
TYPE Original Research
PUBLISHED 16 July 2025
DOI 10.3389/fmolb.2025.1583237

OPEN ACCESS

EDITED BY

Gita Vita Soraya,
Hasanuddin University, Indonesia

REVIEWED BY

Hailin Tang,
Sun Yat-sen University Cancer Center
(SYSUCC), China
Marisa Cruz-Aguilar,
Instituto de Oftalmología Fundación de
Asistencia Privada Conde de Valenciana,
I.A.P, Mexico

*CORRESPONDENCE

Jingyi Niu,
niujingyi0219@126.com

RECEIVED 25 February 2025
ACCEPTED 26 June 2025
PUBLISHED 16 July 2025

CITATION

Niu J, Jin L, Hu Y, Wang Y, Hao X, Geng W and
Ma R (2025) Identification and validation of
integrated stress-response-related genes as
biomarkers for age-related macular
degeneration.
Front. Mol. Biosci. 12:1583237.
doi: 10.3389/fmolb.2025.1583237

COPYRIGHT

© 2025 Niu, Jin, Hu, Wang, Hao, Geng and
Ma. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Identification and validation of
integrated
stress-response-related genes as
biomarkers for age-related
macular degeneration

Jingyi Niu1*, Ling Jin1, Yijun Hu2, Yiting Wang1, Xiaoning Hao1,
Wenwen Geng1 and Ruirui Ma1

1Department of Ophthalmology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated
Hospital of Shenzhen University, Shenzhen, China, 2Department of Ophthalmology, Guangdong
Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial
People’s Hospital of Southern Medical University, Guangzhou, China

Background: Age-related macular degeneration (AMD) is a prevalent ocular
condition associated with aging, serving as a significant contributor to vision
loss among middle-aged and older individuals. Studies have shown that AMD
and integrated stress response (ISR) are associated with oxidative stress, but no
specificmolecularmechanisms have been identified. Therefore, this study aimed
to identify potential biomarkers for AMD through bioinformatics analysis based
on the transcriptome database and integrated stress response related genes
(ISR-RGs).

Methods: Transcriptomic data GSE76237, GSE247168, and ISR-RGs were
sourced from public databases and related literature. The biomarkers associated
with AMD were identified by differentially expressed gene (DEG) analysis,
intersection of common DEGs, and ISR-RGs machine algorithm. After that,
nomograms, GSEA, and immune infiltration analysis were performed for the
biomarkers. The effects of transcription factors (TFs) and miRNAs on biomarkers
were then explored by constructing a TF-biomarker–miRNA regulatory network.
In addition, potential effective drugs of the biomarkers were explored by
constructing a biomarker–effective drug interaction network. Finally, we verified
the gene expression of the biomarkers by RT-qPCR.

Results: We obtained 2,567 and 1,454 DEGs in GSE76237 and GSE247168,
respectively. The up- and downregulated genes shared in both datasets were
intersected with ISR-RGs taken to obtain eight candidate genes. SLFN11 and
GRIN1 were identified as common biomarkers for AMD. An analysis of the
nomogram model of biomarkers revealed good diagnostic predictive abilities
(AUC > 0.7). SLFN11 and GRIN1 were mainly enriched in pathways such as
proteasome, lysosome, and neuroactive ligand receptor interaction. In addition,
the disease group’s monocyte expression was significantly higher than that
of the control group in GSE76237 (p < 0.01). We obtained thirteen relevant
miRNAs and 27 TFs by prediction, with three shared TFs, and seventeen
potentially effective drugs were predicted. RT-qPCR validation showed in
AMD patients, and SLFN11 and GRIN1 expression was significantly higher
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than controls (p < 0.05). Only SLFN11 expression was consistent with the
bioinformatics analysis.

Conclusion: SLFN11 and GRIN1 were identified as AMD biomarkers, exhibiting
robust diagnostic performance and providing new insights into the condition.

KEYWORDS

age-related macular degeneration, biomarkers, integrated stress response, SLFN11,
Grin1

1 Introduction

Age-related macular degeneration (AMD) is a prevalent
and irreversible condition that poses a serious threat to vision
(Pennington and DeAngelis, 2016). AMD is marked by a gradual
deterioration of the central part of the retina, primarily affecting
the retinal photoreceptors, the retinal pigment epithelium (RPE),
Bruch’s membrane (BM), and the choroidal microcirculation
surrounding the macula (Pennington and DeAngelis, 2016).
In developed nations, AMD stands as the foremost cause of
significant vision impairment in individuals aged 55 and older,
contributing to 6%–9% of cases of legal blindness globally
(Wong et al., 2014; Jonas et al., 2017). Projections suggest that
by 2040, nearly 288 million people around the world will be
impacted by AMD (Wong et al., 2014).

AMD is a multifaceted condition, largely due to the interplay
of numerous risk factors that contribute to its development.
The disease’s origins stem from a combination of demographic
influences such as age, gender, and ethnicity with epidemiological
factors like body mass index, smoking habits, dietary patterns, and
genetic variations, including mutations in the complement cascade.
Environmental elements such as prolonged exposure to sunlight and
certain chemicals also play a significant role (Chakravarthy et al.,
2010; Chakravarthy et al., 2007; Cruickshanks et al., 2001; Tien et al.,
2020). Among these, oxidative stress and impaired choroidal
blood flow have emerged as central drivers in the progression of
AMD (Bellezza, 2018; Lipecz and Miller, 2019; Rakoczy et al.,
2002). Oxidative stress, in particular, is a key player in age-
related conditions, including AMD, as the retina demands a
disproportionately higher amount of oxygen than other tissues
in the body (Beatty et al., 2000). A hallmark of AMD is the
dysfunction of retinal pigment epithelial cells, which arises from
the cumulative impact of aging, genetic predispositions, and
environmental exposures. This dysfunction both contributes to and
is exacerbated by oxidative stress, creating a vicious cycle that
underpins the disease’s progression (Ruan et al., 2021).

Early to intermediate stages of AMD are marked by the
presence of lipid–protein accumulations known as drusen,
which can be found in the BM. This membrane is a complex
structure that encompasses the basement membrane of the
retinal RPE (Orozco et al., 2023). It is hard to diagnose and
treat during this term as it lacks sensitive biomarkers and
effective treatment. The patient is usually advised to live a
healthy lifestyle and take supplements with antioxidant vitamins
and minerals according to the Age-Related Eye Disease Study
2 (AREDS2) formula (vitamins C and E, lutein, zeaxanthin,
zinc oxide, cupric oxide, etc.) in order to prevent the further

development of AMD (American Academy of Ophthalmology
Preferred Practice Pattern Retina/Vitreous Committee, 2023).

Advanced AMDmanifests in two primary forms, both of which
result in significant central vision impairment. The “wet” variant
involves subretinal neovascularization (NEO) which leads to the
deterioration of retinal function, while the “dry” form, known as
geographic atrophy (GA), is marked by the irregular degeneration of
the RPE and photoreceptors. Interestingly, these advanced stages can
coexist in a single patient, suggesting that the underlying progression
pathways are not mutually exclusive (Owen et al., 2019). While
anti-VEGF (anti-vascular endothelial growth factor) therapies have
proven effective in managing wet AMD, treatment options for the
dry form remain limited, highlighting a critical gap in current
therapeutic strategies (Orozco et al., 2023).

To date, a staggering 90% of individuals worldwide suffering
from AMD remain without viable treatment options (Ambati and
Fowler, 2012). This pressing reality underscores the critical need to
deepen our understanding of the disease’s underlying mechanisms,
identify reliable biomarkers, and develop precise, targeted therapies
to address this growing health challenge.

Integrated stress response (ISR) plays a key role in maintaining
cell homeostasis as it is the core regulatory mechanism for cells in
coping with various internal and external stressors (Paternoga et al.,
2025). ISR is also a research hotspot partly because it relates to many
important diseases, including metabolic diseases (Delepine et al.,
2000; Harding et al., 2001; Zhang et al., 2002; Senee et al.,
2004), pulmonary diseases (Emanuelli et al., 2020), diseases of
the nervous system (Lin et al., 2014; Vasudevan et al., 2022),
cancer (Dey et al., 2015; Nguyen et al., 2018; Verginadis et al.,
2022), Alzheimer’s disease (Ma et al., 2013; Yang et al., 2016),
peripheral neuropathies (Pennuto et al., 2008; Antonio et al., 2013;
Spaulding et al., 2021; Amila et al., 2021), and Down’s syndrome
due to chromosomal trisomy (Zhu et al., 2019). The core regulatory
pathway of ISR revolves around four kinases (PERK, GCN2, PKR,
and HRI) (Pakos-Zebrucka et al., 2016) which respond to different
stress signals. PERK is sensitive to endoplasmic reticulum stress.
GCN2 mainly responds to amino acid starvation. PKR and HRI
are activated by viral infection and heme deficiency, respectively
(Peichuan et al., 2002a; Peichuan et al., 2002b; Williams, 1999;
Wang et al., 2013). Once activated, they reprogram protein synthesis
by phosphorylating eukaryotic translation initiation factor 2α (P-
eIF2α). The formation of P-eIF2α inhibits global protein translation
while selectively initiating the translation of specific mRNAs such
as ATF4 (Wek, 2018). ATF4 can further activate downstream stress
adaptation genes (such as antioxidant and metabolic regulatory
genes), promote cell repair, or determine apoptosis according to
stress intensity (Harding et al., 2003). Therefore, understanding the
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mechanism of ISR can better explore its role in the occurrence and
development of diseases and provide new ideas and targets for the
treatment of related diseases.

The stress response protein “regulated in development and
DNA damage 1” (REDD1), sometimes referred to as “RTP801”
or “DDIT4,” has been identified as a contributing factor in the
onset of oxidative stress (Shoshani et al., 2002; Miller et al., 2022;
Miller et al., 2021;Miller et al., 2020). In their recent investigation, S.
M. Subrahmanian and colleagues examined how REDD1 influences
damage to retinal pigment epithelium (RPE), retinal degeneration,
and its possible role in the pathogenesis of AMD. They achieved
this by administering the oxidizing agent sodium iodate (NaIO3)
to mice, which simulates dry AMD by causing RPE dysfunction
and an increase in macrophage presence. This ultimately leads
to photoreceptor damage, thinning of both the outer and inner
segments, and diminished visual acuity (Shoshani et al., 2002;
Miller et al., 2022;Miller et al., 2021;Miller et al., 2020).Their results
indicate that REDD1 levels increased in the retinas of mice treated
with NaIO3 and, notably, that the removal of REDD1 was enough to
avert oxidative stress, the activation of immune cells, and alterations
in retinal structure (Espitia-Arias et al., 2023; Moriguchi et al.,
2018; Yang et al., 2021). These findings imply that REDD1 may
significantly contribute to the damage of RPE and photoreceptors
associated with dry AMD (Subrahmanian et al., 2024). ISR and
AMD thus have a close relationship, but themechanism is unknown.

This study explores the biomarkers of ISR relating to AMD
through the analysis and techniques of diverse bioinformatics across
public databases. In addition, the signaling pathways associated
with these biomarkers and their correlation with miRNAs, TFs,
and potentially effective drugs were investigated to provide valuable
insights for ophthalmologists in the diagnosis and treatment of
AMD patients.

2 Materials and methods

2.1 Data source

In this study, AMD-related datasets were collected from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). GSE76237, leveraging the GPL6244 platform,
consisted of peripheral blood mononuclear cell (PBMC) samples
from 14 AMD patients and 15 unaffected control subjects.
GSE247168, which was based on the GPL29480 platform, included
PBMC samples from nine AMD patients and seven healthy
control subjects. Meanwhile, 1,797 integrated stress-response-
related genes (ISR-RGs) were extracted and integrated from five
studies (Fukuoka et al., 2022; Costa-Mattioli andWalter, 2020;Wang
and Li, 2023; Deardorff et al., 1986; Chen et al., 2024).

2.2 Differential expression analysis

Differences in gene expression levels between AMD samples
and control samples in GSE76237 were compared using the R
limma package (v 3.54.0), with the screening conditions |log2fold
change (FC) | > 0 and p < 0.05 to screen differentially expressed
genes (DEGs). In addition, differences in gene expression levels

between AMD samples and control samples in GSE247168 were
compared using the DESeq2 package (v 1.38.3) with the same
screening conditions for screening DEGs. The intersection of up-
and downregulated genes in DEGs of GSE76237 and GSE247168
were taken separately to obtain the shared up- and downregulated
genes, which were termed “common upregulated DEGs” and
“common downregulated DEGs,” respectively. The volcano plot and
heatmap for DEGs were drawn by the ggplot2 package (v 3.4.4) and
the Pheatmap package (v 2.14.0).

2.3 Enrichment analysis of candidate genes

Further analysis involved taking the intersection of common
upregulated DEGs, common downregulated DEGs, and ISR-RGs
to gain candidate genes through the VennDiagram package (v
1.7.3). Subsequently, the clusterProfiler package (v 4.7.1.003) was
used to conduct enrichment analyses for Gene Ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) on
the candidate genes (p Adjust Method = “BH,” p-value cut off
= 0.05, FDR < 0.05). The results were visualized with ggplot2
package (v 3.4.4).

2.4 Recognition of biomarkers for AMD

First, based on the candidate genes, the feature genes were
obtained by least absolute shrinkage and selection operator (LASSO)
using the glmnet package (v 4.1-4) in GSE76237. The most
strongly associated features were selected when lambda reached
its minimum value, yielding the lowest error rate and identifying
LASSO-GSE76237. Meanwhile, LASSO-GSE247168 were obtained
by LASSO in GSE247168. The common LASSO-feature genes
were obtained by taking the intersection of LASSO-GSE76237 and
LASSO-GSE247168. Subsequently, with the support of the e1071
package (v 4.1-4), candidate genes were incorporated into the
support vector machine-recursive feature elimination (SVM-RFE)
algorithm across GSE76237 and GSE247168 individually. For each
feature, the error rate was calculated using five-fold cross-validation.
The feature genes selected from both datasets were defined as
“SVM-RFE-GSE76237” and “SVM-RFE-GSE247168,” respectively.
The common SVM-RFE-feature genes were obtained by taking the
intersection of SVM-RFE-GSE76237 and SVM-RFE-GSE247168.
Biomarkers were identified by overlapping LASSO- and SVM-RFE-
feature genes.

2.5 Construction and evaluation of
nomogram

To assess the capacity of biomarkers to differentiate between
diseased and normal samples in GSE76237 and GSE247168, two
distinct nomograms were constructed with the rms package (v
6.5.0) tailored to enhance the diagnostic accuracy for AMD. In
each nomogram, biomarkers were represented by line segments
scaled to indicate possible scoring ranges, with the segment length
depicting the biomarker’s contribution to the predicted outcome.
Points on these segments denoted the individual scores for each
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biomarker, while the aggregate of these points—“total points”
—was employed to evaluate the disease risk associated with each
profile, where a higher total score suggested a higher risk of
disease. Further analyseswere performed to validate the nomogram’s
performance, notably by plotting the calibration curve to assess its
predictive power. The pROC package (v 1.18.0) was also utilized to
construct a receiver operating characteristic (ROC) curve, thereby
evaluating the nomogram’s diagnostic effectiveness through area
under the curve (AUC) metrics. In addition, decision curve analysis
(DCA) (rmda package, v 1.6, http://mdbrown.github.io/rmda/) was
executed to ascertain the clinical utility of the nomogram by
measuring its net benefit.

2.6 Functional analysis of biomarkers

To explore the functional enrichment of biomarkers adopting
the clusterProfiler package, gene set enrichment analysis (GSEA)
was performed on biomarkers in GSE76237 and GSE247168.
In detail, Spearman correlation analysis using the “corrplot R”
package was conducted to calculate correlation coefficients between
biomarkers and other genes in each dataset. Genes were ranked
based on these coefficients, and each biomarker was associated
with a list of correlated genes. The “msigdbr” package (v 7.5.1) was
used to download “c2. kegg.v7.4. symbols.gmt” as the background
gene set. GSEA was then performed on ranked genes within
the background gene set. Pathways with a p.adjust < 0.05 were
considered significantly enriched and visualized for the top-five
pathways per gene operating the enrISplot package (v 1.18.4).

2.7 Immune infiltration analysis

Considering the number of samples, GSE76237 was chosen
to study the infiltration abundance of immune cells in AMD
and normal individuals. Utilizing the CIBERSORT algorithm (v
0.1.0), the infiltration abundance of 22 types of immune cells in
these samples were calculated. The differences in these immune
cells between AMD and control samples were then compared
(p < 0.05).The psych package (v 2.2.5) was used to perform
Spearman correlation analysis to assess the relationship between
these differential immune cells and biomarkers in GSE76237. This
analysis helped identify which types of immune cells were associated
with specific biomarkers.

2.8 Construction of regulatory network

The construction of regulatory networks was helpful for
uncovering the molecular regulatory mechanisms of biomarkers,
thereby providing new insights forAMDresearch. Initially, potential
microRNAs (miRNAs) regulating these biomarkers were predicted
through the miRDB database (http://www.mirdb.org/). In the
following, the chip-seq data of the ENCODE database (https://
www.encodeproject.org/) was used to predict transcription factors
that regulate biomarkers online using NetworkAnalyst (https://
www.networkanalyst.ca/). Afterward, the regulatory networks
involvingmiRNA-mRNA, TF-mRNA, and TF-mRNA-miRNAwere
visualized using Cytoscape software.

2.9 Drug prediction

The identification of biomarker-associated targeted drugs was
conducted by utilizing the Drug Signatures Database (DSigDB)
(https://dsigdb.tanlab.org/DSigDBv1.0/). A network diagram of
targeted drugs and biomarkers was generated via Cytoscape
software, facilitating the exploration of potential therapeutic agents
for treating AMD.

2.10 Expression analysis of biomarkers

To confirm the expression levels of biomarkers in both AMD
and control groups, the study examined these levels across both the
training and validation sets. Further validationwas carried out using
reverse transcription–quantitative polymerase chain reaction (RT-
qPCR). This research utilized 11 peripheral blood mononuclear cell
samples obtained from patients at The People’s Hospital of Baoan
Shenzhen, comprising five samples from AMD patients and six
from control subjects. The study received ethical approval from
the Ethics Committee of The People’s Hospital of Baoan Shenzhen,
and all participants provided written informed consent. To assess
biomarker expression, total RNA was extracted from the samples
using TRIzol (Ambion, Austin, United States) in accordance with
themanufacturer’s protocol.Thefirst strand of complementaryDNA
(cDNA) was synthesized from 2 μg of total RNA using the SweScript
First Strand cDNA Synthesis Kit (Servicebio, Wuhan, China),
following the guidelines provided. RT-qPCR was performed using
the 2×Universal Blue SYBR Green qPCR Master Mix (Servicebio,
Wuhan, China), with the reaction program set to 1 min at 95°C
followed by 40 cycles of 20 s at 95°C, 20 s at 55°C, and 30 s at 72°C.
Primer sequences are detailed in Supplementary Table S1. GAPDH
served as the internal reference gene, and gene expression levels
were quantified using the 2−ΔΔCT method (PMID: 11846609). The
resulting data were visualized using GraphPad Prism 5 (GraphPad
Software Inc., United States).

2.11 Statistical analysis

All analyses were performed using R software (v 4.2.2). The
limma package (v 3.54.0) and DESeq2 package (v 1.38.3) in
R language were used for differential expression analysis. The
screening criteria were set as |log2fold change (FC)| > 0 and p <
0.05. The clusterProfiler package (v 4.7.1.003) was used to conduct
GO and KEGG enrichment analyses on the candidate genes. The
glmnet package (v 4.1-4) was used for the LASSO regression
analysis. The e1071 package (v 4.1-4) was utilized to perform the
SVM-RFE algorithm. The rms package (v 6.5.0) was applied to
construct nomograms. The pROC package (v 1.18.0) was used to
construct the ROC curve.The clusterProfiler package was employed
to conduct GSEA on the biomarkers.The CIBERSORT algorithm (v
0.1.0) was used to calculate the infiltration abundance of 22 types
of immune cells in the samples. The Wilcoxon test was used to
compare the differences in the infiltration abundance of immune
cells between AMD samples and control samples, and p < 0.05
indicated that the differences were statistically significant.The psych
package (v 2.2.5) was used for Spearman correlation analysis. When
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validating the biomarkers by RT-qPCR, the 2−ΔΔCt method was used
to quantitatively analyze the gene expression levels. P < 0.05 was
considered to be significantly different.

3 Results

3.1 Identification of common upregulated
and downregulated DEGs

Differential expression analysis revealed 2,567 DEGs between
AMD and control samples in GSE76237, with 1,082 upregulated
and 1,485 downregulated genes in AMD (Figures 1A,B). Similarly,
in GSE247168, 1,454 DEGs were identified between AMD and
control samples, with 619 upregulated and 835 downregulated genes
in AMD (Figures 1C,D). After crossing, a total of 26 common
upregulatedDEGs and 118 common downregulatedDEGs that were
generated (Figures 1E,F).

3.2 Exploring the signaling pathways
enriched in candidate genes

The subsequent intersection of 26 common upregulated DEGs,
118 common downregulated DEGs, and 1,797 ISR-RGs yielded
eight candidate genes related to integrated stress response in AMD
(Figure 2A): RIC3, GRIN1, AKAP6, SGPP2, STOX1, SLFN11,
FAM111A, and PKD2. These were further included in functional
enrichment analysis, revealing 352 GO terms encompassing
277 BP, 28 CC, and 47 MF. Notable terms included “positive
regulation of cation transmembrane transport,” “transmembrane
transporter complex,” “ligand-gated calcium channel activity,” and
“calcium channel activity” (Figure 2B). In addition, 11 KEGG
pathways were identified, including “nicotine addiction,” “cocaine
addiction,” “sphingolipid metabolism,” “long-term potentiation,”
and “amphetamine addiction” (Figure 2C). These findings validated
the accuracy of the differential analysis andhighlight the significance
of these pathways in the pathogenesis of AMD.

3.3 Identifying SLFN11 and GRIN1 as
biomarkers for AMD

The eight candidate genes were further refined through LASSO
and SVM-RFE for selection. Specifically, in GSE76237, the lowest
error rate was achieved when lambda. min was set to 0.0426,
resulting in the identification of five LASSO-feature genes 1:
SLFN11, PKD2, GRIN1, RIC3, and STOX1 (Figures 3A,B). In
GSE247168, the lowest error rate was achieved when lambda.
min was set to 0.0316, resulting in the identification of five LASSO-
feature genes 2: SGPP2, GRIN1, FAM111A, AKAP6, and SLFN11
(Figures 3C,D). In GSE76237, the highest point of accuracy was
selected for the best gene combination SVM-RFE-1, including RIC3,
SLFN11, and GRIN1 (Figure 3E). GSE247168 was selected for the
highest point of accuracy for the best gene combination SVM-
RFE-2, including AKAP6, GRIN1, PKD2, RIC3, SGPP2, FAM111A,
SLFN11, and STOX1 (Figure 3F). The intersection of LASSO and
SVM-RFE feature genes of the two datasets are taken separately

(Figures 3G,H), and finally the intersection of the results of these
two machine algorithms’ learning is taken to obtain the AMD core
genes SLFN11 and GRIN1 (Figure 3I).

3.4 Nomograms of the biomarkers SLFN11
and GRIN1

To further explore the diagnostic predictive ability of biomarkers
in AMD, nomograms of biomarkers SLFN11 and GRIN1
were constructed in GSE76237 and GSE247168, respectively
(Figures 4A,B). We performed calibration curves for the models
separately (Figures 4C,D), and the results showed that the predictive
performances of the two columnar graphical models were good (p
> 0.05). The fit of the models was evaluated using ROC curves,
and the AUCs (Figures 4E,F) in GSE76237 and GSE247168 were
0.895 and 0.921 (AUC > 0.7), respectively, demonstrating that the
constructed nomograms could predict the survival of patients well.
DCA results further proved that the model has strong diagnostic
prediction ability (Figures 4G,H).

3.5 Functional analysis of SLFN11 and
GRIN1

In order to explore the functional enrichment of biomarkers
in the dataset, we performed GSEA enrichment analyses of
biomarkers in both datasets. In GSE76237, the top-five pathways
significantly enriched for SLFN11 were proteasome, lysosome,
oxidative phosphorylation, ribosome, and the tricarboxylic acid
(TCA) cycle (Figure 5A). The top-five pathways significantly
enriched for GRIN1 were neuroactive ligand–receptor interaction,
arginine and proline metabolism, Parkinson’s disease, ribosome,
and basal cell carcinoma (Figure 5B). In GSE247168, the top-
five pathways significantly enriched for the SLFN11 gene were
spliceosome, the neurotrophin signaling pathway, endocytosis,
lysosome, and the tricarboxylic acid (TCA) cycle (Figure 5C).
GRIN1 genes were significantly enriched in the top-five pathways:
aminoacyl tRNA biosynthesis, graft versus host disease, RNA
polymerase, base excision repair, and spliceosome (Figure 5D).
Overall, the two datasets were each enriched for a number of shared
pathways involved in multiple cellular functions and physiological
activities.

3.6 Correlation between biomarkers and
immune cells

Understanding the correlation between biomarkers and
immune cells will help us further explore themechanism of action of
the disease. Figure 6A shows the relative proportions of 22 immune
cells between the AMD and control groups in GSE76237. The
proportional difference in the infiltration abundance of 22 immune
cell species between AMD samples and control group samples in
GSE76237 was analyzed. Four types of cells—activated dendritic
cells, monocytes, resting natural killer (NK) cells, and activated
memory CD4 T cells—were significantly different between the two
groups, with monocytes being more highly expressed in the disease
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FIGURE 1
Identification of the DEGs in AMD. (A) Volcano plot showing the expression of DEGs between AMD patients and control samples in GSE76237. (B)
Heatmap showing the top-20 regulated DEGs in GSE76237. (C) Volcano plot showing the expression of DEGs between AMD patients and control
samples in GSE247168. (D) Heatmap showing the top-20 regulated DEGs in GSE247168. (E) Venn diagram identifying the common upregulated genes
in GSE76237 and GSE247168. (F) Venn diagram identifying the common downregulated genes in GSE76237 and GSE247168.

group (p < 0.01) (Figure 6B). Ultimately, we conducted a Spearman
correlation analysis of biomarkers and differential immune cells
which showed that in GSE76237, NK-cell resting exhibited the most
significant negative correlation with monocytes at −0.73 (p < 0.001).
SLFN11 was positively correlated withmonocytes with a correlation
coefficient of 0.57 (p < 0.01). GRIN1 was negatively correlated with
activated dendritic cells with a negative correlation coefficient of
−0.41 (p < 0.05) (Figure 6C).

3.7 Establishment of TF–miRNA–mRNA
regulatory networks

The prediction of biomarkers targeting miRNAs showed 15
nodes, 13 edges, with eight miRNAs predicted for GRIN1 and
five for SLFN11 (Figure 7A). Predicted miRNAs included miR-144-
5p, miR-607, and miR-194-3p. Prediction of biomarkers targeting
TF showed 29 nodes, 30 edges, and 3 shared TFs (SUZ12, EZH2,

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1583237
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Niu et al. 10.3389/fmolb.2025.1583237

FIGURE 2
Functional enrichment analysis of candidate genes. (A) Venn diagram identifying the candidate genes of common upregulated and downregulated
DEGs and 1,797 ISR-RGs. (B) Circle diagram of GO enrichment analysis (candidate genes functionally enriched categories in BP, CC, and MF analysis).
(C) KEGG enrichment analysis: vertical axis is the specific name of the KEGG function, horizontal axis is the number of differential genes released to the
corresponding function.

and ZNF394) (Figure 7B). TF–miRNA–mRNA regulatory networks
showed 35 nodes, 37 edges, and 3 shared nodes (SUZ12, EZH2,
and ZNF394) (Figure 7C).

3.8 Prediction of potentially effective drugs
by biomarkers

The biomarker-related potential therapeutic drug prediction
results showeda totalof19nodes,18edges, and1sharednode.SLFN11
andGRIN1 shared the drug trichostatin. Eleven drugs were predicted
for GRIN1, and seven were predicted for SLFN11 (Figure 8).

3.9 RT-qPCR validation of biomarker
expression

In this study, the expression levels of the biomarkers
were further validated. The expression levels of GRIN1 and
SLFN11 were significantly upregulated in the AMD group (p

< 0.05) (Figures 9A,B). SLFN11 expression was consistent with the
bioinformatics analysis, while GRIN1 was opposite to it.

4 Discussion

AMD impacts millions across the globe as a prominent cause of
vision loss (Klein et al., 2007). It can be viewed as a breakdown in
the retina’s usual homeostatic processes, where age-related changes,
chronic inflammation, lipid and lipoprotein accumulation, oxidative
stress, and deteriorated extracellular matrix (ECM) maintenance
create a state of imbalance that leads to the disease (Miller, 2013).
ISR is a highly conserved signaling pathway that activates in
response to stressors, generally downregulating protein synthesis
while selectively promoting the translation of specific proteins,
including transcription factors (Kalinin et al., 2023). This pathway
comes into play under various stress conditions, such as oxidative
stress, lack of amino acids, and endoplasmic reticulum stress, finely
tuning the cell’s translation and expression profiles (Wek et al., 2023).
Damage from oxidative stress to the retinal pigment epithelium
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FIGURE 3
Machine algorithms for signature genes. (A) λ-curve in lasso regression analysis (distribution of LASSO coefficients for eight genes in GSE76237).
Penalty plot of LASSO model with error bars denoting standard errors. The LASSO plot shows that the variations in the size of the coefficients for the
parameters decreased as the value of the k penalty increased. (B) Log(λ)-curve in lasso regression analysis in GSE76237. (Results of cross-validation.
Values in the middle of the two dashed lines are the range of positive and negative standard deviations of log(λ). The dashed line on the left indicates
the value of the harmonic parameter log(λ) when the model error is minimal). (C) λ-curve in lasso regression analysis (distribution of LASSO coefficients
for eight genes in GSE247168). (D) Log(λ)-curve in lasso regression analysis in GSE247168. (E) Performance of the feature subset selected by SVM on
the dataset and the value of the horizontal coordinate corresponding to the highest point of the curve indicates the best genes in GSE76237. (F) The
performance of the feature subset selected by SVM on the dataset and the value of the horizontal coordinate corresponding to the highest point of the
curve indicates the best genes in GSE247168. (G) Intersection of LASSO feature genes of the two datasets. (H) Intersection of SVM-RFE feature genes of
the two datasets. (I) Intersection of the results of (G,H).

(RPE) is regarded as the main pathological factor behind AMD.
Nonetheless, the precise role of ISR in the development of AMD
remains elusive. Therefore, this study seeks to investigate potential
biomarkers related to ISR-related genes (ISR-RGs) inAMDand aims
to offer new insights for its early diagnosis and treatment.

We obtained 2,567 DEGs in GSE76237 and 1,454 DEGs in
GSE247168. The up- and downregulated genes shared in both
datasets were intersected with ISR-RGs taken to obtain eight
candidate genes. Subsequently, SLFN11 and GRIN1 were identified
as common biomarkers for AMD.

The Schlafen (SLFN) family of proteins is integral to regulating
key biological processes in mammals, including curbing viral
replication andmodulating immune responses (Mavrommatis et al.,

2013; Bustos et al., 2009; Schwarz et al., 1998). Among these,
SLFN11, a prominent member of the human Schlafen family, has
been identified as a potent inhibitor of human immunodeficiency
virus 1 (HIV-1) by leveraging codon usage patterns (Li et al., 2012).
Functioning as a putative DNA/RNA helicase, SLFN11 is drawn
to stressed replication forks, where it irreversibly halts replication
and triggers cell death. This mechanism has positioned SLFN11
as a promising biomarker for predicting sensitivity to cytotoxic
chemotherapies, particularly DNA-damaging agents (DDAs) such
as topoisomerase I and II inhibitors (e.g., irinotecan and etoposide),
DNA synthesis blockers (e.g., gemcitabine), and DNA cross-
linking or alkylating agents (e.g., cisplatin) (Zoppoli et al., 2012;
Nogales et al., 2015). Additionally, SLFN11 has recently been
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FIGURE 4
Nomograms of the biomarkers SLFN11 and GRIN1. (A) Nomograms of biomarkers SLFN11 and GRIN1 in GSE76237. (B) Nomograms of biomarkers
SLFN11 and GRIN1 in GSE247168. (C) The calibration curve for nomogram in GSE76237. (D) The calibration curve for nomogram in GSE247168. (E)
ROC curve analysis showing the predictive performance of two columnar graphical models in GSE76237. (F) ROC curve analysis showing the predictive
performance of two columnar graphical models in GSE247168. (G) DCA decision curve showing the strong diagnostic prediction ability of the model in
GSE76237. (H) DCA decision curve showing the strong diagnostic prediction ability of the model in GSE247168.
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FIGURE 5
GSEA of the signature genes in AMD. (A) GSEA of SLFN11 in AMD by KEGG analysis and GO analysis in GSE76237. (B) GSEA of GRIN1 in AMD by KEGG
analysis and GO analysis in GSE76237. (C) GSEA of SLFN11 in AMD by KEGG analysis and GO analysis in GSE247168. (D) GSEA of GRIN1 in AMD by
KEGG analysis and GO analysis in GSE247168.

linked to responsiveness to poly (ADP-ribose) polymerase (PARP)
inhibitors (Murai et al., 2016; Lok et al., 2016; Stewart et al.,
2017; van Erp et al., 2020; Pietanza et al., 2018). Beyond its
antiviral capabilities, emerging research highlights SLFN11’s role in
enhancing cancer cell sensitivity to DDAs, making it a potential
biomarker for predicting treatment outcomes in ovarian, lung,
and colorectal cancers (Zoppoli et al., 2012; Gardner et al., 2017;
Deng et al., 2015). Furthermore, SLFN11 has been shown to disrupt
stressed replication forks, driving cell death in response to DNA
damage (Murai et al., 2018). Most intriguingly, recent findings
suggest SLFN11’s involvement in immune regulation, particularly
in promoting T-cell infiltration and activation in breast cancer,
underscoring its multifaceted role in both cancer therapy and
immune modulation (Isnaldi et al., 2019). This study for the first
time identified the SLFN11 gene as one of the biomarkers of
AMD, but it is worth noting that the specific mechanism of the
SLFN11 gene in AMD is rarely reported, and further studies are
needed for clarification.

The GRIN gene encodes NMDA receptors, which play a
vital role in brain maturation and cognitive abilities. Genetic
research has identified a link between de novo mutations in
GRIN genes and neurological conditions (O'Roak et al., 2011;
de Ligt et al., 2013). Pathogenic variants of GRIN genes cause a
group of rare genetic neurodevelopmental disorders (Lemke, 2020;
Robertson and Baron-Cohen, 2017; Platzer et al., 2019; Benke et al.,
2021). Natural variations in the GRIN1 gene, responsible for
encoding the essential GluN1 subunit of the NMDA receptor, are
linked to significant neurological disorders (Lotten et al., 2023).

Pathogenic GRIN1 variants cause intellectual disability (100% of
patients), muscular hypotonia (66% of patients), epilepsy (65%
of patients), motor dysfunction (48% of patients), cortical visual
impairment (CVI; 34% of patients), autism spectrum disorder
(ASD; 22% of patients), and sleep problems (15% of patients)
(Benke et al., 2021).

Cortical visual impairment (CVI) is a common symptom
and sensory characteristic associated with GRIN disorders.
(Lipina et al., 2022) observed in approximately one-third of
individuals carrying the GluN1 gene, which is why ophthalmologic
evaluations are advised for patients with GRIN1 (Platzer et al.,
2019). While CVI stems from damage to the brain regions
responsible for visual processing, the influence of GRIN1 on
retinal function should not be overlooked. In fact, retinal Müller
glial cells, which contain the GluN1 subunit, may facilitate the
growth of retinal progenitor cells, regulate the expression of
glutamate transporters, and support the survival of ganglion cells
(Traynelis et al., 2010; Ramírez and Lamas, 2009; Furuya et al., 2012).
These processes can significantly impact both the structure and
function of the retina.

GluN1 knockdownmice (GluN1KD) serve as a model for GRIN
disorders, exhibiting significant alterations in learning,memory, and
emotional responses alongside visual deficits stemming from a lack
of NMDA receptors (Lipina et al., 2022). Research conducted by
Tatiana Lipina and colleagues revealed that these mice experience
destabilization in the outer segment of the retina, as well as a reduced
quantity and size of Meissner corpuscles—mechanoreceptors
located in the hind paw (Lipina et al., 2022).
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FIGURE 6
Infiltration levels of 22 immune cells were analyzed between the AMD and control groups in GSE76237. (A) Bar-plot displaying the relative proportion
levels of all immune cells. (B) Differential analysis of four immune cells’ infiltration between AMD and control groups in GSE76237. (C) Spearman
correlation analysis of biomarkers and four immune cells in GSE76237.

Furthermore, research has identified new links between the
polymorphic loci in the GRIN1 gene (rs6293) and external
eating behaviors in individuals with type 2 diabetes, as well as
associations of the GRIK3 (rs534131) and GRIA1 (rs2195450)
genes with diabetic retinopathy (Kochetova et al., 2020). Notably,
glioma patients exhibiting reduced levels of GRIN1 expression
tend to have poorer prognoses than those with higher levels of
expression (Yang et al., 2021b). Our investigation reveals for the
first time that GRIN1 serves as a potential biomarker for AMD,
warranting further exploration of its specific mechanisms.

In order to reveal the functions of SLFN11 and GRIN1, we
performed GSEA enrichment analyses of the two genes both
in GSE76237 and GSE247168, finding that the two datasets

were each enriched for a number of shared pathways involved
in multiple cellular functions and physiological activities. This
indicates that SLFN11 and GRIN1 participate in AMD dependence
on multiple, not single, molecular mechanisms. The common
pathways significantly enriched for SLFN11 were ribosome and
tricarboxylic acid (TCA) cycle in both datasets; there were no
common pathways significantly enriched for GRIN1 in both
datasets. In GSE76237, the common pathway significantly enriched
for SLFN11 and GRIN1 was ribosome. In GSE247168, the
common pathway significantly enriched for the SLFN11 andGRIN1
genes was spliceosome. Regardless, all these signaling pathways
referring to SLFN11 and GRIN1 were related to most important
physiological and pathological processes.

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1583237
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Niu et al. 10.3389/fmolb.2025.1583237

FIGURE 7
Establishment of TF–miRNA–mRNA regulatory networks. (A) Prediction of biomarkers targeting miRNAs. (B) Prediction of biomarkers targeting TF
showing 29 nodes, 30 edges, and 3 shared TFs (SUZ12, EZH2, and ZNF394). (C) TF–miRNA–mRNA regulatory networks showing 35 nodes, 37 edges, 3
shared nodes (SUZ12, EZH2, and ZNF394).
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FIGURE 8
Prediction of potentially effective drugs by biomarkers.

FIGURE 9
Results of PCR. (A) Expression of GRIN1 in the AMD and control groups. (B) Expression of SLFN11 in the AMD and control groups.

To investigate the relationship between biomarkers and immune
cells, we employed immune infiltration analysis to shed light
on the underlying mechanisms of AMD. Our findings revealed
that in the GSE76237 dataset, the expression of monocytes in
the AMD group was notably elevated compared to the control
group. Monocytes, as key players in the innate immune system,
have previously been shown to serve as a reliable and cost-
effective biomarker for identifying patients at high risk of
acute exacerbation of chronic obstructive pulmonary disease
(AECOPD). Specifically, studies indicate that individuals with
monocyte percentages exceeding 10% or falling below 7.4%,
coupled with an absolute count under 0.62, face a heightened
risk of AECOPD (Lin et al., 2022). Moreover, monocytes have
been implicated in the pathogenesis of atherosclerosis, where they
act as a primary source of proinflammatory mediators. During
atherogenesis, macrophages are drawn to the vessel walls to clear

modified low-density lipoproteins (LDLs) and release inflammatory
cytokines, thus contributing to the formation of cholesterol-
laden plaques. High-density lipoprotein-cholesterol (HDL-C)
counteracts these effects by mitigating the proinflammatory and
pro-oxidant actions of monocytes. It achieves this by inhibiting
macrophage migration, preventing LDL oxidation, and facilitating
cholesterol efflux from these cells. Consequently, the monocyte-
to-HDL ratio has emerged as a practical indicator for predicting
the onset and progression of atherosclerosis, which are critical
precursors to cardiovascular events (Ganjali et al., 2018). In
our study, the monocytes rose in AMD patients, but how
these immune cells take part in the morbidity of AMD and
whether abnormal monocytes indicate AMD in some form need
further study.

We also obtained 13 relevant miRNAs and 27 TFs by prediction,
with three shared TFs. We predicted 17 potentially effective drugs.
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SLFN11 and GRIN1 shared the drug trichostatin. Trichostatin A
(TSA), a potent inhibitor of histone deacetylase (HDAC) effective
at nanomolar concentrations, plays a dual role in regulating the
eukaryotic cell cycle and reversing morphological transformations
in cells (Yoshida and Horinouchi, 1999). Research by Qiang Su and
colleagues highlights TSA’s potential to mitigate neuroinflammatory
plaque formation and enhance cognitive function. Conditions such
as Alzheimer’s disease, anxiety, and depression are closely linked
to microglial inflammation, and TSA has been shown to alleviate
depressive and anxious behaviors in APP/PS1 mice. Additionally,
it reduces CST7 levels in the hippocampus of these mice and
in LPS-stimulated BV2 cells (Su et al., 2024). TSA appears to
exert its anti-inflammatory effects by increasing the acetylation
of non-histone proteins rather than histones, thereby curbing the
release of various inflammatory cytokines. This mechanism not
only extends survival but also offers protection against acute-
on-chronic liver failure (ACLF) in rat models. These findings
shed light on how TSA suppresses inflammatory responses in
experimental models of autoimmune and inflammatory diseases
(Zhang et al., 2015). In addition, somedata suggest that TSA through
the inhibition of histone deacetylation promotes the apoptotic of
the tumor cells. Mukhopadhyay et al. (2006) evaluated TSA as a
potential candidate for anticancer therapy in non-small-cell lung
cancer. All these reports indicates that TSA has a high probability
of inhibiting histone deacetylase and so become a potential drug for
AMD, but the definite mechanism need further research.

This study, based on public databases, screened out two
biomarkers related to ISR inAMD through a series of bioinformatics
analysis methods: SLFN11 and GRIN1. It provides a certain
reference value for the pathogenesis, diagnosis, and treatment of
AMD. However, our study also has some limitations. On the one
hand, the sample size of the existing databases on which the
bioinformatics analysis relies is limited. On the other hand, although
the potential association of SLFN11 and GRIN1 with ISR was found
by bioinformatics methods, the specific mechanism of SLFN11 and
GRIN1 in the pathogenesis of AMD remains unclear. In order to
further explore this, the sample size should be expanded and AMD
patients with different characteristics should be widely collected to
build a more comprehensive and representative database. Further
in vitro and in vivo experiments were conducted to investigate the
functions of these two genes and their possible mechanisms in
AMD. At the same time, a multi-omics integrated analysis method
was used to comprehensively analyze their functional networks and
explore their upstream and downstream regulatory relationships.
In addition, clinical validation studies are carried out to evaluate
their value as biomarkers and explore their application potential in
personalized treatment to better understand the biological functions
and clinical significance of SLFN11 and GRIN1 in AMD and to
provide a solid theoretical basis and practical guidance for the
diagnosis and treatment of AMD.
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