR validation,
Mendelian randomization, and functional experiments to identify
and characterize acetylation-related biomarkers in sepsis. The
experimental validation of these biomarkers in both THP-1
macrophages and clinical samples strengthens the reliability
of our findings. Additionally, functional inhibition of SFT2D1
provides direct mechanistic insight into its role in sepsis-associated
inflammation.

However, some limitations should be considered. First,
while RT-qPCR validation confirmed biomarker expression in
sepsis, additional protein-level validation (e.g., Western blot,
ELISA) would further substantiate these findings. Second, the
molecular mechanisms linking SFT2D1 to inflammation remain
unclear, necessitating further studies on its regulatory pathways.
Third, while our study focused on sepsis, we note that these
biomarkers, such as SFT2D1, have also been implicated in
other disease contexts. For example, recent studies have linked
SFT2D1 to tumor progression and immune modulation in
cervical and pancreatic cancers (Kang et al., 2024; Liu D. et al.,
2023), including associations with alternative splicing events and
cellular transport pathways. Although these findings highlight
the broader biological relevance of SFT2D1, they also suggest
that its expression may be influenced by other conditions.
Future work including disease control cohorts will be important

to further assess the specificity and diagnostic value of these
biomarkers in sepsis.

Finally, although the binding ability between drugs and
biomarkers has been predicted by bioinformatics. However, the
binding prediction results derived from computer simulations have
not been validated by in vitro experiments. And due to the lack
of validation by in vitro experiments, it is not possible to fully
determine the binding between biomarkers and drugs in real
physiological environments.

5 Conclusion

This study identified BLOC1S1, NDUFA1, and SFT2D1 as
histone acetylation-related biomarkers for sepsis and validated
their expression in THP-1 cell models and patient blood
samples. Functional analysis demonstrated that inhibition of
SFT2D1 significantly reduced inflammatory cytokine expression,
highlighting its potential as a therapeutic target. These findings
provide new perspectives for early diagnosis, immune regulation,
and targeted therapy in sepsis. Further experimental and clinical
research is required to fully elucidate the role of these biomarkers
and translate them into clinical applications.
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SUPPLEMENTARY FIGURE S1
The results of Mendelian randomization (MR) analysis of SFT2D1 and sepsis. (A)
the forest plot showed that the effect size of SFT2D1 on sepsis. (B) scatter plot
showed the genetic association between SFT2D1 and sepsis. (C) funnel plot
showed the no heterogeneity of SFT2D1 and sepsis. (D) leave-one-out analysis
for SFT2D1 on sepsis.

SUPPLEMENTARY FIGURE S2
Data filtering analysis in the GSE167363. (A) single-cell RNA sequencing
(scRNA-seq) data filtering results in GSE167363. (B) filtering of highly variable
genes. (C) principal component analysis (PCA), the top 30 principal components
were selected for subsequent analysis.
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