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Objectives: Systemic Lupus Erythematosus (SLE) is a highly heterogeneous
autoimmune disease with complex pathogenic mechanisms. Mitochondrial
function and programmed cell death (PCD) play important roles in SLE.
This study aims to screen biomarkers related to mitochondrial function and
programmed cell death in SLE and analyze their underlying mechanisms.

Methods: SLE-related databases were derived from the GEO database, where
three SLE databases were merged into one database as the training set.
Genes related to mitochondrial function and PCD were sourced from the
MitoCarta 3.0 database. Key genes were identified through bioinformatics
and machine learning, and their expression levels and diagnostic efficacy
were validated using two SLE-related datasets as the validation set. The
relationship between diagnostic genes and immune cells was analyzed through
CIBERSORT immune infiltration analysis. Diagnostic genes-related miRNAs
were predicted using online databases. Differential circRNAs were screened
in SLE circRNA datasets, and the relationship between circRNAs and miRNAs
is predicted through circbank, finally constructing a circRNA-miRNA-mRNA
ceRNA regulatory network.

Results: From the 448 differential genes in the SLE training set, two
key genes, IFI27 and LAMP3, were identified through machine learning
and WGCNA. Enrichment analysis revealed that they were mainly enriched
in pathways such as cell cycle, systemic lupus erythematosus, cytosolic
DNA sensing pathway, toll-like receptor (TLR) signaling pathway and nod-
like receptor (NLR) signaling pathway. Immune infiltration analysis found
that compared with normal group, 11 immune cells were differentially
expressed, with IFI27 related 9 types of immune cells and LAMP3 related
10 types of immune cells. The final constructed circRNA-miRNA-mRNA
ceRNA regulatory network consists of 2 mRNAs, 5 miRNAs, and 4 circRNAs.
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Conclusion: Our study ultimately identified two biomarkers (IFI27 and LAMP3)
related to mitochondrial function and programmed cell death that play an
important role in SLE. In the future, IFI27 and LAMP3 have the potential
to become important biomarkers in the diagnosis and treatment of SLE.
Their role in the immune response may provide new strategies for the
treatment of SLE.

KEYWORDS

mitochondrial function, programmed cell death, systemic lupus erythematosus,
bioinformatics, machine learning

1 Introduction

Systemic Lupus Erythematosus (SLE) is a systemic autoimmune
disease characterized by dysregulation of innate and adaptive
immunity, abnormal production of autoantibodies, and the
formation and deposition of immune complexes in various organs
and tissue (Siegel and Sammaritano, 2024). The production of anti-
double-stranded DNA (anti-ds-DNA) is a notable feature of SLE
(Anis et al., 2023). Excessive cell death and failure in the clearance of
dead cells were considered one of the main pathogenic mechanisms
leading to the generation of autoantigens and the initiation of
autoimmune responses. Numerous studies have indicated that
different forms of Programmed Cell Death (PCD) play a significant
role in the pathogenesis of SLE (Xu Y. et al., 2022).The dysregulation
of PCD pathways and defects in the clearance of dead cells can
promote the release of Damage-Associated Molecular Patterns
(DAMPs) in SLE, amplifying inflammation and immune responses,
generating autoantigens, and causing tissue damage (Alvarez and
Vasquez, 2017).

PCD is an essential physiological process that plays a
critical role in maintaining tissue homeostasis and eliminating
damaged or unwanted cells. PCD can occur through various
mechanisms, including: Apoptosis, Anoikis, Autophagy,
Alkaliptosis, Cuproptosis, Entosis, Entotic cell death, Immunogenic
cell death, Ferroptosis, Lysosome-dependent cell death, Methuosis,
Necroptosis, Netotic cell death, NETosis, Oxeiptosis, Pyroptosis,
Parthanatos, Paraptosis (Yan et al., 2024).

Mitochondria are organelles with a double membrane and
play a crucial role in energy production, iron homeostasis,
and the biosynthesis of lipids, amino acids, and nucleic acids.
Additionally, mitochondria are key in regulating cellular signaling
pathways and controlling PCD (Nguyen et al., 2023). Moreover,
mitochondria possess many DAMPs that can initiate various
inflammatory signaling pathways (Marchi et al., 2023).Disruption of
mitochondrial morphology, such as changes in shape, size, or cristae
organization, can impair normalmitochondrial function and trigger
PCD (Gibellini and Moro, 2021). Structural abnormalities may
affect the release of pro-apoptotic factors within the mitochondria,
leading to caspase activation and subsequent apoptosis (Vringer
and Tait, 2023). Mitochondrial function is also closely related to
the mechanisms of PCD in SLE. In SLE, mitochondrial DNA
(mtDNA) from neutrophils is highly susceptible to oxidation by
mitochondrial reactive oxygen species and can be released from
the mitochondria. Furthermore, mtDNA can also be released
into the extracellular environment. Extracellular mtDNA activates

plasmacytoid dendritic cells and CD4+ T cells, which is critical for
the pathogenesis of SLE (Mobarrez et al., 2019). Oxidative and
nitrosative stress resulting from mitochondrial dysfunction may
serve as pathobiological signals for increased apoptosis/necrosis, the
formation of multiple new antigens, and immune dysregulation in
SLE patients (Miao et al., 2023).

Circular RNA molecules (circRNAs) are a class of non-
coding RNA molecules that exist in vivo without a 5′terminal
cap and a 3′terminal poly(A) tail, and form a covalently
closed circular structure. circRNAs can bind endogenously with
miRNAs to regulate gene expression. The circRNA-miRNA-
mRNA network constitutes the mechanism of the competitive
endogenous RNA (ceRNA) network. It has been found that
various abnormally expressed circRNAs play a potential role in
SLE (He et al., 2024). In addition, the infiltration of immune
cells determines the microenvironment of the disease, thereby
affecting the immune response, which is key to the pathogenesis
and treatment of immune-related diseases. The dysregulation
of various immune cells, including B cells, CD4+ T cells,
follicular helper T cells, and dendritic cells, is related to the
pathogenesis of SLE (Xu L. et al., 2022).

Current research on the pathogenesis and early diagnosis of SLE
is still insufficient. This study, based on bioinformatics and machine
learning, starts from the perspectives of mitochondrial function
and PCD, to screen and study genes related to mitochondrial
function and PCD in SLE from the Gene Expression Omnibus
(GEO) database. By using Weighted Gene Co-Expression Network
Analysis (WGCNA) and machine learning to select key genes,
and by verifying the genes and examining clinical samples to
explore their potential as biomarkers. We further analyzed the
immune infiltration status and the correlation with key genes
using CIBERSORT (Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts) to explore the relationship between
immune cells and key genes. Finally, we predicted related miRNAs
through the miRNet database and predicted related circular RNAs
through the circbank database, and analyzed the GEO database
of SLE’s circular RNAs to construct a circRNA-miRNA-mRNA
network, discussing the possible regulatory pathways of key genes.
This study analyzed three gene expression datasets (GSE4588,
GSE50772, and GSE81622) downloaded from the GEO database,
identified two important hub genes, and clinically validated the
key genes. It lays the foundation for discovering new indicators for
diagnosing andmonitoring SLE, and provides new ideas and targets
for the prevention and treatment of SLE.
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2 Materials and methods

2.1 Study design

Using Homo sapiens as the object of study, 6 data sets (GSE4588,
GSE50772, GSE81622, GSE72326, GSE72754, and GSE84655)
including gene expression data for SLE and normal peripheral blood
mononuclear cells, were downloaded from the Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). Three SLE
related datasets (GSE4588, GSE50772 andGSE81622)were integrated
as SLE dataset. The SLE dataset contained samples from 64 control
groups and 106 SLE groups. The GSE72326 and GSE72754 datasets
served as validation sets, and the GSE84655 dataset was used to
screen for differentially expressed circular circRNAs in SLE. A total of
1,136 mitochondrial function genes and 1548 PCD genes involved
in 18 cell death were derived from the MitoCarta 3.0 database
(Yan et al., 2024; Li et al., 2023). LIMMA was utilized to screen for
differentially expressed genes (DEGs) between SLE and the normal
group, then these DEGs were intersected with genes related to
mitochondrial function and PCD to identify sharedDEGs. Sangerbox
platform was applyed to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis,
as well as Protein-Protein Interaction (PPI) network analysis on the
shared DEGs. Lasso regression and random forest was employed for
hub gene screening, and WGCNA was used to select co-expression
module genes in SLE, taking the intersection of genes from the three
methods as the hub genes. Further, Receiver Operating Characteristic
(ROC) curve was employed to test the diagnostic value of the hub
genes for SLE. The CIBERSORT algorithm was employed to analyze
and compare the distribution differences of immune cells between
SLE and the normal group. The hub genes were validated in the
validationdatasetsGSE72326andGSE72754.IntheGSE84655dataset,
differentially expressed circRNAs (DECs) in SLE were selected, and
analyzed through online databases and SLE’s cirRNA microarray
chips. We predicted the relevant miRNAs and cirRNAs. Using
Cytoscape software, a regulatory network of cirRNA-miRNA-mRNA
was constructed to explore the potential interactions and regulatory
mechanisms inSLE.Theflowchartof this studywas showninFigure 1.

2.2 Differentially expressed gene screening

First, all three raw SLE datasets were background-calibrated,
normalized, and log2-transformed using the “affy” package in the
R software program. Limma package was used to identifying DEGs
and DECs.The setting criteria was as follows: |log2 Fold change (FC)|
≥0.585 for SLE dataset, |log2 Fold change (FC)|≥1 for circRNAdataset
and p-value <0.05. Volcanic maps were used to show DEGs, and heat
map was used to show the top 50 genes with the most significant
expression differences.

2.3 Functional enrichment analysis and
Gene Set Enrichment Analysis

Functional enrichment analysis was conducted via the
Sangerbox platform (http://vip.sangerbox.com/). p < 0.05 was set as
the criteria. In this study, GO and KEGG analyses were performed

respectively based on the intersection of DEGs for SLE and genes of
Mitochondrial function, and the intersection of DEGs for SLE and
the genes of PCD.

Gene Set Enrichment Analysis (GSEA) was used to assess
the distribution trend of genes from a pre-defined gene set in
the gene list ranked with phenotypic relevance, so as to judge
their contribution to phenotype. We got the GSEA software
(version 3.0) from theGSEAweb site (http://software.broadinstitute.
org/gsea/index.jsp), and download the c2. Cp. Kegg. V7.4. symbols.
gmt subset from Molecular Signatures Database (http://www.gsea-
msigdb.org/gsea/downloads.jsp) to evaluate the relevant pathways
and molecular mechanisms. Based on the gene expression profile
and phenotype grouping, the minimum gene set was 5, the
maximum gene set was 5,000, 1,000 resampling runs were
performed. P value of <0.05 (as needed) and a FDR of <0.25 (as
needed) were considered statistically significant.

2.4 Protein–protein interaction network
construction

Protein-protein interaction (PPI) network was established
by the String database (version 11.5; www.string-db.org). The
STRING database is a powerful online bioinformatics tool for
retrieving and analyzing PPI. The STRING database provides a
composite score based on evidence frommultiple sources, including
experimentally determined interactions, bioinformatics predictions,
literature mining, and more. The overall score reflects the degree
of confidence in the interaction between the two proteins. In
STRING, a composite score of more than 0.4 is generally considered
statistically significant, meaning that some form of interaction is
likely to exist between the two proteins. Cytoscape software was
adopt to construct this PPI network.

2.5 Weighted gene Co-Expression network
analysis and module gene selection

The Weighted Gene Co-expression Network Analysis
(WGCNA) is a powerful tool for constructing gene co-expression
networks and identifying functional modules. First, calculate the
median absolute deviation (MAD) for each gene, which is a robust
measure of variability. Genes with MAD values in the bottom 50%
were considered to have low variability and were often removed
from the analysis. Second, remove unwanted genes and samples
using the “good Samples Genes” function to construct a scale-
free co-expression network. Third, determine the Soft Threshold
Power (β) to calculate the adjacency matrix, which represents
the degree of correlation between gene expression profiles. And
transform adjacency to Topological OverlapMatrix (TOM) to assess
the topological overlap between gene pairs. This matrix was used
to determine gene significance and module membership. Forth,
perform Hierarchical Clustering to group genes into modules based
on their topological overlap. The dynamic tree cutting method
was then applied to identify distinct modules within the network.
Finally, assess the correlation between gene significance andmodule
membership to identify gen good Samples Genes es that were
highly representative of their respective modules. Once the modules
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FIGURE 1
The flowchart of this study.

were identified, extract the genes within each module for further
functional analysis and exploration of their biological significance.
To identify the most relevant gene module in SLE, WGCNA was
adopted. Based on scale independence and mean connectivity, we
selected β = 8.087 as the soft threshold.

2.6 Machine learning

The Least Absolute Shrinkage and Selection Operator (LASSO)
is an estimation method that minimizes the sum of squared
residuals under the constraint that the sum of the absolute values
of the regression coefficients is less than a constant, which can
produce some regression coefficients that were exactly zero,
leading to an interpretable generalized linear model. In this
study, LASSO regression was used to select candidate genes
with diagnostic significance for SLE mitochondrial function
and PCD, using the “glmnet” package for LASSO regression
analysis of these candidate genes. Random Forest (RF) is a
supervised, ensemble learning algorithm based on decision
trees, and in this study, the “randomForest” package in R
was used to implement RF, with genes selected based on an
importance score greater than 2.0. The intersection genes of
LASSO, Random Forest and WGCNA were considered as
candidate hub genes.

2.7 Receiver operating characteristic
evaluation

Use the pROC package in R software to plot the ROC curve and
calculate the area under curve (AUC) and 95% confidence interval
(CI) to quantify its value. ROC curve was used to evaluate the
diagnosis of candidate genes formitochondrial function and PCD in
SLE, and AUC>0.7 was considered to be the ideal diagnostic value.

2.8 Validation of hub genes expression in
other data sets

The mRNA expression of identified hub genes was verified in
GSE72326 and GSE72754. The GSE72326 dataset contains 157 SLE
and 20 normal. GSE72754 consists of 42 SLE and 10 normal. The
comparison between the two sets of data was performed with the
T-test. P-value <0.05 was considered significant.

2.9 Immune infiltration analysis

CIBERSORT is a computational method that uses tissue gene
expression profiles to identify the proportions of various immune
cells. In this study, it was conducted to determine the immune
cell proportions between SLE and normal group. Immune cell
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infiltration analysis was conducted using the “Cibersort” R package.
Violin plots were used to illustrate the proportions of different types
of immune cells in SLE and normal group.The “corrplot” R package
was used to create correlation graphs for 22 types of infiltrating
immune cells. Subsequently, Spearman’s correlation analysis was
performed between biomarkers and differential immune cells.

2.10 CircRNA-miRNA-mRNA network in
SLE

Human microRNA Disease Database (HMDD, www.cuilab.
cn/hmdd) is a database that includes experiment-supported
evidence for human miRNA and disease associations. HMDD v4
was used in our work to search for the SLE-related microRNAs
(miRNAs). miRNet (www.mirnet.ca) is an easily accessible web-
based tool that offers statistical, visualization, and network-based
approaches to demonstrate the functionality and regulatory
mechanisms of miRNAs. It was used to predict miRNA from
mRNAs in our study. Venn diagram was used to overlap the SLE-
related miRNAs and miRNAs predicted from mRNAs in our study.
The circRNA regulating miRNAwas predicted by circbank database
(www.circbank.cn) and intersected with circRNA related to SLE.
The visualization of cirRNA-miRNA-mRNA regulatory network
was constructed using Cytoscape software.

2.11 Expression verification of key DEGs by
real-time quantitative PCR

Fifteen patients with SLE who met the 1997 American College
of Rheumatology (ACR) criteria and ten age and sexmatched health
volunteers were selected fromXi ‘an FifthHospital. All samples were
approved by Ethics Committee of Xi ‘an Fifth Hospital. Peripheral
Blood Mononuclear Cell (PBMC) was isolated by Ficoll density
gradient centrifugation method, and total RNA was extracted by
TRIzol (Ambion, Austin United States). The extracted RNA was
reverse-transcribed into cDNA using the PrimeScript™ RT reagent
Kit (Takara, Japan). mRNA expression levels of the key diagnostic
genes IFI27 and LAMP3 in PBMC were detected by TB Green
Premix Ex TaqTM II (Takara, Japan) RT‒PCR, and the experimental
data obtained in the experiment were analyzed by 2-△△CT method.
The primer information was shown in Supplementary Table S1.

2.12 Statistical analysis

The ROC curve and t-test were performed by SPSS Version
23.0 (IBM Corporation, Armonk, NY, United States). p < 0.05 was
considered as statistically significant.

3 Results

3.1 Data preprocessing

“genecard” was used for gene ID conversion of the gene
expression profiles from the GSE4588, GSE50772, and GSE81622

datasets. The R software package “sva” was used to batch the above
three data sets (see Supplementary Figure S1). A comprehensive
GEO data set was created as a training set (a total of 170 samples,
including 106 SLE cases and 64 healthy controls).

3.2 Identification of DEGs and functional
enrichment analysis of SLE

After standardizing the microarray results, 448 DEGs in the
SLE dataset were identified, of which 292 were upregulated and 156
downregulated (Figure 2A). Figure 2B showed the clustering heat
map of the top 50 DEGs. 448 SLE DEGs were intersected with
1,548 cell death related genes and 1,136 mitochondrial function
related genes, respectively, and 47 differential genes related to
PCD in SLE and 14 genes related to mitochondrial function in
SLE were found (Figures 2C, D). A total of 58 differential genes
(including three common genes) related to mitochondrial function
and cell death were identified in SLE.

In order to analyze the biological functions and pathways
involved in the common DEGs, GO and KEGG Pathway
enrichment analysis were performed. For the 14 common DEGs
of mitochondrial function in SLE, GO analysis results showed
that these genes were mainly enriched in sulfur compound
metabolic process, mitochondrion and oxidoreductase activity
(Supplementary Figure S2B). In terms of KEGG Pathway, the
three significant enrichment pathways were Metabolic pathways,
Glycine, serine, and threonine metabolism and Arginine and
proline metabolism (Supplementary Figure S2A). For the 47
common DEGs of PCD in SLE, GO analysis results showed
that these genes were mainly enriched in PCD, apoptotic
process and identical protein binding (Supplementary Figure S3B).
In terms of KEGG Pathway, the two significant enrichment
pathways were IL-17 signaling pathways and NF-kappa B
signaling pathway (Supplementary Figure S3A).

Based on the STRING database, 46 of the 58 DEGs had
interactions. A visual PPI network diagram was build using
Cytoscape software. (Figure 2E).

3.3 Weighted gene Co-Expression network
analysis and key module Identification

WGCNA was applied to identify the most correlated gene
modules in SLE. Based on scale independence and mean
connectivity, β = 8.087 was selected as the soft threshold
(Figures 3A, B). The cluster tree diagram of SLE and control
was shown in Figure 3C. On this basis, 21 different color gene
co-expression modules (GCMs, Figure 3D) were symbiosis. The
correlation between SLE and theGCMswas shown in Figure 3F.The
tan module (142 genes) had the highest correlation with SLE (r =
0.61, p = 1.6 × 10−18), whichwas the key genemodule for subsequent
analysis. We calculated the correlation between the tan module and
gene significance, and there was a significant positive correlation
between the two (r = 0.78, p = 4.2 × 10−30) (Figure 3G). Therefore,
the tan module gene has the most significant correlation with SLE.
The tan module has 142 genes.
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FIGURE 2
Volcano plot and heatmap for the DEGs identified from the integrated SLE dataset. (A) The volcano map of SLE dataset. Upregulated genes were
marked in red; downregulated genes were marked in green. (B) The heat map of SLE dataset. Each row shows the DEGs, and each column refers to
one of the samples of SLE cases or controls. The red and blue represent DEGs with upregulated and downregulated gene expression, respectively. (C)
The overlap genes of mitochondrial function and SLE via Wenn diagram. (D) The overlap genes of PCD and SLE via Wenn diagram. (E) PPI network
reveals that 46 genes interact with each other.
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FIGURE 3
Weighted gene co-expression network analysis and key module identification. (A, B) β = 8 was selected as the soft threshold with the combined
analysis of scale independence and average connectivity. (C) Clustering dendrogram of the SLE and control samples. (D) Gene co-expression modules
represented by different colors under the gene tree. (E) Heatmap of eigengene adjacency. (F) Heatmap of the association between modules and SLE.
The tan module was shown to be correlated significantly with SLE. Numbers at the top and bottom brackets represent the correlation coefficient and
p-value, respectively. (G) Correlation plot between module membership and gene significance of genes included in the tan module.
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FIGURE 4
Machine learning in screening candidate diagnostic biomarkers. (A, B) Biomarkers screening in the Lasso model. The number of genes (n = 13)
corresponding to the lowest point of the curve was the most suitable for SLE diagnosis. (C) The correlation plot between the number of RF trees and
model error. (D) Genes ranked based on the importance score. (E) Venn diagram showed that two candidate diagnostic genes were identified via the
above two algorithms.

3.4 Identification of candidate hub genes
via machine learning

LASSO regression and RF machine learning algorithms were
used to identify potential biomarkers associated with SLE diagnosis.
LASSO regression analysis of 46 genes after PPI analysis identified
13 genes that were closely related to the disease (Figures 4A, B). In
RF algorithm, we assessed the importance of genes and screened
12 genes with importance greater than 2 (Figures 4C, D). The
intersection of the 12 most important genes in RF, 13 genes in
LASSO, and 142 genes in the key genemodule ofWGCNA identified
two key genes (IFI27 andLAMP3) as key diagnosticmarkers for final
validation (Figure 4E).

3.5 Diagnostic value assessment of hub
genes and validation of hub genes in other
datasets

The expression of hub genes (IFI27 and LAMP3) was
upregulated in SLE (Figure 5A). The diagnostic specificity and
sensitivity of each gene were evaluated by establishing an ROC
curve, and the AUC and its 95% CI were calculated for each
gene. The results were as follows (Figure 5B): IF27 (AUC 0.93,
CI 0.97–0.90), LAMP3 (AUC 0.81, CI 0.87–0.75). All candidate
biomarkers had high diagnostic value for SLE.The expression of key
genes IIF27 and LAMP3 in SLE were further verified in GSE72326
dataset (177 cases, including SLE 157 cases, 20 normal controls)
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FIGURE 5
The diagnostic value evaluation of the two candidate diagnostic genes, and validation of hub genes in other datasets. (A) The expression of hub genes.
(B) The ROC curve of each candidate gene. (C) Validation of the expression of hub genes in GSE72326 dataset. (D) The ROC curve of each candidate
gene in GSE72326 dataset. (E) Validation of the expression of hub genes in GSE72754 dataset. (F) The ROC curve of each candidate gene in
GSE72754 dataset.

and GSE72754 dataset (52 cases, including SLE 42 cases, 10 normal
controls), respectively. The expression trend was consistent in both
validation sets (Figures 5C, E). For GSE72326 (Figure 5D), IF27
(AUC 0.94, CI 0.98–0.90) and LAMP3 (AUC 0.90, CI 0.96–0.85).
For GSE72754 dataset (Figure 5F), IF27 (AUC 0.85, CI 0.95–0.74),
LAMP3 (AUC 0.85, CI 0.95–0.74). All candidate biomarkers have
high diagnostic value for SLE.

3.6 Immune cell infiltration analysis

Functional enrichment analysis indicated that the immune
system plays a crucial role in the development of SLE, and therefore,
immune infiltration analysis can better explore the role of immunity
in SLE. The gene expression levels of the SLE dataset were analyzed
using the CIBERSORT algorithm to investigate the differences in

immune infiltration of 22 types of immune cells, and it was found
that 11 types of immune cells showed expression differences between
the SLE and normal group. Box plots showed that compared with
the normal group, the levels of Plasma cells, activated CD4 memory
T cells, regulatory T cells (Tregs), Monocytes, M0 Macrophages,
activated Dendritic cells, and Activated Mast cells were higher
in the SLE group, while the levels of Memory B cells, Resting
CD4 memory T cells, Resting NK cells, and Resting Mast cells
were lower (Figure 6A).

Further exploration of the correlation between biomarkers and
differential immune cells revealed that IFI27 is positively correlated
with the level of Activated Dendritic cells, Monocytes, Tregs,
Activated CD4 memory T cells, and Plasma cells, while it was
negatively correlated with the level of RestingMast cells, Resting NK
cells, Resting CD4 memory T cells, and Memory B cells. LAMP3
was positively correlated with the Activated Dendritic cells, Tregs,
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FIGURE 6
Immune cell infiltration analysis between SLE and control. (A) Comparison regarding the proportion of 22 kinds of immune cells between SLE and
control groups visualized by the vioplot. (B) Correlation analysis between 22 immune cell types and Hub genes in SLE.

Activated CD4 memory T cells, Naïve CD4 T cells, and Plasma
cells, while it was negatively correlated with the Resting Mast
cells, M2 Macrophages, Resting NK cells, Memory B cells, and
Naïve B cells (Figure 6B).

3.7 Construction of cirRNA-miRNA-mRNA
network

Non-coding RNA (ncRNA) plays an important role in the
pathogenesis of SLE, including long non-coding RNA (lncRNA),

miRNAand circRNA.Using themiRNet database, 51miRNAs related
to IFI27 and LAMP3 were predicted, and 125 miRNAs related to
SLE were selected from the HMDD v4.0 database.The intersection of
the two yielded 23 miRNAs (Figures 7A, B). Through the circbank
database, 2,165 circRNAs were predicted. R software was used to
analyze the GSE84655 dataset, and differentially expressed circRNAs
(DECs) were identified with a P-value <0.05 and a |log2 Fold change
(FC)|≥1, resulting in a total of 120 DECs (Figures 7C, D). After
the intersection, 4 circRNAs were obtained (Figure 7E). The final
constructed ceRNA network consists of 4 circRNAs, 5 miRNAs,
and 2 mRNAs (Figure 7F).
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FIGURE 7
Construction of circRNA-miRNA-mRNA network. (A) The overlap of DECs predicted target miRNAs and SLE related miRNAs via Wenn diagram. (B) The
23 common miRNAs identified from the intersection of genes in DEG predicted target miRNAs and SLE related miRNAs. (C) The heat map of DECs in
GSE84655 dataset. (D) The volcano map of DECs in GSE84655 dataset. Upregulated genes were marked in red; downregulated genes were marked in
green. (E) The overlap of predicted DECs in the circbank database and DECs in GSE84655 dataset via Wenn diagram. (F) The
circRNA-miRNA-mRNA network.

3.8 The expression of key genes
verification in clinical samples

The results of real-time quantitative PCR showed that IFI27 and
LAMP3 were highly expressed in SLE group compared with normal
group, and the differences were statistically significant (Figure 8).

3.9 GSEA analysis of biomarkers

To further explore the possible mechanisms associated with the
newly identified biomarkers, SLE samples were divided into high

expression and low expression groups according to themedian value
of marker gene expression, and GSEA enrichment analysis was
performed. The results showed that IFI27 and LAMP3 were mainly
enriched in cell cycle, Systemic Lupus Erythematosus, cytosolic
DNA sensing pathway, toll-like receptor (TLR) signaling pathway
and nod-like receptor (NLR) signaling pathway (Figure 9).

4 Discussion

Systemic Lupus Erythematosus is an autoimmune disorder
where the immune system abnormally attacks the body’s cells
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FIGURE 8
The expression of key genes verification in clinical samples. (A) The expression of IFI27 in clinical samples. (B) The expression of LAMP3 in
clinical samples.

FIGURE 9
GSEA analysis for IFI27 and LAMP3. (A) GSEA analysis for IFI27. (B) GSEA analysis for LAMP3.

and tissues. It can manifest acutely or subtly, leading to damage
across various tissues and organs (Siegel and Sammaritano,
2024). Currently, antinuclear antibodies, anti-double-strandedDNA
antibodies, and complement activation are frequently utilized for
diagnosing or assessing SLE disease activity (Anis et al., 2023).
However, due to the disease’s complexity, using a single biomarker
for SLE assessment is quite difficult. Thus, there is an urgent need
for deeper research into diagnostic biomarkers for SLE.

Mitochondria, maternally inherited organelles, participate in
numerous biological processes such as cellular energy metabolism
and programmed cell death (Poltorak, 2022). Autoantibodies
against mitochondria and its components, such as anti-cardiolipin
antibodies, anti-mitochondrial antibodies, anti-mitochondrial

RNA antibodies, anti-mitochondrial outer membrane, and anti-
mitochondrial DNAantibodies, have been identified in SLE patients’
serum (Chen and Tsokos, 2022; Gomez-Banuelos et al., 2023).
To some extent, their serum levels correlate with the degree
of tissue damage and SLE activity indicators like the SLEDAI
score (Becker et al., 2019). There is a close relationship between
mitochondria and programmed cell death, mitochondria play
a pivotal role in apoptosis, necrosis, and other forms of cell
death (Flores-Romero et al., 2023). They also interact with other
organelles, such as the endoplasmic reticulum and the nucleus,
to regulate apoptosis. Mitochondrial damage and dysfunction can
lead to insufficient ATP supply and excessive ROS accumulation,
promoting necrosis. During pyroptosis, mitochondrial membrane
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rupture and the release of inflammatory factors are critical steps;
while in ferroptosis, mitochondria influence cell fate by modulating
iron metabolism and ROS production (Vringer and Tait, 2023;
Flores-Romero et al., 2023; Bock and Tait, 2020).

Programmed cell death (PCD) critically contributes to SLE
pathogenesis. Abnormal apoptosis and defective clearance of
apoptotic debris lead to autoantigen exposure, immune activation,
autoantibody production, immune complex formation, and tissue
damage (Xu Y. et al., 2022; Sun et al., 2021). Neutrophils in SLE
release nuclear and mitochondrial DNA (mtDNA), linked to
Gasdermin D (GSDMD)-mediated pyroptosis; oxidized mtDNA
(Ox-mtDNA) further enhances GSDMD-N oligomerization,
amplifying pyroptotic cell death (Miao et al., 2023; Xin et al., 2024).
Ferroptosis, driven by elevated autoantibodies and type I interferons
(IFN) in SLE serum, is implicated in neutrophil death and disease
progression (Ohl et al., 2021; Zhao G. et al., 2024). Different types
of cells exhibit different sensitivities and characteristics to a certain
type of cell death, and there are complex interconnections between
different PCDs within different cells, accelerating cell death and
promoting the progression of SLE (Xu Y. et al., 2022). Further
research on the interconnections between various forms of cell
death and mitochondrial function in SLE will help to reveal the
pathogenic mechanisms and new therapeutic targets.

Our study involved analyzing DEGs from three SLE GEO
databases and intersecting them with 1,548 programmed cell death-
related genes and 1,136 mitochondrial-related genes identified from
the MitoCarta 3.0 database, resulting in the identification of 47
DEGs related to PCD and 14 DEGs related to mitochondria.
Through bioinformatics and machine learning, we discovered that
the common genes IFI27 and LAMP3, which are related to PCD
and mitochondria, play an important role in SLE. The diagnostic
efficacy of IFI27 and LAMP3 was evaluated using ROC in a training
set and two validation sets, indicating that both IFI27 and LAMP3
have good diagnostic efficacy for SLE.

IFI27 (Interferon Alpha Inducible Protein 27) is associated with
various biological functions such as apoptosis, autophagy, pyrolysis,
and immune regulation, IFI27 is highly expressed in brown adipose
tissue and is closely related to mitochondrial function and the
thermogenic capacity of adipocytes (Cui et al., 2023). The role of
IFI27 in SLE is mainly related to its function in the interferon
(IFN) signaling pathway. IFI27 is one of the interferon-stimulated
genes, and its expression level is usually elevated in SLE patients
and is related to disease activity (Cecchi et al., 2024). Studies have
shown that high expression of IFI27 is related to synovitis in SLE
patients (Nzeusseu Toukap et al., 2007). In addition, different B
cell subsets in SLE patients have different response characteristics
to type I and type III IFNs, and patients with high levels of
IFI27 have significantly higher levels of IFN-α in peripheral blood
mononuclear cells (PBMCs) than patients with low levels of IFI27
or healthy donors (Song et al., 2023).

LAMP3 (Lysosome-Associated Membrane Protein 3) is a
glycosylated membrane protein typically expressed in lymphoid
organs and serves as a marker for mature human dendritic cells
(DCs), with its expression being upregulated during DC activation
andmaturation (Malaguarnera et al., 2017).The increase in LAMP3
expression is associatedwith the development of Sjögren’s Syndrome
(SS) (Tanaka et al., 2020). Research indicates that overexpression
of LAMP3 can lead to the relocalization of lysosomal cathepsins

to the cytoplasm by increasing the permeability of the lysosomal
membrane, which may trigger instability in the autophagic flux
and activation of caspases, leading to apoptosis (Nakamura et al.,
2023). Additionally, LAMP3 may be involved in regulating the
fusion of autophagosomes with lysosomes, thereby affecting the
degradation and renewal of mitochondria (Tanaka et al., 2023).
The role of LAMP3 in PCD and mitochondrial function is
multifaceted, involving various aspects such as apoptosis, autophagy,
and tumor immunity (Tanaka et al., 2022).

Immune infiltration analysis found that there were differences
in the expression of 11 types of immune cells between SLE
and normal groups. Correlation analysis revealed that IFI27
is positively correlated with 5 immune cells, while negatively
correlated with 4 immune cells. LAMP3 is positively correlated with
5 immune cells, and negatively correlated with 5 immune cells. In
SLE pathogenesis, plasmacytoid dendritic cells (pDCs) critically
contribute through TLR7/9-mediated recognition of immune
complexes, triggering excessive type I interferon (particularly IFN-
α) production via the JAK-STAT pathway. SLE patients exhibit
reduced peripheral blood pDCs, with significant accumulation in
affected tissues (e.g., kidneys, skin) (Soni et al., 2020). Monocytes
demonstrate pathological polarization in SLE: classical monocytes
exhibit pro-inflammatory properties supporting macrophage
differentiation, while non-classical monocytes display Th17-
regulatory phenotypes. Both subsets facilitate autoantibody
production through B-cell interaction and immune complex
formation (Hirose et al., 2019; Merino-Vico et al., 2023). Treg
cell dysfunction in SLE manifests through altered expression
of co-stimulatory molecules (CTLA4, PD-1) and cytokines (IL-
2, IL-10, TGF-β), impairing their immunosuppressive capacity
(Bertsias et al., 2009; Tenbrock and Rauen, 2022). Disease activity
correlates with CD4+CXCR5−PD1+ memory T cell expansion
(Sagrero-Fabela et al., 2023). Pathogenic plasma cells sustain
autoantibody production, while mast cells activate through
IgE/FcεRI-mediated pathways (Wang et al., 2022). SLE patients
show reduced circulating NK cells and complex M2 macrophage
involvement in disease progression (Zhao L. et al., 2024).

The cirRNA-miRNA-mRNA network constitutes the
mechanism of the competing endogenous RNA (ceRNA) network
(Wu et al., 2024; Zhou et al., 2023; Kohansal et al., 2024). In
SLE, some circRNAs may participate in the regulation of immune
responses and inflammatory processes by adsorbing miRNAs,
changing the availability of miRNAs, and thereby affecting the
expression of related genes. hsa_circ_0045272 can act as a sponge
for miR-6127, regulating T cell apoptosis and IL-2 secretion
(Li et al., 2018). In SLE, circRNAs participate in the occurrence
and development of the disease through various mechanisms,
with upregulated expression of circADCY9 and circGARS and
downregulated expression of circMCTP2. The expression levels
of these circRNAs are correlated with SLE disease activity Index
(SLEDAI) scores and complement C3 levels, suggesting that they
may be involved in regulating disease activity in SLE (Zhao et al.,
2022). miRNAs are involved in the regulation of immune cells in
SLE, including T cells, B cells, and dendritic cells, affecting the
pathogenesis of SLE by influencing the function and interaction of
these cells (Chi et al., 2021). miR-146a is abnormally expressed in
SLE patients and may affect inflammatory responses and cytokine
production, thereby affecting disease activity. miRNAs participate
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in the cell survival and death processes in SLE by regulating the
expression of genes related to apoptosis (Hsieh et al., 2022). miRNAs
can also affect various signaling pathways involved in SLE, such as
the JAK-STAT pathway and the NF-κB pathway, which play key
roles in the activation of immune cells and inflammatory processes
(Wang et al., 2021). Studies have shown that the levels of miR-
200c and miR-429 in the serum and urine of SLE patients were
lower than those of control group and the expression of miR-21
and miR-224 was upregulated and the expression of miR-26a was
downregulated in kidney tissue of SLE patients (Wang et al., 2011).
In our study, we found 5 miRNAs related to IFI27 and LAMP3,
which were hsa-mir-429, hsa-mir-224, hsa-mir-26a, hsa-mir-21,
and hsa-mir-200c. Four circRNAs were obtained by the intersection
of miR-predicted circRNAs and DECs, namely, hsa_circ_0038011,
hsa_circ_0049271, hsa_circ_0004968, and hsa_circ_0003694. Thus,
a ceRNA regulatory network consisting of 2 mRNAs, 5 miRNAs and
4 circRNAs was formed.

GSEA indicates that in SLE patients, abnormalities in the
cell cycle may lead to abnormal activation, proliferation, and
apoptosis of immune cells, thereby affecting the disease progression.
Variations in the cell cycle-related gene NCF1 have been found to
be associated with autoimmune characteristics of SLE (Olsson et al.,
2017). Cyclic GMP-AMP synthase (cGAS), as the main cytoplasmic
DNA sensor, can recognize double-stranded DNA (dsDNA) in
the cytoplasm. Upon activation, it produces the second messenger
cGAMP, which subsequently activates stimulator of interferon genes
(STING). In SLE patients, self-DNA released during cell death
may be recognized by cGAS, activating the cGAS-STING pathway,
triggering the production of type I interferons and inflammatory
cytokines, which is related to the autoimmune response in SLE. In
addition, the abnormal activation of the cGAS-STING pathway is
also related to B cell differentiation and T cell activation in SLE,
which play a key role in the adaptive immune response (Feng et al.,
2024). The activation of the Toll-like receptor signaling pathway
can lead to the production of various cytokines and chemokines,
which play a role in the inflammatory response and tissue damage
of SLE. Therefore, the regulation of the Toll-like receptor signaling
pathway has become a potential target for the treatment of
SLE (Fillatreau et al., 2021). The NOD-like receptor signaling
pathway, especially the NLRP3 inflammasome, is associated with
the occurrence and development of the disease and is related to the
degree of kidney damage in SLE patients (Oliveira et al., 2021). It
plays an important role in the pathogenesis of SLE and is a potential
target for future therapeutic strategies.

Although this study has been validated through clinical samples,
the limited sample size and lack of investigation into different disease
stages of SLE restrict its comprehensiveness. Further research
utilizing cell experiments and animal studies is required to elucidate
the specific molecular mechanisms involved. Future studies may
focus on exploring the roles of these molecules in SLE, aiming
to provide novel strategies and therapeutic targets for the precise
diagnosis and treatment of SLE.

In summary, this study identified two hub genes related to
programmed cell death and mitochondrial function, namely, IFI27
and LAMP3, which may be regulated by a ceRNA network
composed of 4 circRNAs and 5 miRNAs and participate in the
pathogenesis of SLE. A variety of immune cells were also related to
these two biomarkers.This study provides new insights and potential

therapeutic targets for elucidating the role of programmed cell death
and mitochondrial function in SLE, and the two biomarkers can lay
a theoretical foundation for the diagnosis and treatment of SLE.
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