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Cerebral ischemia-reperfusion injury (CIRI) represents a multifaceted
pathological phenomenon characterized by an array of molecular and cellular
mechanisms, which significantly contribute to neurological dysfunction.
Evidence suggests that calcium ions play an indispensable role in this context,
as abnormal elevations in calcium concentrations exacerbate neuronal
injury and intensify functional deficits. These ions are integral not only for
intracellular signaling pathways but also for various pathological processes,
such as programmed cell death, inflammatory responses, and oxidative
stress. This review article elucidates the physiological framework of calcium
homeostasis and the precise mechanisms through which calcium ions
influence CIRI. Moreover, it addresses potential intervention strategies, including
calcium channel blockers, calmodulin (CaM) inhibitors, antioxidants, and anti-
inflammatory agents. Despite the proposal of certain intervention strategies,
their effectiveness and safety in clinical settings warrant further scrutiny.
In conclusion, the article highlights the limitations of current research and
anticipates future investigative trajectories, aiming to provide a theoretical
foundation and reference for the development of more efficacious treatment
modalities.
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1 Introduction

Cerebrovascular disorders pose a significant challenge to human health, characterized
by high incidence rates, disability, and mortality, thereby imposing a considerable burden
on society and families (Zhang et al., 2024a). A major challenge in the management
of ischemic cerebrovascular disorders is Cerebral Ischemia-Reperfusion Injury (CIRI)
(Zhang et al., 2024b; Zhu et al., 2025). This condition arises when brain tissue experiences
ischemia due to vascular blockages or other factors, making the timely restoration of
blood flow through reperfusion essential for recovering brain function. However, in
clinical practice, it is not uncommon for brain tissue damage to worsen following
reperfusion, a phenomenon referred to as CIRI (Deng et al., 2023; Huang et al., 2024;
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Ye et al., 2025). The underlying mechanisms of this injury
are highly complex, involving a range of physiological and
pathological changes, including oxidative stress, inflammatory
responses, apoptosis, and autophagy. These processes are
interrelated and collectively contribute to the initiation and
advancement of the injury (Bai et al., 2018; Li et al., 2024; Liu and
Sang, 2024).

Calcium ions are central to understanding the complex
mechanisms involved in CIRI (DI et al., 2024; Sharma et al., 2024a;
Yaghoobi et al., 2024). As vital intracellular second messengers,
they are critical in regulating the normal physiological functions of
neurons (Bollimuntha et al., 2011; Ono et al., 2023; Jha et al., 2024).
Including maintaining cell membrane potential and facilitating
various biochemical reactions within cells. However, during CIRI,
the balance of intracellular calcium ions is disrupted, leading to
an excessive influx of calcium into the cells (Yue et al., 2017;
Dai et al., 2024a; Yang et al., 2025). This calcium overload triggers
a cascade of reactions that can damage and ultimately kill nerve
cells (Payal et al., 2023; Sharma et al., 2024b; Singh et al., 2025).
The consequences extend beyond direct cellular dysfunction; the
activation of various enzymes, such as phospholipases, proteases,
and nucleases, results in the destruction of cell membranes and
organelles, further worsening brain tissue damage. Additionally,
calcium overload is intricately linked to other injury mechanisms,
including oxidative stress and inflammatory responses, creating
a vicious cycle that exacerbates CIRI (Wang et al., 2017;
Li et al., 2021a).

In-depth research on the role of calcium ions in CIRI is crucial
for understanding the underlying pathophysiological processes and
identifying effective therapeutic targets and intervention strategies.
By exploring the mechanisms related to calcium ions, researchers
aim to establish a foundation for developing new treatment
approaches that could enhance patient outcomes, reduce disability
and mortality rates, and ultimately improve the quality of life for
those affected by cerebral ischemia (Gu et al., 2024). Recently,
there has been a growing interest in investigating the role of
calcium ions in this context, particularly with the emergence of
novel intervention strategies (Kadas et al., 2017; Li et al., 2021b).
These include selective calcium channel antagonists, ultrasound
therapy, and the use of traditional Chinese medicine, all of
which have demonstrated promising neuroprotective effects. Such
studies are paving the way for innovative clinical treatments,
especially in the prevention and management of CIRI, where
maintaining calcium ion homeostasis has become a significant
focus of research (Cheung, 2003; Liu and Sang, 2024; Sharma
et al., 2024a).

In summary, the role of calcium ions in CIRI is intricate and
multifaceted. Gaining a clearer insight into their specific functions
within the pathological processes and exploring intervention
strategies holds significant clinical importance for improving
treatment outcomes and enhancing patient prognosis. Future
research should prioritize investigating the involvement of calcium
ions in CIRI, as well as identifying potential therapeutic targets.This
focus will provide a solid theoretical foundation for the development
of innovative therapeutic strategies (Liu et al., 2019; Xie et al., 2021;
Yaghoobi et al., 2024).

1.1 Overview of cerebral
ischemia-reperfusion injury

1.1.1 Definition and current status
CIRI refers to the phenomenon where, after a period of

cerebral ischemia, the restoration of blood flow leads to further
exacerbation of ischemic damage. It involves a variety of complex
pathophysiological processes, including energy metabolism
disorders, free radical damage, inflammatory responses, apoptosis,
and necrosis. This type of injury is quite common in ischemic
cerebrovascular diseases, such as cerebral thrombosis and cerebral
embolism. When a cerebral vessel is obstructed, it results in local
brain tissue ischemia and hypoxia, during which the metabolism
and function of nerve cells are suppressed. If blood flow is restored
within a certain timeframe, it is often assumed that the damaged
brain tissue can be salvaged; however, the reality is that brain tissue
damage often worsens, leading to more severe consequences such
as aggravated neurological dysfunction, brain edema, and cell death
(Dai et al., 2024b; Ye et al., 2025).

The high harm of this injury is self-evident, as it not only
causes a rapid deterioration in the patient’s condition, increasing
disability and mortality rates, but also places a heavy burden on
the patient’s family and society. Statistics show that a significant
proportion of patients with ischemic stroke experience CIRI,
severely affecting their prognosis and quality of life (Luo et al.,
2023). Many patients may still face long-term neurological deficits,
such as limb paralysis, speech disorders, and cognitive decline, even
after receiving reperfusion therapy, potentially leading to prolonged
bed rest and loss of self-care ability (Wang et al., 2024). Therefore,
in-depth research into the pathogenesis of CIRI and the search
for effective treatment methods is of utmost urgency and practical
significance.

1.1.2 Pathogenesis
1.1.2.1 Free radical damage

Under standard physiological conditions, the body possesses a
robust antioxidant defense mechanism that efficiently neutralizes
the limited quantities of free radicals produced during metabolic
processes, thus maintaining redox balance. However, during
cerebral ischemia, tissues experience ischemic and hypoxic
conditions, which disrupt mitochondrial respiratory chain
functionality and impede electron transfer processes. Such
disruptions result in considerable electron leakage, which
reacts with oxygen to form superoxide anion free radicals.
Simultaneously, ischemia inhibits the synthesis and activity
of critical antioxidant enzymes, such as superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px),
thereby reducing the body’s ability to eliminate free radicals.
Consequently, free radicals progressively accumulate, intensifying
cellular injury (Chen et al., 2013).

Upon reperfusion, a substantial influx of oxygen enters the
previously ischemic tissue, providing an abundant substrate for free
radical production. At this juncture, xanthine oxidase catalyzes the
oxidation of hypoxanthine and xanthine, leading to the production
of uric acid alongside a significant generation of superoxide anion
free radicals. Additionally, activated neutrophils and macrophages
produce a considerable amount of free radicals, including hydroxyl
radicals and hydrogen peroxide, through respiratory bursts. These
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free radicals exhibit potent oxidative properties, allowing them
to target polyunsaturated fatty acids within cell membranes,
thereby initiating lipid peroxidation reactions. The byproducts
of lipid peroxidation, such as malondialdehyde (MDA), further
compromise the structure and functionality of cell membranes,
resulting in increased permeability, the leakage of intracellular
substances, and the penetration of harmful external agents
into the cells. This cascade ultimately leads to cellular damage
and death. Moreover, free radicals can oxidize proteins and
nucleic acids, altering the structure and functionality of proteins,
which affects enzymatic activities and cellular signaling. They
can also induce DNA strand breaks and base modifications,
resulting in gene mutations and subsequent cellular apoptosis
(Sun et al., 2018; Wu et al., 2020).

1.1.2.2 Inflammatory response
During CIRI, the inflammatory response plays a pivotal role in

the overall process, which is characterized by complex interactions
among various cells and inflammatory mediators. In the initial
stages of ischemia, neural and glial cells in the brain are activated
by the lack of blood flow and oxygen, leading to the release
of inflammatory mediators such as tumor necrosis factor-alpha
(TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6).These
mediators trigger endothelial cells to express adhesion molecules
like intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-
selectin. Inflammatory cells, including neutrophils and monocytes,
possess receptors for these adhesion molecules, allowing them
to adhere to the endothelial surface. Following this adhesion,
chemokines facilitate the movement of these inflammatory cells
through the endothelial layer into the brain tissue. Once inside, these
cells become further activated, releasing additional inflammatory
mediators and proteolytic enzymes that can directly harm neural
and endothelial cells. This damage disrupts the blood-brain barrier,
increases vascular permeability, and can lead to brain edema and
hemorrhage. Moreover, the released mediators attract even more
inflammatory cells to the injury site, creating a vicious cycle that
intensifies the inflammatory damage to the brain.This inflammatory
response can also cause disturbances in microcirculation, which
diminishes blood flow to the brain, exacerbating the ischemic and
hypoxic conditions and promoting the apoptosis and necrosis of
neural cells (Yang et al., 2020; Zhuang et al., 2021; Cao et al., 2024).

1.1.2.3 Apoptosis and necrosis
Apoptosis and necrosis are the two primary forms of neuronal

cell death observed in CIRI, each with distinct mechanisms and
morphological changes, yet both significantly affect brain function.
Apoptosis, often described as programmed cell death, is an active
process regulated by a series of genes. In the context of CIRI,
several factors can trigger apoptosis, including energy metabolism
disturbances due to ischemia and hypoxia, free radicals produced
from oxidative stress, and inflammatory mediators released during
the inflammatory response, all of which can activate intracellular
apoptotic signaling pathways (Zhuang et al., 2021). Mitochondria
are crucial in this process; a decline in mitochondrial membrane
potential leads to the release of cytochrome C into the cytoplasm,
where it interacts with apoptotic protease activating factor-1 (Apaf-
1) and caspase-9 to form apoptosomes. This complex then activates
downstream effector caspases, such as caspase-3, initiating a cascade

of apoptotic reactions. Morphologically, apoptosis is characterized
by cell shrinkage, chromatin condensation, nuclear fragmentation,
and the formation of apoptotic bodies, which are ultimately engulfed
and cleared by macrophages. While apoptosis is more prevalent in
the early stages of CIRI, it is important to note that despite being a
programmed form of cell death, the loss of a significant number of
neural cells can lead to severe brain function impairments, including
cognitive and motor dysfunction (Wang et al., 2001).

Necrosis is a type of cell death that occurs without the
usual programmed processes, typically triggered by severe external
factors such as a lack of blood flow (ischemia), insufficient oxygen
(hypoxia), or damage from physical or chemical agents, resulting in
acute injury to the cells. In cases of CIRI, if the ischemic period is
prolonged or if the reperfusion is excessively damaging, neuronal
cells can experience necrosis. This process involves a breakdown of
the cellmembrane, leading to cell swelling, rupture of organelles, and
the spilling of cellular contents into the surrounding space, which in
turn sparks an inflammatory response in nearby tissues. Necrosis
tends to happen quickly, causing immediate and significant harm
to brain tissue, potentially resulting in localized brain tissue death
(infarction) and softening. This can severely impair brain function
and may even pose a life-threatening risk (Yuan et al., 2013).

The pathophysiology of CIRI also involves the theory of energy
metabolism disorder. However, as this aspect is not the focus of this
article, it will not be elaborated upon here.

1.2 Physiological functions of calcium ions

1.2.1 Maintenance of cell membrane potential
and nerve conduction

Under standard physiological circumstances, intracellular
calcium ion concentrations are maintained at a relatively low
level, approximately 100 nmol/L, while extracellular concentrations
can escalate to between 1.2 and 1.5 mmol/L. This pronounced
concentration gradient creates a potential difference across the
cellular membrane, which is critical for the membrane’s optimal
functioning (Chkadua et al., 2022; Beswick-Jones et al., 2023). The
cell membrane is equipped with various ion channels, among which
calcium ion channels are particularly vital for the conduction of
nerve impulses (Altier, 2012; Gatenby and Frieden, 2017).

When nerve cells are stimulated, the first response is the
opening of voltage-gated sodium ion channels in the cell membrane.
This permits an influx of sodium ions into the cell, resulting
in membrane depolarization and the initiation of an action
potential. As this depolarization continues, voltage-gated calcium
ion channels also become activated, resulting in a significant
influx of calcium ions from outside the cell, driven by both
concentration and electrical gradients. The calcium ions that enter
the cell play a crucial role; they bind to specific proteins on
neurotransmitter vesicles, which helps these vesicles move toward
the presynaptic membrane (Liebeskind et al., 2012; Mokkila et al.,
2017; Reva et al., 2021). Once there, the vesicles fuse with the
membrane and release neurotransmitters into the synaptic cleft.
These neurotransmitters then attach to their respective receptors on
the postsynaptic membrane, leading to changes in the postsynaptic
membrane potential and effectively transmitting the nerve impulse
(Liebeskind et al., 2012; Mokkila et al., 2017; Reva et al., 2021).
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An abnormal increase or decrease in the concentration of
calcium ionswithin a cell can significantly disrupt nerve conduction.
When there is an excess of calcium ions, it can trigger an excessive
release of neurotransmitters, leading to heightened excitability of the
nervous system.This over-excitationmaymanifest as symptoms like
muscle spasms and seizures. On the other hand, if the concentration
of calcium ions is too low, the release of neurotransmitters is
suppressed, which diminishes the excitability of the nervous system.
This reduction can result in problems such as muscle weakness and
decreased sensory perception (Bukharaeva et al., 2022; Zhang and
Stewart, 2025).

1.2.2 Participation in the regulation of the
cytoskeleton

Calcium ions are crucial in regulating the cytoskeleton,
primarily by interacting with cytoskeletal binding proteins like
tubulin and actin. This interaction influences the assembly and
disassembly of microtubules and actin filaments, which in turn
affects cell shape, movement, and migration (Wang and Li,
2007). Additionally, calcium ions bind to calmodulin (CaM),
activating downstream effector proteins such as the microtubule-
associated protein tau and calcium/calmodulin-dependent protein
kinase (CaMK). This activation indirectly regulates the stability
and dynamic changes of the cytoskeleton. Furthermore, calcium
ions can activate various enzymes, including phospholipases,
proteases, and nucleases, which can degrade cytoskeletal proteins
or regulate the activity of calcium pumps, thereby influencing
cytoskeletal stability (Wang et al., 2005; Zhao et al., 2006). In
the context of mechanosensation, calcium ions serve as key
signaling molecules that help assemble the cytoskeleton in response
to external mechanical signals through their binding to CaM.
During apoptosis, they play a role in remodeling the cytoskeleton
by regulating microtubule arrangement and gene expression.
Calcium ions also interact with the endoplasmic reticulum to
manage calcium release and cellular signaling, further impacting
the dynamic changes of the cytoskeleton. In processes like cell
migration and invasion, calcium ions regulate the remodeling of
the cytoskeleton and activate Rho family small GTPases, which
control the dynamic changes of the cytoskeleton and influence cell
movement across membranes. In summary, calcium ions maintain
the dynamic balance of the cytoskeleton and ensure normal cell
function through variousmechanisms.However, under pathological
conditions, dysregulation of calcium can lead to cytoskeletal
destruction, resulting in cellular dysfunction and tissue damage
(O'Connell et al., 2011; Bae et al., 2013).

1.2.3 Regulation of enzyme activity and cell
signal transduction

Calcium ions play a crucial role as activators of various enzymes
in the human body, significantly influencing cellular physiological
processes through the regulation of enzyme activity (Nguyen
and Rosenzweig, 2002). One key calcium-binding protein found
within cells is CaM, which has four binding sites for calcium
ions (Novak et al., 2007). When the concentration of intracellular
calcium ions (Ca2+) rises, these ions bind to CaM, resulting
in the formation of the Ca2+-CaM complex. This complex is
essential for activating several enzymes, including adenylate cyclase,
guanylate cyclase, phosphodiesterase, and calcium/CaMK. For

instance, adenylate cyclase catalyzes the conversion of ATP to cyclic
adenosine monophosphate (cAMP), a vital second messenger that
plays a significant role in regulating various cellular processes such
as metabolism, cell proliferation, and differentiation (Zayzafoon,
2006; Ghosh and Jana, 2021). Once the Ca2+-CaM complex
activates adenylate cyclase, it leads to an increase in intracellular
cAMP levels, which subsequently activates protein kinase A (PKA)
(Saljic et al., 2019). PKA then modulates the activity of various
proteins through phosphorylation, thereby exerting control over
essential cellular functions (del Pilar Gomez and Nasi, 2005; Prasad
and Ramakant, 2025).

Calcium ions are essential players in cell signal
transduction pathways. When extracellular signals like hormones,
neurotransmitters, and growth factors attach to receptors on the cell
membrane, they trigger pathways such as phospholipase C (PLC).
This activation leads to the breakdown of phosphatidylinositol 4,5-
bisphosphate (PIP2) in the cell membrane into two important
molecules: diacylglycerol (DAG) and inositol trisphosphate (IP3)
(Putney, 2001). Among these, IP3 is a water-soluble second
messenger that interacts with IP3 receptors located on the
endoplasmic reticulum.This interaction causes the release of stored
calcium ions (Ca2+), resulting in a swift rise in the concentration
of intracellular Ca2+(Lorenzon and Beam, 2008). The increased
levels of Ca2+ can directly activate specific protein kinases, such
as protein kinase C (PKC), which are crucial for various cellular
processes, including cell growth, differentiation, and programmed
cell death (apoptosis). Additionally, Ca2+ can bind to CaM, leading
to the activation of calcium/CaMK. This kinase plays a significant
role in cell signaling and the regulation of gene expression by
phosphorylating different substrate proteins (Ochoa et al., 2003).

1.2.4 Regulation of mitochondrial function
Calcium ions serve as crucial signaling molecules within cells

and play a vital role in regulating various cellular functions through
their interaction with mitochondria. Mitochondria, often referred
to as the energy factories of the cell, can absorb and release calcium
ions via transport proteins such as the mitochondrial calcium
uniporter (MCU), the mitochondrial calcium/H+ antiporter
(LETM1), and the mitochondrial sodium/calcium exchanger
(NCLX) (Sun et al., 2023). This process is essential for transmitting
calcium signals and regulating metabolism within the cell. When
calcium ions enter the mitochondria, they activate key enzymes
known as mitochondrial dehydrogenases, including pyruvate
dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and α-
ketoglutarate dehydrogenase (OGDH). This activation promotes
the tricarboxylic acid (TCA) cycle and oxidative phosphorylation,
which are critical for meeting the cell’s ATP demands. Furthermore,
calcium ions play a significant role in apoptosis by influencing
the mitochondrial membrane potential and the activity of the
mitochondrial permeability transition pore (PTP) (Chang and
Zou, 2025). For instance, an overload of calcium can decrease
the mitochondrial membrane potential, activate the PTP, and lead
to the release of cytochrome C, thereby triggering apoptosis. In
terms of energy metabolism, calcium ions quickly respond to the
energy needs of the cell by regulating mitochondrial metabolism;
for example, in brown adipose tissue, calcium ions interact with
uncoupling protein 1 (UCP1) to promote uncoupled respiration
and thermogenesis. Under conditions of cellular stress, such as
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hypoxia and oxidative stress, calcium ions help maintain cell
survival by regulating mitochondrial function. However, excessive
calcium uptake can result in mitochondrial dysfunction and
ultimately lead to apoptosis. In conclusion, calcium ions regulate
mitochondrial function through various mechanisms, including
metabolism, membrane potential, and apoptosis, which are crucial
for maintaining cellular physiological functions and responding
to stress (Zhou et al., 2021).

1.2.5 Other physiological functions
Calcium ions, known as coagulation factor IV, are essential

in the coagulation process, playing a crucial role in both the
intrinsic and extrinsic pathways (Rezaie, 2001; Gustavsson andHan,
2009; Anitua et al., 2021). When blood vessels are damaged, the
exposed tissue factor (TF) binds with coagulation factor VII in the
bloodstream to create the TF-VIIa complex, which then activates
coagulation factor X, converting it to Xa. In this process, calcium
ions (Ca2+) serve as important facilitators, enhancing the interaction
between various coagulation factors and improving the overall
efficiency of the coagulation response. As coagulation continues,
Ca2+ is also involved in forming prothrombin activator and in the
hydrolysis of fibrinogen by thrombin, ultimately leading to blood
clotting and thrombus formation, which is vital for hemostasis. In
addition to their role in coagulation, calcium ions are also critical
in hormone secretion from numerous endocrine cells. For instance,
the secretion of insulin from pancreatic β-cells is closely linked
to calcium ions. When blood glucose levels rise, glucose enters
the pancreatic β-cells, resulting in an increased ATP/ADP ratio
through various metabolic processes (Hoang Do and Thorn, 2015;
Fletcher et al., 2018; Ma et al., 2019a; Gil-Rivera et al., 2021). This
change causes potassium ion channels on the cell membrane to
close, leading to depolarization of themembrane.Thedepolarization
then activates voltage-gated calcium ion channels, allowing Ca2+ to
flow into the cells, which raises the intracellular Ca2+ concentration
(Enklaar et al., 2010; Bawa and Abbott, 2011; Fridlyand and
Phillipson, 2011; Groschner et al., 2014; Fedlaoui et al., 2025). This
increase triggers the fusion of insulin secretion granules with the
cell membrane, releasing insulin into the extracellular space and
helping to regulate blood glucose levels. Furthermore, calcium ions
also play a role in the secretion of thyroid hormones from thyroid
cells and adrenaline from adrenal medullary cells, contributing to
the maintenance of internal environmental stability and normal
physiological functions by regulating these hormones’ secretion
(Braun et al., 2009; Uchida et al., 2011; Omar-Hmeadi and Idevall-
Hagren, 2021; Zhuang et al., 2023).

1.3 The role of calcium ions in brain
ischemic injury

1.3.1 Dynamic Changes of Calcium Ions in Brain
Cells During Cerebral Ischemia-reperfusion

During cerebral ischemia-reperfusion, calcium ions undergo
significant fluctuations in various types of brain cells (Figure 1)
(Wang et al., 2013; Sharma et al., 2024a; Sharma et al., 2024b).
Research indicates that under ischemic conditions, there is a
marked increase in calcium ion concentration in both neurons
and glial cells, with this calcium overload being a critical factor

contributing to cell death (Yan et al., 2012; Lee et al., 2013).
Specifically, ischemia activates T-type calcium channels, leading
to a swift accumulation of intracellular calcium ions, which in
turn causes excitotoxicity and apoptosis (Park et al., 2013; Liu and
Sang, 2024). When blood flow is restored during the reperfusion
phase, the influx of calcium ions intensifies, particularly in neurons,
resulting in even greater cell damage. Furthermore, glial cells
also experience notable changes in calcium ion levels during
ischemia-reperfusion, and these fluctuations not only impact glial
cell function but may also affect the survival of nearby neurons
through intercellular signaling. Consequently, managing calcium
ion homeostasis, particularly in the acute phase of ischemia-
reperfusion, could offer new therapeutic avenues for protecting
brain cells (Fang et al., 2022; Yaghoobi et al., 2024).

1.3.2 Calcium ion imbalance and cell injury
Under normal physiological conditions, nerve cells maintain a

delicate balance of intracellular calcium ions through specialized
ion channels and pumps located on their membranes, ensuring
that calcium ion concentrations remain very low (Fang et al., 2022;
Song et al., 2024). However, during cerebral ischemia, a disruption
in energy metabolism leads to a rapid decline in intracellular ATP
levels, which impairs the function of ATP-dependent ion pumps,
such as the sodium-potassium pump (Na+-K+-ATPase) and the
calcium pump (Ca2+-ATPase) (Zhang et al., 2014; Milbourn et al.,
2017; Zaretsky and Zaretskaia, 2020). This impairment prevents the
effective removal of Na+ from the cell, resulting in an influx of
extracellular Ca2+ driven by concentration and electrical gradients.
Additionally, ischemia induces depolarization of the cell membrane,
which activates voltage-gated calcium channels, further increasing
the influx of Ca2+(Hirabayashi et al., 2016; Baev et al., 2017).
Moreover, ischemic conditions can trigger the release of Ca2+ from
intracellular stores, such as the endoplasmic reticulum, worsening
the situation by contributing to intracellular calcium overload. This
overload can directly harm cells, as excessively high levels of calcium
ions increase the permeability of the cell membrane (Hu et al.,
2015; Ľupták and Hroudová, 2019). This increased permeability
allows intracellular substances to leak out while permitting harmful
extracellular substances to enter, thereby disrupting the cell’s
normal structure and function. Furthermore, excessive intracellular
calcium can lead to mitochondria absorbing too much Ca2+, which
disrupts their normal operations. This interference results in a
decrease in mitochondrial membrane potential, energy metabolism
disturbances, and an increase in the production of reactive oxygen
species (ROS). Since mitochondria serve as the cell’s energy
factories, their dysfunction significantly exacerbates cell injury and
can ultimately lead to cell death (Yonutas et al., 2016; Vekaria et al.,
2017; Chang and Zou, 2025; Iba et al., 2025).

1.3.3 Activation of intracellular signaling
pathways

When the concentration of calcium ions inside cells rises, it
triggers a cascade of intracellular signaling pathways, with the
activation of phospholipases, proteases, and nucleases playing a
crucial role in causing cell damage. Calcium ions can activate
specific phospholipases, including phospholipase A2 (PLA2) and
phospholipase C (PLC). Once PLA2 is activated, it breaks
down phospholipids in the cell membrane, resulting in the

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1585758
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Li et al. 10.3389/fmolb.2025.1585758

FIGURE 1
Dynamic Changes of Calcium Ions in Brain Cells During Cerebral Ischemia-Reperfusion. (A) During the Ischemic Phase. Due to energy depletion, the
dysfunction of ion pumps on the cell membrane leads to intracellular sodium ion (Na+) accumulation. This triggers the reverse operation of the
sodium-calcium exchanger (NCX), resulting in a massive influx of calcium ions (Ca2+). Additionally, the opening of voltage-gated calcium channels
(VGCCs) and the release of intracellular calcium stores (e.g., the endoplasmic reticulum, ER) further cause a sharp rise in cytosolic calcium concentration.
This activates a cascade of enzymes, such as proteases, phospholipases, and endonucleases, leading to structural damage and apoptosis. (B) During the
Early Reperfusion Phase (0–6 h). Calcium dysregulation may continue to worsen. Although reperfusion restores oxygen and nutrient supply, it also
induces mitochondrial dysfunction, further releasing calcium ions. The increased production of reactive oxygen species (ROS) disrupts cell membrane
integrity, exacerbating calcium influx. Concurrently, the inflammatory response is initiated, characterized by neutrophil infiltration and the release of
inflammatory cytokines, which may further disrupt calcium homeostasis. (C) In the Delayed Phase (24–72 h). Persistent calcium overload may lead to
prolonged opening of the mitochondrial permeability transition pore (mPTP), triggering apoptosis or necrosis. Simultaneously, the inflammatory response
intensifies, with activated glial cells releasing more inflammatory mediators, which may further destabilize calcium ion balance.
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production of arachidonic acid (AA) and lysophospholipids. AA,
an unsaturated fatty acid, can be further metabolized to create
inflammatory mediators like prostaglandins and leukotrienes,
which trigger inflammatory responses that lead to vasodilation,
increased permeability, and the infiltration of leukocytes, ultimately
worsening brain tissue damage (McHowat and Creer, 2004).
Additionally, lysophospholipids are highly cytotoxic; they can
compromise the structure and function of the cell membrane,
reducing its stability, causing the loss of intracellular substances,
and further disrupting the normal physiological functions of the
cell. When PLC is activated, it hydrolyzes phosphatidylinositol-
4,5-bisphosphate (PIP2) in the cell membrane into diacylglycerol
(DAG) and inositol trisphosphate (IP3). IP3 binds to receptors
on the endoplasmic reticulum, promoting the release of stored
calcium ions (Ca2+), which exacerbates the overload of intracellular
calcium.Meanwhile, DAG activates PKC, a serine/threonine protein
kinase that phosphorylates various substrate proteins and is
involved in processes such as cell proliferation, differentiation,
and apoptosis (Touyz and Schiffrin, 2001; O'Neill et al., 2003). In
the context of brain ischemia-reperfusion injury, excessive PKC
activation can disrupt intracellular signaling pathways, leading to
a series of pathophysiological changes that promote inflammatory
responses, increase oxidative stress, and induce cell apoptosis,
thereby intensifying neuronal damage.

Calcium ions play a crucial role in activating proteases,
notably calpain, which is a calcium-dependent cysteine protease.
Under normal conditions, calpain’s activity is tightly regulated;
however, when there is an overload of intracellular calcium, calpain
becomes excessively activated. This overactivation allows calpain to
hydrolyze various proteins within the cell, including cytoskeletal
proteins, membrane proteins, and enzyme proteins. The hydrolysis
of cytoskeletal proteins can lead to significant changes in cell
shape and the destruction of the cytoskeletal structure, which
in turn affects the cell’s normal functions and stability (Romo-
Mancillas et al., 2019). Additionally, the hydrolysis of membrane
proteins can compromise the integrity and functionality of the
cell membrane, increasing its permeability. This change can cause
the loss of intracellular substances and allow harmful external
substances to enter the cell. Furthermore, when enzyme proteins
are hydrolyzed, it can result in the loss of activity of various
enzymes, disrupting the cell’s metabolic and signaling processes,
ultimately leading to cell damage and death. Similarly, calcium
ions can activate nucleases, such as endonucleases. In the event
of intracellular calcium overload, endonucleases become activated
and can cleave DNA, resulting in DNA strand breaks. Since DNA
carries the genetic information of cells, any damage to it can lead
to abnormal gene expression, which disrupts normal physiological
functions and the cell’s ability to proliferate and differentiate. Severe
DNA damage can even trigger the apoptotic program, culminating
in cell death (Matsunaga et al., 2009).

1.3.4 The relationship between free radicals and
calcium

The interaction between free radicals and calcium ions in cells
plays a crucial role in various pathological processes, particularly in
conditions like CIRI. Free radicals, which include reactive oxygen
species (ROS) and reactive nitrogen species (RNS), are highly
reactive molecules capable of damaging cell membranes, proteins,

and DNA, ultimately impairing cellular structure and function
(Cheung, 2003; Valko et al., 2007). Calcium ions serve as vital
intracellular second messengers that regulate numerous cellular
functions, such as muscle contraction, nerve conduction, and cell
division (Bracci et al., 2002). Under normal circumstances, calcium
ion concentrations within cells are carefully controlled to ensure
cellular balance. However, during pathological events like ischemia-
reperfusion injury, the overproduction of free radicals can lead to
lipid peroxidation of cell membranes (Scatena, 2012; Chen et al.,
2022a).This process compromises the integrity of the cellmembrane
and disrupts the normal regulatory mechanisms governing calcium
ions. As a result, there can be an excessive influx of calcium ions,
leading to an abnormal increase in intracellular calcium levels. This
surge triggers a cascade of detrimental cellular responses, including
mitochondrial dysfunction, altered enzyme activity, and damage to
the cytoskeleton (Prasad Panda and Kesharwani, 2023).

Calcium overload can lead to the production of free radicals,
creating a harmful cycle. For instance, when calcium ions are
elevated, they can activate specific enzymes like phospholipases
and proteases (Adalbert et al., 2002; García-Rivas and Torre-
Amione, 2009).The activation of these enzymes results in additional
cellular damage and an increase in free radical production.
Additionally, calcium ions can directly influence mitochondria,
disrupting their electron transport chain and further enhancing
free radical generation. Consequently, the interplay between free
radicals and calcium ions is mutually reinforcing, with both
contributing to the processes of cellular injury and death in a
synergistic manner (Sun et al., 2015).

1.3.5 Inflammatory response and immune
regulation

Calcium ions are crucial in activating inflammatory cells and
releasing inflammatory mediators, which significantly influence
the inflammatory response during CIRI (Mabon et al., 2000;
Hernandez Pichardo et al., 2023). In this context, inflammatory cells
like neutrophils, monocytes, and macrophages become activated
and gather at the injury site. Their activation is closely linked
to calcium ions. When these cells encounter conditions such as
ischemia, hypoxia, and oxidative stress, the ion channels in their
membranes undergo changes, resulting in an increased influx of
calcium ions (Kaufmann et al., 2022; Alizadehasl et al., 2024).
This rise in intracellular calcium concentration triggers a cascade
of signaling pathways that enhance the activation and function
of these inflammatory cells. For instance, in neutrophils, the
influx of calcium ions activates pathways like PKC and mitogen-
activated protein kinase (MAPK), leading to the expression and
release of various inflammatory mediators, including TNF-α, IL-
1β, and IL-6. TNF-α is a significant pro-inflammatory cytokine that
can activate other inflammatory cells, intensify the inflammatory
response, and induce apoptosis, which directly damages nerve
cells. Similarly, IL-1β and IL-6 exhibit strong pro-inflammatory
effects; they promote the chemotaxis, adhesion, and activation
of inflammatory cells, worsening the inflammatory response and
contributing to further brain tissue damage (Buck and Pamenter,
2006; Chen et al., 2010; Beermann et al., 2015).

Calcium ions play a crucial role in regulating the movement
and adhesion of inflammatory cells. On the surface of these
cells, various adhesion molecules, including integrins and selectins,
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are present, and their expression and activity are influenced by
calcium ions (Sayah et al., 2003; Chang et al., 2010). When the
concentration of intracellular calcium ions rises, it enhances the
expression and activation of these adhesion molecules, facilitating
the adhesion of inflammatory cells to the vascular endothelial cells
(Shen et al., 2001; Hiraiwa, 2003; Kaczmarek et al., 2005). This
process allows them to traverse the vessel wall and infiltrate brain
tissue, which can amplify the inflammatory response. Furthermore,
calcium ions also impact the phagocytic capabilities of inflammatory
cells, boosting their ability to engulf pathogens and dead tissue,
which may inadvertently harm normal tissue. In the context of
immune regulation, calcium ions are essential for the activation and
functional regulation of immune cells, particularly T lymphocytes
and B lymphocytes, which are vital components of the immune
system. Their activation and proliferation depend on calcium
ions. In cases of CIRI, the abnormal activation of immune cells
can lead to dysregulated immune responses, worsening damage
to brain tissue. Calcium ions modulate the function of these
immune cells by influencing their signaling pathways, thereby
playing a significant role in the inflammatory response and immune
regulation during CIRI (Brown, 2001; Yilmaz and Granger, 2010;
Barkauskas et al., 2013; Sala et al., 2023).

1.3.6 Induction of cell apoptosis and necrosis
Calcium ions play a significant role in inducing cell apoptosis

and necrosis during CIRI through various mechanisms, with
the mitochondrial pathway and endoplasmic reticulum stress
being two crucial pathways. Mitochondria are central to the
process of apoptosis, and an overload of calcium is a key factor
that leads to mitochondrial dysfunction and the initiation of
apoptosis (Kumar et al., 2012; Li et al., 2022a; Shen and Zhan,
2022). During cerebral ischemia, there is an accumulation of
intracellular calcium, resulting in excessive calcium ions entering
the mitochondria (Kristián, 2004; Tuo et al., 2022; Rahi and
Kaundal, 2024). This overload of calcium ions causes a decrease
in mitochondrial membrane potential and the opening of the
mitochondrial permeability transition pore (mPTP), which is
a non-specific channel situated between the inner and outer
mitochondrial membranes (He et al., 2008; Fedotcheva and
Fedotcheva, 2021; Endlicher et al., 2023). Under normal conditions,
the mPTP remains closed, but it opens in response to stimuli
such as calcium overload and oxidative stress. Once the mPTP
opens, the mitochondrial membrane potential is compromised,
respiratory chain function is impaired,ATP synthesis is reduced, and
cellular energymetabolism is disrupted. Additionally, mitochondria
release various pro-apoptotic factors, including cytochrome C (Cyt
C), apoptosis-inducing factor (AIF), and endonuclease G (Endo
G). When Cyt C is released into the cytoplasm, it binds to
apoptosome-activating factor-1 (Apaf-1) and caspase-9 (Caspase-
9) to form the apoptosome, which activates Caspase-9. This
activation subsequently triggers downstream effector caspases, such
as Caspase-3, leading to a cascade reaction of apoptosis and
ultimately resulting in cell death. Meanwhile, AIF and Endo G
can directly enter the nucleus, causing DNA fragmentation and
chromatin condensation, which further promotes the occurrence of
apoptosis.

The endoplasmic reticulum (ER) serves as a crucial site for
intracellular calcium storage and protein synthesis, playing a vital

role in maintaining calcium balance within cells and ensuring the
proper folding and modification of proteins (Lu et al., 2022). In
cases of CIRI, an overload of intracellular calcium can trigger stress
within the endoplasmic reticulum (Hetz et al., 2020; Chen et al.,
2022b; Wu et al., 2022). This stress occurs when the ER’s ability
to process protein folding and modification is compromised,
resulting in the accumulation of unfolded or misfolded proteins.
Such a buildup initiates a series of stress responses aimed at
restoring normal function (Shen et al., 2004; Wang and Kaufman,
2016; Chong et al., 2017). When the ER experiences stress, it
activates the unfolded protein response (UPR) to help regain its
functionality. The UPR manages cellular physiological processes
through three main signaling pathways: the protein kinase R-
like endoplasmic reticulum kinase (PERK) pathway, the inositol-
requiring enzyme 1 (IRE1) pathway, and the activating transcription
factor 6 (ATF6) pathway (Gupta et al., 2015; Wang et al., 2021a;
Wang et al., 2021b; Ong et al., 2024a). However, in situations
where calcium overload causes ER stress, excessive activation of
these pathways can lead to cell death or apoptosis (Guan et al.,
2014; Kim et al., 2015; Prentice et al., 2015). For instance, the
PERK pathway, once activated, phosphorylates eukaryotic initiation
factor 2α (eIF2α), which inhibits protein synthesis and helps reduce
the accumulation of unfolded proteins (Iwawaki and Akai, 2006;
Cui et al., 2011; Teske et al., 2011). If ER stress persists, it results in
the upregulation of transcription factors like ATF4 and CHOP, with
CHOPpromoting the expression of pro-apoptotic genes such as Bim
and PUMA.Theproteins produced by these pro-apoptotic genes can
either activate themitochondrial apoptotic pathway or directly affect
the cell membrane and organelles, ultimately leading to apoptosis.

Upon activation of the IRE1 pathway, it cleaves the mRNA of
X-box binding protein 1 (XBP1), resulting in the production of the
active XBP1s protein, which plays a crucial role in the adaptive
response to endoplasmic reticulum (ER) stress (Cross et al., 2012;
Jheng et al., 2012; Xu et al., 2021). When ER stress is severe, IRE1
can also trigger signaling pathways like c-Jun N-terminal kinase
(JNK).This pathway can phosphorylate pro-apoptotic proteins such
as Bax and Bak, which belong to the Bcl-2 family. The activation
of these proteins leads to their insertion into the mitochondrial
membrane, increasing its permeability. This change allows pro-
apoptotic factors to be released, ultimately inducing apoptosis.
Beyond the mitochondrial pathway and ER stress, calcium ions can
also promote apoptosis and necrosis through various mechanisms,
including the activation of death receptor pathways and the
regulation of intracellular redox states. In the context of CIRI,
these processes are interconnected and collaborate, resulting in the
apoptosis and necrosis of nerve cells, which further aggravates brain
tissue damage (Ozbal et al., 2008; Guo and Lu, 2024).

1.3.7 Coagulation system and calcium
Ischemia-reperfusion injury can cause significant damage to

endothelial cells, which leads to the exposure of subendothelial
collagen and the activation of the coagulation cascade. This process
results in the upregulation of tissue factor (TF), which activates
the extrinsic coagulation pathway, leading to increased thrombin
generation, fibrin deposition, and the formation of microthrombi.
When the coagulation system is excessively activated, it can result in
thrombosis within themicrovasculature, causing disturbances in the
microcirculation that further worsen tissue ischemia and hypoxia,
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creating a vicious cycle (Yu et al., 2018; Yang et al., 2019). Calcium
ions are crucial cofactors in the coagulation cascade, necessary for
the activation of several coagulation factors, including factor IX,
X, and VII; without calcium ions, the coagulation process cannot
function properly. Additionally, calcium ions are vital for platelet
activation and aggregation. During ischemia-reperfusion, there is
an influx of calcium ions that promotes platelet activation and the
release of pro-coagulant substances like ADP and thromboxane
A2, which further intensifies coagulation and the formation of
microthrombi (Perino, 2020). An overload of calcium can lead to
endothelial cell dysfunction, increased vascular permeability, and
the release of tissue factor, thereby activating the coagulation system.
In summary, during ischemia-reperfusion injury, calcium ions and
the coagulation system interact in complex ways that exacerbate
tissue damage. Calcium ions enhance the activity of the coagulation
system by promoting cell injury, inflammatory responses, and
platelet activation, while the activation of the coagulation system
further aggravates calcium overload and tissue damage through the
formation ofmicrothrombi and inflammatory responses (Ding et al.,
2000; Aliotta et al., 2021; Yu et al., 2023).

1.3.8 The interplay of lipid rafts and calcium
signaling in brain ischemia-reperfusion injury

In cerebral ischemia,the interaction between lipid rafts and
calcium ions (Ca2+) significantly exacerbates ischemic injury by
regulating neuroinflammatory signaling, cell death pathways, and
blood-brain barrier disruption. The triggers of lipid raft and
calcium signaling dysregulation in cerebral ischemia include energy
metabolism crisis and oxidative stress. Ischemia-induced ATP
depletion leads to dysfunction of Na+/K+-ATPase and Ca2+-
ATPase, resulting in intracellular calcium overload (Capozzi et al.,
2023; Riitano et al., 2023). The stability of lipid rafts is also
impaired, as disrupted cholesterol metabolism (e.g., sphingomyelin
hydrolysis) causes structural disintegration of lipid rafts, affecting
the localization of membrane receptors and calcium channels
(de Almeida et al., 2003; Capozzi et al., 2023). Simultaneously,
oxidative stress promotes free radical attack on unsaturated
fatty acids and cholesterol within lipid rafts, altering membrane
fluidity and inducing hyperactivation of calcium influx channels
such as NMDA receptors and TRPM2 (Stulnig et al., 2001;
Díaz et al., 2024; Ong et al., 2024b). Furthermore, lipid rafts
and calcium synergistically drive ischemic neuroinflammation:
DAMPs (e.g., HMGB1, ATP) released post-ischemia cluster TLR4
in lipid rafts, activating the TLR4/MyD88/NF-κB pathway to
trigger inflammatory signaling. Calcium signaling enhances NF-
κB nuclear translocation via STIM1/Orai1 and TRPM7, amplifying
the release of TNF-α and IL-1β (Kong et al., 2016; Capozzi et al.,
2023). Experimental studies demonstrate that cholesterol depletion
(e.g., using statins) or calcium antagonists (e.g., nimodipine) can
inhibit microglial activation. Additionally, calcium influx through
P2X7 receptors or mitochondrial calcium overload activates the
NLRP3 inflammasome, driving IL-1β maturation, while lipid rafts
provide a platform for NLRP3 assembly. Post-ischemic glutamate
surges activate NMDA receptors clustered in lipid rafts, causing
lethal calcium influx and neuronal death, and interventions
targeting raft cholesterol (e.g., statins) reduce NMDA receptor
hyperactivation (Besshoh et al., 2005; Miguel, 2025). Blood-brain
barrier disruption involves calcium-dependentMMP-9 activation in

lipid rafts, which degrades tight junction proteins (e.g., occludin),
while VEGF induces calcium oscillations via VEGFR2 in lipid
rafts, increasing vascular permeability (Lochhead et al., 2010;
Muthusamy et al., 2014). Key molecular mechanisms involve
positive feedback loops: ischemia-triggered DAMPs activate P2X7
receptors in lipid rafts, increasing calcium influx. Calcium-
dependent enzymes further destabilize membranes, exacerbate
oxidative stress, and amplify lipid raft damage. Inflammatory
cytokines also feedback to upregulate TLR and calcium channel
expression in rafts. Mitochondrial calcium overload generates ROS,
oxidizing lipid rafts and opening more calcium channels, forming
a vicious cycle. Therapeutic strategies targeting lipid rafts (e.g.,
statins, sphingomyelinase inhibitors) stabilize rafts and protect
the blood-brain barrier, while SOCE inhibitors and TRP channel
antagonists show potential in alleviating microglial inflammation.
Combination therapies (e.g., antioxidants with calcium regulators)
exhibit neuroprotective efficacy in clinical trials. Future research
should focus on dynamic imaging of lipid raft-calcium interactions
and cell-specific targeting (e.g., microglial lipid raft signaling)
to develop precise therapeutic interventions (Silva et al., 2009;
Thorstenberg et al., 2020; Capozzi et al., 2023; Zhong et al., 2024).

1.3.9 Heparanase and calcium
Heparanase, an enzyme that cleaves heparan sulfate

proteoglycans, has been implicated in various pathological
processes, including endothelial damage (Rops et al., 2004;
Pape et al., 2021). This damage is often characterized by increased
permeability and inflammation, which can significantly affect
vascular integrity and function (Wang et al., 2020; Wang et al.,
2021a; Wakasugi et al., 2024). Recent studies have suggested
that calcium ions (Ca2+) play a critical role in modulating the
effects of heparanase on endothelial cells (Matzner et al., 1990;
Godder et al., 1991; Zhang et al., 2013).

Calcium ions are essential for numerous cellular processes,
including signal transduction, gene expression, and cell adhesion
(Denhardt et al., 1995; Tran et al., 2018). In the context of endothelial
damage, Ca2+ can influence the activity of heparanase through
various mechanisms. For instance, elevated intracellular calcium
levels have been shown to activate certain signaling pathways that
exacerbate endothelial dysfunction (Perrier et al., 2009; Seeley et al.,
2013; Lu et al., 2021).These pathwaysmay lead to the upregulation of
heparanase expression or activity, thereby contributing to increased
endothelial permeability and inflammatio (Wang et al., 2016;
Lukasz et al., 2017; Xu et al., 2017).

Moreover, calcium ions can also affect the structural integrity
of endothelial cell junctions. The disruption of these junctions,
often mediated by heparanase, facilitates the extravasation of
leukocytes and plasma proteins, further aggravating tissue injury.
Understanding the interplay between heparanase and calcium ions
is crucial, as itmay provide insights into potential therapeutic targets
for conditions characterized by endothelial dysfunction, such as
atherosclerosis and diabetic vascular complications. In conclusion,
the association between heparanase and endothelial damage is
complex and is potentially modulated by calcium ions. Further
research is warranted to elucidate the precise mechanisms involved
and to explore the therapeutic implications of targeting this pathway
in vascular diseases.
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1.3.10 Calcium and wingless/integrated (WNT)
signaling pathway

TheWNT signaling pathway plays a crucial role in cell biology,
particularly in processes such as cell proliferation, differentiation,
and migration (Zhao et al., 2022a). As members of the low-
density lipoprotein receptor-related protein family, LRP6 and LRP8
are involved in the regulation of the WNT signaling pathway
(Roslan et al., 2019). LRP6 is considered one of the core receptors
of the WNT signaling pathway; its activation can promote the
accumulation of β-catenin, thereby regulating the expression
of downstream genes (Zhao et al., 2022b). In contrast, LRP8
plays an auxiliary role in WNT signal transduction, potentially
influencing cellular behavior by modulating intracellular calcium
ion concentrations.

Research indicates that the activation of WNT signaling can
lead to an increase in intracellular calcium ion concentration,
potentially through the activation of the phosphatidylinositol
metabolic pathway (Slusarski et al., 1997; Gong et al., 2017). Calcium
ions, as signaling molecules, can affect various cellular processes,
including cell proliferation, migration, and differentiation.
Therefore, the activation of LRP6 not only participates in WNT
signal transduction but may also influence cellular functions by
modulating calcium ion concentrations (Berendsen et al., 2011;
Ramachandran et al., 2018; Zhao et al., 2022a).

Furthermore, calcium ions can also provide feedback regulation
on the activity of the WNT pathway by affecting intracellular
signaling molecules, thereby further enhancing or inhibiting
the transmission of WNT signals (Kühl, 2004; Slusarski and
Pelegri, 2007; Lu and Carson, 2009).This complex interplay suggests
that LRP8 and LRP6 not only function as receptors in the WNT
signaling pathway but are also closely related to the dynamic changes
of calcium ions.

Therefore, future research could further explore the specific
mechanisms by which LRP8 and LRP6 regulate calcium ion
concentrations in the WNT signaling pathway and the biological
significance of this regulation in different physiological and
pathological states. This will help us better understand the
multifunctional roles of the WNT signaling pathway and its
implications in disease.

1.4 Treatment strategies related to calcium
ions

1.4.1 Application of calcium channel blockers
Calcium channel blockers are a group of medications that

specifically target calcium ion channels on cell membranes,
effectively preventing the entry of extracellular calcium ions and
consequently lowering the concentration of intracellular calcium
ions (Makioka et al., 2001; Frishman, 2007; Makani et al., 2011;
Nimmrich and Eckert, 2013; Takenaka et al., 2013; Qiu et al.,
2023). These drugs hold considerable promise in treating CIRI.
Among them, nimodipine is a widely used dihydropyridine
calcium channel blocker in clinical settings, recognized for its
high lipophilicity, which enables it to cross the blood-brain
barrier with ease (Monzani et al., 2015). This property allows
nimodipine to selectively dilate cerebral blood vessels and enhance
cerebral blood flow, thereby offering protective benefits to brain

tissue affected by ischemia (Hu et al., 2003; Xu et al., 2008).
The drug works mainly by blocking L-type calcium channels
located on the membranes of smooth muscle cells in the cerebral
vasculature (Chaplin and Amberg, 2012). This blockade inhibits
the influx of calcium ions, resulting in the relaxation of vascular
smooth muscle and subsequent vasodilation, which improves blood
circulation in the brain and helps mitigate the effects of CIRI. In
cases of cerebral vasospasm following subarachnoid hemorrhage,
nimodipine has proven effective in alleviating vascular spasms,
reducing neurological damage, and enhancing patient outcomes
(Kiser, 2014). Numerous clinical studies have demonstrated that
administering nimodipine early can significantly lower both
disability and mortality rates in patients who have experienced
subarachnoid hemorrhage (de Oliveira Manoel and Macdonald,
2018; Dayyani et al., 2022; Hao et al., 2022).

Flunarizine, also known as Flunarizine Hydrochloride, is a
selective calcium ion antagonist that effectively dilates capillaries
and helps prevent damage caused by elevated intracellular calcium
ions during ischemia and hypoxia. By blocking calcium channels
on cell membranes, flunarizine reduces calcium ion influx, which
inhibits the contraction of vascular smoothmuscle, leading to blood
vessel dilation and increased cerebral blood flow. Additionally, it
can inhibit platelet aggregation, lower blood viscosity, and enhance
microcirculation, demonstrating significant efficacy for symptoms
arising from insufficient blood supply to the vertebrobasilar artery
and migraines. In cases of CIRI, flunarizine has been shown to
alleviate neuronal damage and improve neurological function. For
instance, a study involving patients with acute cerebral infarction
revealed that those treated with flunarizine experienced a notable
decrease in neurological deficit scores and an improvement in their
daily living abilities. However, while calcium channel blockers like
flunarizine have shown some effectiveness in treating CIRI, they
also come with limitations. Some patients may experience side
effects such as dizziness, headaches, facial flushing, palpitations,
and hypotension, which can impact patient compliance and overall
treatment outcomes. Furthermore, the therapeutic effects of calcium
channel blockers may be limited in cases where brain tissue
has already sustained severe cell damage and death. It is also
important to note that different types of calcium channel blockers
can vary in their efficacy and safety profiles, necessitating that
clinicians carefully select appropriate medications and dosages
based on the individual patient’s condition (Liu et al., 2000;
Berger et al., 2002; Gulati et al., 2015).

The perioperative management value of calcium channel
blockers (CCBs), such as diltiazem, in carotid endarterectomy
(CEA) and cardiopulmonary bypass surgery has garnered
increasing attention, particularly in high-risk patients with
comorbid stroke. Studies indicate that perioperative use of
CCBs can effectively reduce the incidence of postoperative
complications, including cardiac events and neurocognitive deficits
(Park et al., 2009; Haley et al., 2021).

In cardiopulmonary bypass surgery, monitoring calcium levels
is a critical step to prevent neurocognitive deficits. Calcium stability
is essential for maintaining normal neurological function, especially
whenmanaging conditions thatmay lead to cerebral hypoperfusion.
Intraoperative calcium monitoring enables timely identification
of calcium fluctuations, allowing for adjustments in medication
strategies to ensure stable cerebral blood flow (Conrad et al., 2013).
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TABLE 1 Comparison of different calcium channel blockers.

Drug Target Mechanism of action Advantages Limitations

Nimodipine L-type calcium channels Inhibits calcium influx, dilates
cerebral blood vessels

Reduces incidence of
vasospasm

Hypotension, dizziness

Flunarizine Glial cell calcium channels Inhibits calcium overload,
antioxidant effects

Improves neurological
function scores

Long-term use causes
extrapyramidal reactions

Esmolol Mitochondrial calcium pump Promotes calcium efflux,
protects mitochondria

Strong antioxidant activity Risk of blood pressure
fluctuations

Diltiazem L-type calcium channels Inhibits calcium influx, dilates
peripheral blood vessels

Effectively controls blood
pressure, reduces cardiac load

Bradycardia, hypotension,
constipation

Additionally, perioperative hypertension control is recognized as a
key strategy for mitigating stroke risk. Rational use of CCBs may
help achieve this goal to some extent (Anderson et al., 2007).

For postoperative monitoring of CEA patients, potential
side effects of CCBs—such as hypotension and heart rate
variability—must be closely observed, as these may impact recovery.
Furthermore, research highlights that perioperative drug selection
should account for the patient’s overall health status and tolerance to
CCBs to optimize therapeutic outcomes (Aydin and Aydin, 2019).
In summary, combining perioperative CCB administration with
calcium monitoring provides a safer and more effective treatment
strategy for stroke patients, thereby reducing postoperative
complications and improving overall prognosis (Table 1).

1.4.2 Drug development for regulating
intracellular calcium homeostasis

With the in-depth study of how calcium ions contribute to brain
ischemia-reperfusion injury, researchers are increasingly focusing
on developing drugs that can effectively regulate intracellular
calcium homeostasis (Mizuno et al., 2013; Honarnejad et al., 2014;
Ge et al., 2022). This area of research is gaining momentum, as new
drug candidates are being explored, offering fresh hope for treating
brain ischemia-reperfusion injury (Lv et al., 2020; Li et al., 2022b;
Luo et al., 2024). One promising strategy involves creating drugs
that directly influence the release and uptake of calcium ions from
the cell’s internal stores, particularly the endoplasmic reticulum,
which serves as a crucial reservoir for calcium (Verkhratsky and
Petersen, 2002; Stepanova et al., 2005; Kuum et al., 2015). By
targeting calcium ion channels and transport proteins located on the
endoplasmic reticulum, it is possible to control the flow of calcium
ions, thereby maintaining a balanced intracellular environment.
Recent studies have identified certain small molecular compounds
that specifically interact with inositol trisphosphate (IP3) receptors
on the endoplasmic reticulum, modulating their calcium release
and presenting potential therapeutic options for brain ischemia-
reperfusion injury. Another strategy focuses on regulating the
function of ion exchangers and pumps on the cell membrane, such
as the sodium-calcium exchanger (NCX) and the calcium pump
(Ca2+-ATPase), which are vital for maintaining calcium balance
within cells. By enhancing the activity of these proteins, particularly
the calcium pump, it is possible to promote the removal of excess
intracellular calcium, thus alleviating calciumoverload (Garcia et al.,

2001; Strehler, 2015; Xie et al., 2020). Some drugs have shown
promise in boosting the activity of the calcium pump, leading to
increased calciumuptake and a subsequent reduction in cytoplasmic
calcium concentration, whichmay helpmitigate the cellular damage
associated with calcium overload.

Certain drugs known for their antioxidant and anti-
inflammatory properties have been discovered to play a role
in regulating intracellular calcium levels indirectly (Du et al.,
2016; Malik et al., 2020; Mathew and Panonnummal, 2021).
In cases of brain ischemia-reperfusion injury, oxidative stress
and inflammation can disrupt the balance of calcium within
cells. However, the use of antioxidants and anti-inflammatory
medications can help mitigate these stressors, thereby offering
protection to intracellular calcium homeostasis. A notable
example is melatonin, an endogenous hormone recognized for
its antioxidant and anti-inflammatory effects. Research indicates
that melatonin can help alleviate acute necrotizing pancreatitis by
influencing calcium balance within cells. This may occur through
mechanisms such as directly inhibiting the entry of calcium ions
or facilitating the release of calcium from within cells, which
in turn reduces the harmful effects associated with elevated
intracellular calcium levels (Fatherazi et al., 2003; Sun et al., 2012;
Abdoul-Azize et al., 2017). At present, many of these calcium-
regulating drugs remain in the research phase. While some
promising outcomes have been observed in animal studies, there
is still a significant gap before these treatments can be applied
in clinical settings (Zgavc et al., 2011; van Hout et al., 2016;
Stanton et al., 2024). The drug development process necessitates
further exploration into the mechanisms of action, safety, and
effectiveness of these medications, along with addressing challenges
related to drug targeting and pharmacokinetics to enhance their
therapeutic potential and safety profiles (Hemperly et al., 2018;
Vermeire et al., 2023; Viscusi et al., 2024).

1.4.3 Combined treatment strategies
Theuse of calcium channel blockers or other calcium-regulating

drugs alone may present certain limitations when addressing CIRI,
(Sobrado et al., 2003). Recently, there has been a growing interest
in combined treatment strategies, as pairing calcium channel
blockers with antioxidants, anti-inflammatory drugs, and other
agents can harness the synergistic effects of these medications to
improve therapeutic outcomes.The combination of calcium channel
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blockers and antioxidants offers notable benefits (Miljanich and
Ramachandran, 1995; Vogel, 2006; Farah and Shurtz-Swirski, 2008).
In cases of CIRI, oxidative stress and calcium overload are two
critical mechanisms of injury that interact, creating a vicious cycle
that worsens damage to brain tissue. Calcium channel blockers help
mitigate calcium overload by inhibiting the influx of calcium ions,
while antioxidantswork to neutralize excess free radicals in the body,
thereby reducing oxidative stress damage. By using both treatments
together, it is possible to simultaneously address these two injury
mechanisms, leading to more effective protection of brain tissue
(Du et al., 2009; Fang et al., 2020; Yang et al., 2022). Research
has demonstrated that the combination of nimodipine and vitamin
E significantly reduces neurological deficits in rats suffering from
CIRI, lowers MDA levels in brain tissue, and enhances SOD activity,
suggesting that combined treatment can boost antioxidant capacity
and diminish oxidative stress damage (Rael et al., 2019).

The combination of calcium channel blockers and anti-
inflammatory drugs demonstrates promising therapeutic effects,
particularly in the context of CIRI, where the inflammatory
response significantly contributes to nerve cell damage and death.
Calcium channel blockers enhance cerebral blood circulation and
help alleviate ischemic-hypoxic damage, while anti-inflammatory
drugs work to inhibit the activation of inflammatory cells and the
release of inflammatory mediators, thereby reducing the overall
inflammatory response (Ma et al., 2019b; Fan and Lei, 2022).
When used together, these medications can address CIRI from
multiple perspectives. For instance, the pairing of nimodipine and
ibuprofen has been shown to decrease the levels of inflammatory
mediators like TNF-α and IL-1β in the brain tissue of rats suffering
from this condition, leading to a reduction in inflammation and
an improvement in neurological function (Detsi et al., 2007;
Wu et al., 2014). Beyond their combination with antioxidants
and anti-inflammatory agents, calcium channel blockers can also
be effectively paired with other types of medications, such as
neurotrophic factors and antiplatelet drugs. Neurotrophic factors
support the survival, growth, and differentiation of nerve cells, and
when combined with calcium channel blockers, they can facilitate
the repair and regeneration of damaged nerve cells. Similarly,
antiplatelet drugs help prevent thrombosis by inhibiting platelet
aggregation, and their use alongside calcium channel blockers can
enhance cerebral microcirculation, thereby reducing the risk of
CIRI. Ongoing research is focused on refining treatment protocols
that involve the combination of calcium channel blockers with
other drugs for the management of CIRI. In clinical settings,
it is essential for healthcare providers to thoughtfully select
combined treatment strategies tailored to the individual patient’s
condition to optimize therapeutic outcomes and improve prognosis
(Jiang et al., 2010; AbouAitah et al., 2021).

1.4.4 Other potential treatment methods
With the continuous advancement of medical technology,

emerging treatmentmethods like gene therapy and cell therapy have
demonstrated significant potential in regulating calcium ion-related
mechanisms, offering new hope for treating CIRI. Gene therapy
involves altering gene expression to treat diseases. In the context
of CIRI, it can target calcium ion-related signaling pathways and
proteins. By employing gene transfection technology to introduce
genes that encode calcium channel regulatory proteins into nerve

cells, itmay be possible tomodulate the function of calciumchannels
on the cell membrane. This modulation could reduce calcium ion
influx, thereby alleviating the damage caused by calcium overload in
the cells. Additionally, gene editing technology can repair or knock
out gene mutations that disrupt calcium homeostasis, addressing
the fundamental issue of intracellular calcium imbalance. Although
research on gene therapy for cerebral ischemia-reperfusion in
CIRI jury is still in the experimental phase and faces challenges
such as ensuring the safety and targeting of gene vectors and
regulating gene expression, it presents a promising avenue for future
treatments (Jin et al., 2001).

Cell therapy leverages the unique biological properties of cells
to repair damaged tissues and organs, showing significant promise
in the regulation of calcium ion-related mechanisms (Bigham et al.,
2024). Stem cells, known for their ability to self-renew and
differentiate into various cell types such as nerve cells and vascular
endothelial cells, play a crucial role in this process (Lin andGu, 2011;
Han et al., 2019; Liu et al., 2022).When stem cells are transplanted to
areas affected byCIRI, they can transform into nerve cells, effectively
replacing those that have been damaged and helping to restore
neural function (Li et al., 2025). Additionally, these stem cells secrete
a range of neurotrophic factors and cytokines that help modulate
the local microenvironment, promoting the survival and repair of
nerve cells (He et al., 2023; Zou et al., 2024). The neurotrophic
factors released by stem cells are particularly important as they
can influence calcium ion-related signaling pathways, enhance
intracellular calcium balance, and mitigate damage to nerve cells.
Currently, clinical trials exploring stem cell therapy for CIRI are
underway, and while some preliminary results have been promising,
there is still a need for further refinement of treatment protocols to
improve both efficacy and safety.

Emerging therapeutic technologies, including nanotechnology
and photodynamic therapy, are being investigated for their potential
to regulate calcium ion-related mechanisms and treat CIRI.
Nanotechnology enables the creation of nano-drug carriers that
can deliver medications directly to damaged brain tissue, which
enhances drug effectiveness while minimizing side effects (Du et al.,
2022). On the other hand, photodynamic therapy employs specific
wavelengths of light to activate photosensitizers, leading to the
production of reactive substances like singlet oxygen (Ding et al.,
2015; Sztandera et al., 2022; Saita and Kawasaki, 2023). This process
selectively targets and destroys diseased cells while also influencing
various physiological processes within those cells, particularly
calcium ion-related signaling pathways. Although these innovative
treatment methods are still in the early research phase, they open
up new avenues for understanding and addressing CIRI (He et al.,
2022; 2024; Lyu et al., 2024). As technology continues to advance
and research deepens, these approaches hold promise for improving
treatment outcomes for patients suffering from this condition
(Clemensen et al., 2007; Gorder et al., 2024; Schneider et al., 2024).

1.5 Research Outlook and challenges

1.5.1 In-depth study of mechanisms
While there is a growing understanding of the role of calcium

ions in CIRI, many areas remain unexplored and warrant further
investigation (Liu and Sang,2024). Future research could delve into
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the detailed analysis of specific signaling pathways, particularly by
clarifying themolecular events and regulatorymechanisms associated
with calcium ion-activated phospholipases, proteases, and nucleases
(Sharma et al., 2024a; Yaghoobi et al., 2024). Additionally, examining
the unique functions and interactions of different subtypes of calcium
ion channels in the context of CIRI could pave the way for the
development of more targeted therapeutic drugs. It is recognized that
variouscalciumionchannels, includingL-type,N-type,andT-type,are
involved in this injury, yet their individual mechanisms of action and
contributions at different pathological stages are not fully understood
(Gao et al., 2016; Sabek et al., 2025). Another critical area for future
researchistheidentificationofnewmoleculartargetsrelatedtocalcium
ions. The advancement of molecular biology technologies, such as
proteomicsandgeneediting,offerspowerful tools fordiscoveringthese
new targets. By utilizing these technologies, researchers can analyze
changes inproteinexpressionandmodificationduringCIRI,screenfor
potential molecular targets closely linked to calcium ion homeostasis,
and investigate their roles in the injury mechanism, ultimately laying
the groundwork for the development of innovative therapeutic drugs
(Piatek et al., 2018; Ji et al., 2021; Danaeifar and Najafi, 2024).

1.5.2 Development of new therapeutic drugs
Developing more effective and safer calcium ion-related

therapeutic drugs is a significant goal for future research (Yang et al.,
2013; Andres et al., 2015). One of the key strategies in this endeavor
is structure-based drug design, which involves analyzing the three-
dimensional structures of calcium ion channels and related proteins.
This analysis provides valuable insights into how drugs interact
with their targets, allowing researchers to design drug molecules
that exhibit greater affinity and specificity (Gandini et al., 2015;
Iranpour et al., 2021; Guo et al., 2024). By utilizing advanced
techniques such as X-ray crystallography and cryo-electron
microscopy to obtain high-precision structures of calcium ion
channels, researchers can engage in computer-aided drug design.
This process helps optimize the structure of drug molecules,
enhancing their selectivity and inhibitory activity toward targets
while also minimizing side effects. Additionally, high-throughput
screening technology plays a crucial role in the development of new
drugs (Mondal et al., 2010; Ozsvari et al., 2017; Kang et al., 2024). By
creating large-scale compound libraries and employing automated
experimental techniques alongside high-throughput detection
methods, researchers can quickly screen for compounds that
show activity against calcium ion-related targets. These promising
compounds can then undergo further structural optimization
and activity validation, paving the way for the discovery of new
drugs with potential clinical applications. Moreover, the application
of artificial intelligence and machine learning methodologies to
interpret and anticipate screening data can substantially improve
both the efficiency and success rates of the screening endeavors
(Dar et al., 2018; Tiwari et al., 2023; Kumar et al., 2025).

1.5.3 Clinical translation and application
Translating basic research findings into clinical treatment

methods presents a significant challenge today, primarily due to the

substantial gap between laboratory research and clinical practice.
This process involves multiple stages of validation and optimization,
transitioning from basic research to clinical trials and ultimately
to clinical application (Lippi et al., 2016; Jing and Zhu, 2023).
In clinical trials, it is crucial to control various factors strictly to
ensure the reliability and effectiveness of the research outcomes.The
considerable individual differences and complexities of conditions
in patients suffering from CIRI further complicate the development
of personalized treatment plans, which is a critical issue that must
be addressed during the clinical translation process (James et al.,
2015; Payne et al., 2019; Bendowska et al., 2022). To enhance
clinical translation, it is essential to foster collaboration between
basic and clinical research by establishingmultidisciplinary research
teams that include experts from neuroscience, pharmacology, and
clinical medicine. Conducting large-scale, multi-center clinical
trials is vital to verify the safety and effectiveness of new
therapeutic drugs and methods (Guo et al., 2023). Furthermore,
it is important to enhance training for clinical doctors to
improve their understanding and application of calcium ion-
related treatment strategies, ensuring that treatment plans are
implemented correctly (Dai et al., 2024a;Huang andYuan, 2024; Luo
et al., 2025).

2 Conclusion

Calcium ions play an indispensable role in the context of
brain ischemia-reperfusion injury, as their dysregulation triggers a
series of pathophysiological alterations that culminate in cellular
damage, the activation of diverse signaling pathways, inflammatory
responses, immune modulation, and the induction of apoptosis
and necrosis. These mechanisms profoundly affect the onset
and progression of brain ischemia-reperfusion injury. Presently,
therapeutic strategies that concentrate on calcium ion-related
mechanisms, such as the utilization of calcium channel blockers,
the design of agents aimed at modulating intracellular calcium
concentrations, and the investigation of combination therapies, have
demonstrated promise in addressing brain ischemia-reperfusion
injury to a certain degree. Furthermore, novel therapeutic methods,
including gene therapy and cell therapy, are emerging with potential
clinical applications. Nonetheless, it is imperative to recognize the
prevailing limitations in our comprehension of the role played by
calcium ions in brain ischemia-reperfusion injury.The advancement
of new therapeutic agents and their integration into clinical practice
encounter significant obstacles. Looking ahead, it is crucial to
conduct an in-depth exploration of the mechanisms associated with
calcium ions, pinpoint more effective therapeutic targets, develop
safer and more efficacious treatment options, and promote the
amalgamation of basic research with clinical practice. This strategy
aims to facilitate the transition from laboratory discoveries to clinical
implementations, ultimately offering renewed hope to patients
afflicted by brain ischemia-reperfusion injury, mitigating their rates
of disability and mortality, and enhancing their overall quality
of life.
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