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The dynamic behavior of proteins within cellular structures can be studied
using fluorescence recovery after photobleaching (FRAP) and fluorescence loss
after photobleaching (FLAP) experiments. These techniques provide insights into
molecular mobility by estimating parameters such as turnover rates (kT) and
diffusion coefficients (D). However, traditional deterministic models often rely
on simplifying assumptions that may not fully capture the stochastic nature of
molecular interactions. In this study, we developed a novel stochastic model
based on the analytical solution of the chemical master equation to extract
dynamic parameters from FRAP and FLAP experiments in the focal adhesion
(FA) network. Our approach extends beyond standard FRAP/FLAP analysis by
inferring additional parameters, such as protein-specific entry (kIn) and exit (kOut)
rates, allowing a deeper understanding of protein turnover and interactions.
To validate our model, we analyzed previously published experimental data
from NIH3T3 fibroblasts expressing GFP-tagged FA proteins, including tensin
1, talin, vinculin, α-actinin, ILK, α-parvin, kindlin-2, paxillin, p130Cas, VASP, FAK,
and zyxin. These proteins participate in mechanotransduction, cytoskeletal
organization, and adhesion regulation, exhibiting distinct dynamic behaviors
within FA structures. Furthermore, we constructed an interaction network to
quantify how vinculin and actin influence talin dynamics, leveraging our model
to uncover their regulatory roles in FA turnover. Using an analytical solution
of the chemical master equation, our framework provides a generalizable
approach for studying protein dynamics in any system where FRAP and FLAP
data are available. It can be applied to new experimental datasets and reanalyzed
from existing data, revealing previously inaccessible molecular interactions and
enhancing our understanding of FA dynamics and broader cellular processes.

KEYWORDS

chemical master equation, focal adhesion, FRAP, FLAP, protein dynamics, protein
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1 Introduction

Fluorescence recovery after photobleaching (FRAP) and
fluorescence loss after photobleaching (FLAP) are two related
imaging techniques used in cell biology to study the dynamics of
fluorescently labeled proteins within living cells. These techniques
provide valuable insights into the movement, interactions, and
turnover rates of cellular components (Day et al., 2012; Dunn et al.,
2002). In FRAP, a specific region of interest within a cell is
selected to study a labeled molecule with a fluorescent marker,
typically a fluorescently tagged protein or lipid. This region is
subjected to intense light, such as from a laser, which bleaches
the fluorophores in that area, rendering them non-fluorescent.
The fluorescence recovery in the bleached area over time is
then monitored using a fluorescence microscope. As fluorescent
molecules from the surrounding unbleached areas diffuse into the
bleached region, the fluorescence signal gradually returns, allowing
researchers to measure the rate and extent of recovery.This recovery
can provide valuable information about the labeled molecule’s
mobility, turnover, and interactions within the cell (Sprague and
McNally, 2005; Lippincott-Schwartz et al., 2001; Axelrod et al.,
1976; Hickey et al., 2021). FLAP, on the other hand, is focused
on studying the mobility and dynamics of specific proteins within
living cells. The molecule to be located carries two fluorophores:
one to be photobleached and the other to act as a reference label.
The use of a reference fluorophore permits the distribution of the
photo-labeled molecules themselves to be tracked by simple image
differencing. FLAP is comparable with methods to track fluorescent
proteins by direct photoactivation, however, instead of monitoring
the overall recovery of fluorescence within the bleached area
alike in FRAP, it involves tracking the movement of fluorescently
labeled molecules into and out of subcellular structures. This
allows researchers to assess not only the overall mobility of
the labeled molecules but also their specific localization within
different cellular compartments (Lippincott-Schwartz et al., 2001;
Hickey et al., 2021).

Mathematical modeling of FRAP and FLAP data allows
the determination of dissociation and association rates (kOff
and kOn), distribution of mobile and immobile fractions, and
corresponding diffusion coefficients (D) (Lippincott-Schwartz et al.,
2018; Giakoumakis et al., 2017; Carrero et al., 2003; Mai et al.,
2011). These data can be analyzed by employing deterministic or
stochastic mathematical models. Deterministic models assume that
molecular behavior is predictable and use differential equations
to describe the evolution of the concentration or intensity of the
fluorescent molecules over time and space (Ellenberg et al., 1997;
Houtsmuller et al., 1999; Braeckmans et al., 2003; Braga et al., 2004;
Mazza et al., 2008). In contrast, stochastic models consider the
random nature of molecular movements and interactions and the
variability and noise in the experimental data. In this way, stochastic
models can provide a more accurate and realistic estimation of
the diffusion and binding parameters than deterministic models
(Blumenthal et al., 2015; Moraru et al., 2008; Bläßle et al., 2018;
Röding et al., 2019; Nicolau et al., 2007; Groeneweg et al.,
2014; Carnell et al., 2015; Dallon et al., 2022; Riznichenko and
Rubin, 2021; Vilaseca et al., 2011).

Existing models analyzing FRAP and FLAP experiments are
often deterministic and rely on simplification and assumptions

about particular parameter values to calculate the analytical
solution (Phair et al., 2003; Phair and Misteli, 2001; Lippincott-
Schwartz et al., 2018). In this work, we are proposing the first
stochastic mathematical model that relies on only 2 parameters to
explain the dynamics of protein behavior inside the FA (region
of interest - R.O.I.). The model is very straightforward and does
not require any prior assumptions. It uses only the information of
the turnover rate (kT) and the stationary concentration of mobile
proteins (nPin), that are traditionally extracted from FRAP and FLAP
experiments.

Our study examines FRAP and FLAP outcomes for 12 proteins
within the focal adhesion (FA). FA are multiprotein assemblies that
manifest as localized adhesive structures, readily observable through
fluorescence microscopy, as illustrated in Figure 1. More than 2,000
proteins have been associated with a wider protein network of
FAs, and about 60 of them are core adhesion proteins that play
a direct role in regulating cell-matrix adhesion (Atherton et al.,
2015; 2016; Jansen et al., 2017; Kanchanawong et al., 2010).
Based on their dynamic turnover rates, these proteins can be
distinctly categorized into mechanosignaling, intermediate and
mechanosensing modules, as proposed by (Stutchbury et al.,
2017) and illustrated in Figure 1. Mechanosensing proteins are
those that link integrins to the contractile force machinery and
mechanosignalling proteins modulate this link through signals
that control Rho GTPases which in turn influence the actin
polymerization or/and actomyosin contractility. Despite the
advances in our understanding, the mechanisms by which the
different proteins cooperate and coordinate the communication
of the cells with the surrounding extracellular matrix (ECM) are
still unclear.

Here, we introduce a stochasticmodel grounded in the analytical
solution of the chemical master equation (CME), which we apply
to analyze FRAP and FLAP data. Our model estimates the rates of
protein entrance (kIn) and exit (kOut) from the focal adhesion region
of interest (ROI), providing deeper insights into protein dynamics
compared to traditional turnover rates. Furthermore, our model
predicts how perturbations, such as mutations that disrupt protein
interactions,might affect protein behavior.This approach opens new
avenues for in silico testing of protein interactions and provides
valuable experimental insights into FA dynamics and other cellular
processes.

2 Methods

2.1 Experimental data

The experimental data were obtained from previous FRAP
and FLAP data sets. For FRAP experiments, NIH3T3 fibroblasts
were transfected with GPF-tagged FA proteins of interest (tensin
1, talin, vinculin, a-actinin, ILK, a-parvin, kindlin-2, paxillin,
p130Cas, VASP, FAK or zyxin, Figure 2a). Photobleaching was
achieved with a 488 nm laser and fluorescence recovery monitoring
at 10-s intervals for up to 5 min using a DeltaVision system RT
microscope (Stutchbury et al., 2017).

For FLAP experiments, NIH 3T3 cells were transfected
with PAGFP-tagged protein of interest (talin-full length,
talinΔR1R10, talinΔR2R3 or talinΔR4R10) and mCherry-tagged
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FIGURE 1
Integrin-mediated cell-matrix adhesions. (a) During cell spreading, cells form cell-matrix adhesions, which in cultured cells are called Focal Adhesions
(FAs). (b) Fluorescence microscopy of. Smooth muscle cell stained for the FA marker paxillin (red) and filamentous actin (F-actin; green); nucleus in
blue (image captured by the authors). (c) Model of molecular constituents of FA proposed by (Stutchbury et al., 2017). The model displays two modules
involved in mechanotransduction: the mechanosensing module, comprising proteins that form a direct link to the contractile actomyosin (e.g., talin
and vinculin), and other regulatory proteins that are involved in signaling processes (kindlin, FAK, paxillin and other proteins) (Created in BioRender. DE
OLIVEIRA, L. (2025) https://BioRender.com/2q1onya).

marker. Photoactivation was performed with a 405 nm laser
and imaging was conducted using a spinning disk confocal
microscope (Atherton et al., 2015).

2.2 Extracting dynamic parameters from
FRAP and FLAP experiments

FRAP and FLAP experimental data consist of fluorescence
intensity curves representing the recovery or the loss of intensity,
respectively (Ishikawa-Ankerhold et al., 2012). These curves have
an exponential shape and can be fitted using the equation y =
y0 +Ae

R0x, thus yielding values for the parameters y0, A, and
R0 (see Supplementary Figure S1).

The analytical solution of the chemical master equation
used in our model relies on two experimental parameters: the
turnover rate (kT) and the stationary concentration of mobile
proteins (nPIn). The turnover rate is obtained from the fit of
the experimental fluorescence recovery data and is calculated
as kT = |R0|, representing the protein’s mobility in the evaluated
experiment. The stationary concentration of mobile proteins (nPIn)

is inferred from the fluorophore intensity at the last time point of
each experiment, which is considered to represent the stationary
population of the mobile protein within the region of interest (ROI).
In our model, the chemical master equation describes the time
evolution of the protein population, and it is assumed that the
fluorescence intensity is proportional to the number of molecules in
the system, as commonly adopted in fluorescence-based quantitative
studies (Elowitz et al., 2002; Zhang et al., 2016; Muñoz-Cobo and
Berna, 2019; Qian and Bishop, 2010). This definition ensures that
our model directly incorporates experimentally measured values to
describe protein dynamics.

2.3 Stochastic model of master equation

The stochastic mathematical model is built using a combination
of experimental data from FRAP and FLAP (Atherton et al.,
2015; Stutchbury et al., 2017) and the formalism of the chemical
master equation (De Oliveira, 2014; Qian and Bishop, 2010;
Van Kampen, 1992). The chemical master equation is a class
of discrete-state, continuous-time Markov jump processes,

Frontiers in Molecular Biosciences 03 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1587608
https://BioRender.com/2q1onya
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


de Oliveira et al. 10.3389/fmolb.2025.1587608

FIGURE 2
Experimental and theoretical framework for studying focal adhesion protein dynamics. (a) Example of time-lapse images from a Fluorescence
Recovery After Photobleaching (FRAP) experiment in NIH3T3 fibroblasts transfected with a GFP-tagged FA protein. The dashed box indicates the region
of interest (R.O.I.) selected for photobleaching, corresponding to a FA. Insets show magnified views of the R.O.I. at different time points post-bleaching,
highlighting fluorescence recovery within the bleached region (dotted ellipse). (b) Schematic representation of the abstract model used for interpreting
FRAP and Fluorescence Loss After Photobleaching (FLAP) experiments. Proteins outside the FA region (ProteinOut) can enter (rate kProteinIn ) and proteins
inside (ProteinIn) exit (rate kProteinOut ) the FA region. The green area represents the experimental R.O.I., corresponding to a focal adhesion.

known as multi-dimensional birth-death processes in probability
theory (Pinsky and Karlin, 2010; Van Kampen, 1992). In
this formalism, the concentration of proteins is modeled as
temporal variables assuming non-negative real values. These
processes are continuous in time, their range consists of
integers, and only jumps between adjacent states are permitted
(Van Kampen, 1992).

2.3.1 Protein in-out model
Based on the experimental data, we propose a model to

describe protein dynamics in FRAP/FLAP experiments. In this
model, the protein population is represented by its concentration
inside (nPIn) and outside (nPOut) the FA (Figure 2b). The temporal
evolution of these populations is governed by the transition rates
kProteinIn and kProteinOut , which define the protein flux into and out
of the FA over time. Given the time scales of the experiments
(Atherton et al., 2016; Stutchbury et al., 2017), the total protein

concentration can be considered constant:

nPTot = n
P
In + n

P
Out. (1)

This means that the system is fully described in terms of one of
the two populations, nPIn or nPOut and we choose to write our model
in terms of the proteins inside (nPIn) the FA (R.O.I.).

2.3.2 Inference of dynamic parameter using the
analytical solution of the chemical master
equation

Following the Protein-In-Out model 2.3.1, the one protein
FRAP/FLAP experiment is fully described by a one-dimensional
chemical master equation (Van Kampen, 1992), that is written as:

dp(nPIn (t))
dt
= r(nPIn (t) + 1)p(n

P
In (t) + 1) + g(n

P
In (t) − 1)

p(nPIn (t) − 1) − (r(n
P
In (t)) + g(n

P
In (t))p(n

P
In (t)) (2)
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Where the protein concentration over time inside the FA is described
by the probability p(nPIn(t)) of finding the system in that state. The
time evolution of p(nPIn(t)) is represented by a combination of:

1. The gain term, g(nPIn(t)) = k
Protein
In nPOut(t), responsible for the

increment of the concentration of the protein inside the FA;
2. The recombination term, r(nPIn(t)) = k

Protein
Out nPIn(t), responsible

for the reduction of the concentration of the protein
inside the FA.

The system represented by Equation 2 respects the detailed
balance condition, which means the system has an exact
analytical solution (Toral and Colet, 2014),

nPIn (t) =n
P
In (t0)

kProteinOut + k
Protein
In exp(−(kProteinOut + k

Protein
In )(t− t0))

kProteinOut + k
Protein
In

+ nPOut (t0)
kProteinOut (1− exp(−(k

Protein
Out + k

Protein
In )(t− t0)))

kProteinOut + k
Protein
In

(3)

Where nPIn(t0) and nPOut(t0) are the initial concentration of proteins
inside and outside the FA, respectively.

From Equation 3, the concentration of proteins in the stationary
state nPIn in terms of kProteinIn and kProteinOut is written as follows:

nPIn =
kProteinOut

kProteinOut + k
Protein
In

(4)

The turnover rate of FRAP/FLAP experiments is represented as
the combination of kProteinIn and kProteinOut (Sprague et al., 2004; Sprague
and McNally, 2005),

kT = k
Protein
Out + k

Protein
In (5)

WithEquations 4, 5 the experimental values of kProteinIn and kProteinOut
are determined as:

{
{
{

kProteinOut = n
P
In ⋅ kT

kProteinIn = kT − k
Protein
Out

(6)

Where the stationary concentration of mobile proteins (nPIn) and
the turnover rate (kT) are extracted directly from fitting the FRAP
experiments (Lippincott-Schwartz et al., 2018; Blumenthal et al.,
2015; Giakoumakis et al., 2017; Sprague and McNally, 2005)
(Section 2.2). The results are shown as normalized data in function
of the total intensity per protein. In the case of FLAP, the stationary
concentration of mobile proteins inferred is nPOut, which can
similarly be used following Equation 1.

2.3.3 Inference of protein interaction using the
chemical master equation

Data from individual protein experiments (Section 2.3.1,
Section 2.3.2) was used to build a network representing the
interaction of proteins inside the FA. At this step, the dynamic
interaction between proteins was described by the chemical
master equation divided into two steps: 1) the entrance and
exit of proteins in the FA, and 2) the interaction of those
proteins (Figure 3). FA is a complex of more than 60 proteins
(Jansen et al., 2017; Kanchanawong et al., 2010; Zaidel-Bar et al.,

2003), and the experimental data measure a combinatory behavior
of the interaction of the protein with some other proteins
in the FA. Figure 3 is a simplification of this system considering
3 proteins, where all other proteins of the FA complex are taken into
account by the term “other proteins”.

In order to understand the influence of Protein2 and Protein3,
on Protein1 dynamics, the chemical master equation (Equation 2)
is represented by the following terms (De Oliveira, 2014; Qian and
Bishop, 2010; Van Kampen, 1992):

{
{
{

g(nP1
In (t)) = k

P1
In ⋅n

P1
Out (t) + (k

P2
In + k

P3
In) ⋅n

P1
In (t)

r(nP1
In , t) = (k

P1
Out⋅n

P1
In)

(7)

Where g(nP1
In(t)) is considering the entrance of Protein1 in the FA,

kP1
In , and the recruitment of proteins Protein2, k

P2
In and Protein3, k

P3
In

and their interactionwithProtein1.The term r(nP1
In(t)) is representing

the exit of Protein1 from the FA. As Equation 7 does not have an
analytical solution, the Gillespie algorithm (Gillespie, 1977; Liang
andQian, 2010)was used as a numerical solution to solve the system.

2.4 Statistical methods

2.4.1 Outliers removal
The presence of outliers in the experimental data was examined,

presenting a challenge due to the experiments having a bi-
dimensional nature (temporal curves) rather than one-dimensional
points. To address this, each curve of each protein was individually
fitted, resulting in a uniqueR0 parameter associatedwith itsmobility.

Outliers were identified from the R0 values of each protein
using the interquartile range (IQR) method (Equation 8),
defined as follows:

IQR = Q3 −Q1 (8)

Also the definition of the upper (UCL) and lower (LCL) limits,
as follows (Equation 9):

{
{
{

UCL = Q3 + 1.5IQR

LCL = Q1 + 1.5IQR
(9)

After determining UCL and LCL, we excluded from our
sample space the curves whose R0 values were considered outliers.
To compute kT for each protein, we first obtained an average
experimental curve for each protein and then applied the fitting
procedure described in Section 2.2 to determine kT and nPIn. The
use of average curves is justified by the fact that the model does
not account for the parameters y0 and A, which can cause shifts in
the curves.

2.4.2 Cross-validation
As the experimental data used to calculate the dynamic

parameters kIn and kOut was the same used to compare with
the analytical curve (Section 2.3.2), there is a risk of introducing
overfitting. Although the model accurately represents the existing
dataset, its predictive capacity for new experimental replicates
remains uncertain. To assess themodel’s predictive performance and
mitigate the risk of overfitting during parameter calculation, K-Fold
cross-validation was employed.
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FIGURE 3
Representation of FA protein interactions considering 3 proteins to be studied, where only the interactions of protein 2 and 3 with protein 1 are
considered. The model considers the entrance and exit of proteins in and out of the FA (green region). Each protein has one pair of dynamic rates k

Pn

In

and k
Pn

Out, where n is the protein is the protein identification (Protein1, Protein2 or Protein3).

TABLE 1 MAPE interpretability (Lewis, 1982).

MAPE (%) Interpretation

<10 Highly accurate forecasting

10–20 Good forecasting

20–50 Reasonable forecasting

>50 Inaccurate forecasting

2.4.2.1 K-Fold cross-validation
K-Fold cross-validation (Borra and Di Ciaccio, 2010) is a

technique that partitions the dataset into K subsets. Each iteration
of this method involves training the model K times, with each
subset serving as an independent validation set to calculate the
prediction error. This process yields K estimates of the model’s
predictive performance. To qualitatively interpret the predictive
capacity of the model, the Mean Absolute Percentage Error (MAPE)
was used Table 1 (Lewis, 1982). A MAPE value below 20%
indicates that the model is suitable for the prediction of the
protein behavior.

3 Results

In this section, we present the results of our analysis using the
analytical solution of the chemical master equation applied to FRAP
and FLAP data. The experimental data used in this study were
extracted from previously published datasets of FRAP and FLAP
experiments (Stutchbury et al., 2017; Atherton et al., 2015). The

dynamic parameters, turnover rate (kT) and stationary concentration
(nPin), were calculated (Section 2.2; Supplementary Section 1.2). To
ensure the robustness of our results, outliers were excluded
from the analysis, and the number of independent experiments
used to determine the dynamic parameters for each protein is
summarized in Supplementary Table S1. Although the outliers may
contain importantdata, their removalwas intendedtofilteroutadverse
effectsof theexperimentalprocedure,obtainingamoreregularpattern
in each protein’s behavior and an easier-to-reproduce value of the
subsequently calculated parameters (such as kT,kIn and kOut).

The analysis of the dynamic parameters was performed in
several steps: first, we evaluated the performance prediction of the
analytical solution of the chemical master equation, followed by the
determination of the dynamic parameters. Next, we explored the
influence of kIn and kOut on the dynamics of focal adhesion (FA)
proteins, which allowed us to investigate protein interactions in the
context of the FA network.

Our findings demonstrate that themodel effectively captures the
dynamics of proteins within the FA, offering insights into protein
turnover and interactions that go beyond the traditional analysis of
kT. By using kIn and kOut, we were able to quantify the influence of
specific protein interactions and infer how these interactions shape
protein behavior within the FA.

3.1 Performance evaluation of the
analytical solution to the chemical master
equation using K-Fold cross-validation

The K-Fold cross-validation was performed on the outlier-free
dataset. The choice of K represents a trade-off between bias and
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TABLE 2 K-Fold cross-validation results: The results are interpreted following Table 1. For the three studied values of K (3, 5 and 10), 100 reproductions
were performed, the averages of MAPE values are presented with their respective uncertainties.

Protein K = 3 K = 5 K = 10

MAPE(%) Interpretation MAPE(%) Interpretation MAPE(%) Interpretation

Tensin1 7.25±0.10 Highly accurate 7.61±0.09 Highly accurate 8.88±0.10 Highly accurate

Talin1 11.5±0.4 Good 13.2±0.4 Good 17.9±0.4 Good

Vinculin 6.63±0.18 Highly accurate 7.45±0.16 Highly accurate 9.18±0.15 Highly accurate

α-Actinin 7.05±0.15 Highly accurate 7.48±0.12 Highly accurate 9.18±0.15 Highly accurate

ILK 7.62±0.19 Highly accurate 8.44±0.19 Highly accurate 10.25±0.17 Good

α-Parvin 7.52±0.17 Highly accurate 8.32±0.15 Highly accurate 9.70±0.13 Highly accurate

Kindlin2 8.59±0.25 Highly accurate 9.83±0.24 Highly accurate 11.99±0.24 Good

Paxillin 9.80±0.28 Highly accurate 10.72±0.29 Good 14.78±0.33 Good

p130Cas 7.53±0.21 Highly accurate 8.89±0.23 Highly accurate 11.26±0.18 Good

VASP 8.79±0.33 Highly accurate 11.06±0.34 Good 14.62±0.27 Good

FAK 6.98±0.24 Highly accurate 8.10±0.20 Highly accurate 10.93±0.20 Good

Zyxin 5.37±0.14 Highly accurate 6.22±0.12 Highly accurate 7.59±0.11 Highly accurate

variance (Borra and Di Ciaccio, 2010), therefore the data was cross-
validated using K = 3, K = 5 and K = 10. For each value of K the
cross-validation procedure was reproduced 100 times. The MAPE
obtained across all K values fall within the “Highly accurate” to
“Good” ranges, as defined by Table 2.Therefore, themodel possesses
strong predictive capabilities of protein dynamic behavior by the
analytical solution. The model’s validity is maintained even when
outlier data is retained in the dataset (Supplementary Table S3).

3.2 Determination of dynamic parameters
through the analytical solution using the
chemical master equation

The analytical solution of the chemical master equation
(see Section 2.3.2) demonstrated strong predictive performance
in modeling protein dynamics, as indicated in Table 2. The
dynamic parameters kIn and kOut (Table 3) were calculated using
Equation 6, based on experimental FRAP data. This data includes
the turnover rate (kT), the steady-state protein concentration
(nPin), and the percentage of fluorescence intensity observed
in FRAP (see Supplementary Section 1.2 for details). These
parameters were then used to generate dynamic curves representing
protein behavior, with each curve corresponding to one of the 12
FA proteins.

In Figure 4, a representative protein from each
mechanotransduction module is presented: structural (talin1,
Figure 4a), intermediate (α-actinin, Figure 4b), and signaling (FAK,
Figure 4c).Themodel’s predictions are compared with experimental
data, and the observed agreement indicates that the model

accurately represents protein dynamics. The dynamic parameters
kIn and kOut for each of the 12 FA proteins are summarized in
Table 3; Supplementary Figures S2–S4.

Although the model does not explicitly calculate protein
interactions, the dynamic parameters kIn and kOut reflect protein
behavior within the FA over time. A high value of kIn indicates
frequent protein entry into the FA, while a low value suggests
infrequent entry. Similarly, high kOut values indicate more frequent
protein exit from the FA, and low values suggest less frequent exit.
These rates, expressed inmolecules per second, represent the average
behavior of the protein population. The mathematical formulations
for these parameters are provided in Section 2.3.2, in Equations 2, 3.

The dynamic curves derived from these parameters align
with the FRAP experimental data reported by (Stutchbury et al.,
2017) (see Supplementary Figures S2–S4). In conclusion, the
dynamic parameters kIn and kOut effectively describe FA protein
dynamics in accordance with experimental observations.

3.2.1 Exploring the influence of kIn and kOut on
the dynamics FA proteins

To elucidate the impact of dynamic parameters, kIn and kOut,
in the FA proteins, we plotted the rates kT, kIn and kOut (/s)
observed among all 12 FA proteins (Figure 5). Our analysis of
kT showed consistency with the patterns previously observed
experimentally by Stutchbury et al. (2017), where the proteins
were subdivided into three modules: structural, intermediate, and
signaling. By examining the dynamic parameters kIn and kOut, it is
possible to verify the influence of each of these parameters in the
system’s dynamics. For instance, proteins such as tensin1, talin1,
ILK, α-parvin showed kIn ≃ kOut (indicating that the rate of protein
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TABLE 3 Dynamic rates of FA proteins: The turnover rate kT and the protein concentration in the steady state inside the focal adhesion (Equation 4)
were extracted directly from the exponential fit of the intensity distribution of FRAP data. The dynamic parameters kIn and kOut were calculated with the
analytical solution in Equation 6.

Protein kT (10
−3/s) kIn (10

−3/s) kOut (10
−3/s) nP

in (normalized intensity)

Tensin1 11.29±0.32 4.94±0.20 6.35±0.23 0.562±0.013

Talin1 15.0±0.6 7.8±0.5 7.2±0.5 0.481±0.030

Vinculin 17.7±0.7 5.2±0.4 12.5±0.6 0.706±0.021

α−Actinin 25.7±1.4 6.1±0.6 19.6±1.2 0.761±0.020

ILK 23.4±1.2 9.3±0.6 14.1±0.8 0.603±0.017

α−Parvin 26.1±1.5 10.7±0.8 15.4±1.0 0.590±0.018

Kindlin2 28.8±1.8 10.6±0.9 18.1±1.3 0.630±0.022

Paxillin 37.3±2.5 14.2±1.5 23.1±1.9 0.619±0.031

p130Cas 45.0±3.1 12.5±1.4 32.6±2.5 0.724±0.026

VASP 86±7 19.2±3.4 66±6 0.78±0.04

FAK 83±6 29.1±3.0 54±5 0.649±0.024

Zyxin 87±6 14.9±2.2 72±6 0.829±0.021

entrance is similar to the rate of protein exit), but their classification
into different modules was evident when considering kT (turnover
rate). Comparing the results obtained from our analysis directly
involving kIn and kOut with the modules observed only using kT
it becomes evident that kIn and kOut have introduced a diverse
array of new dynamical behaviors. These findings underscore the
significance of considering finer details of parameter dynamics to
better understand biological behavior.

3.3 Explore dynamic interaction between
proteins using kIn and kOut

To assess the ability of the analytical solution to describe protein-
protein interactions, talin was selected as a model. Talin plays a
central role in cell adhesion by linking integrin receptors to the
actin cytoskeleton (Figure 1). It is a large protein with a modular
domain organization that contributes to its structural flexibility and
diverse functions (Critchley, 2009; Gingras et al., 2009; Anthis et al.,
2009; Calderwood et al., 1999; Atherton et al., 2015). In addition,
talin binds to vinculin via multiple vinculin-binding sites in the
talin rod region (Zhang et al., 2008; Wang, 2012; Ruoslahti, 1991).
This interaction stabilizes FA and is a process that is thought to
be regulated by mechanical force through talin’s interaction with
integrins at the N-terminal FERM region and with F-actin at its C-
terminal ABS2 and ABS3 regions (Yao et al., 2016; Chorev et al.,
2018). To facilitate the understanding of the contribution of each
domain of talin, the protein was divided into functional sites
as shown in Supplementary Figure S5.

The network representing the interactions of talin with vinculin
and α-actinin within the FA was constructed by using the individual

values of kIn and kOut of each protein (Figure 6). The dynamics
of actin are complex and involve multiple subpopulations of actin
filaments with different kinetics or behaviors. This complexity
makes interpreting FRAP or FLAP data for actin challenging, as
these techniques assume a homogeneous population of molecules
(Lippincott-Schwartz andPatterson, 2008;Watanabe andMitchison,
2002). In this way, α-actinin, an actin-binding protein, was used
as a surrogate for actin behavior as it follows the trajectory of
actin (Carisey et al., 2013). We present it as a model to study
the interaction of talin inside the FA. Talin full-length (FL)
was used as a reference, and the dynamic rates were calculated
from FLAP experiments (Supplementary Figure S6). The choice of
using FLAP data in contrast to FRAP data was made because
the positive fluorescence signal after photoactivation was less
variable and more sensitive than the data provided by FRAP
(Stutchbury et al., 2017).

To evaluate whether our stochastic framework can capture the
regulatory influence of vinculin on talin dynamics (Figure 6a), we
define amodified differential equation that incorporates the effect of
vinculin into the dynamics of talin, as introduced in Section 2.3.3.
The master equation describing the time evolution of the
probability distribution of talin molecules in the bound state
is given by:

dp(nTalinIn , t)
dt
= kTalinIn ⋅ n

Talin
Out − k

Talin
Out ⋅ n

Talin
In − k

V inculin
In ⋅ nTalinIn (10)

The term kTalin
In ⋅ n

Talin
Out accounts for the transition of talin

molecules from the unbound to the bound state within the FA.
The second term kTalin

Out ⋅ n
Talin
In describes the unbinding process of

talin inside FA. The term, kVinculin
In ⋅ nTalin

In , introduces the effect of
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FIGURE 4
Performance of the model Protein In-Out model using the analytical solution of the chemical master equation for three proteins of each
mechanotransduction modules. (a) mechanosensing module: Talin1; (b) intermediate module: α-actinin; (c) mechanosignaling module: FAK. Analytical
curves are represented in green (•) with the uncertainty represented in gray. The experimental data points are represented in black (•) and each point
represents mean ± SEM. The analytical curve was compared to experimental data and the performance metrics Root-mean-square error (RMSE) and
MAPE are depicted in each graphic.

vinculin on talin dynamics. If the rate of entrance of vinculin within
FA is impaired, it will directly influence talin dynamics, which
is proportional to current vinculin abundance. This formulation
extends the stochastic model to incorporate molecular interaction
and provides a basis for quantifying the influence of vinculin on
the temporal distribution of talin states. The solution of Equation 10
considering the exclusion of the interaction of vinculin with talin,
demonstrated that the contribution of the term kV inculin

In ⋅nTalinIn
is to increase the probability of talin to stay outside the FAs
(Figure 7). Indeed, FLAP experimental data using talinmutantswith
4 (talinΔR4R10) or 9 (talinΔR1R10) deleted vinculin binding sites
(VBSs) have increased turnover rates when compared with talinFL
(Atherton et al., 2015) (Figures 7a,b).

To incorporate the regulatory influence of actomyosin on talin
dynamics, we extend the differential equation to:

dp(nTalinIn , t)
dt
= kTalinIn ⋅, n

Talin
Out − k

Talin
Out  ⋅ n

Talin
In + k

α−actinin
In ⋅ nTalinIn (11)

The term kα−actininIn ⋅ nTalin
In introduces the influence of actomyosin

(modeled here through the parameter associated with α-actinin)
on talin behaviour. This term extends the stochastic model to
incorporate cytoskeletal contributions and provides a framework for
quantifying the impact of actomyosin on the temporal distribution
of talin states. The solution of Equation 11 demonstrated that the
interaction between actin and talin leads to increased retention of
talin at FAs, which is consistent with experimental observations
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FIGURE 5
Plot of the normalized rates of all FA proteins belonging to different
modules. Blue triangles are the turnover rate (kT) calculated from the
experimental data (Stutchbury et al., 2017), black squares are the
entrance rate (kIn) and the red circles are the exit rates (kOut) of the
ROI (FA) derived from our model.

(Atherton et al., 2015) (Figure 7c). A previous model suggested
that when talin is inactive, R2R3 remains in a closed loop bundle
and requires force to change the conformation of talin to allow
actin to bind to a previously masked binding region. This is in
agreement with FLAP experiments where the deletion of R2 and
R3 domains of talin (talinΔR2R3) activates actin-binding site (ABS)
2 and stabilizes FA independent of vinculin (which itself has a
stabilizing effect, Supplementary Figure S7).

Altogether, our data demonstrate that our model can be
extended to infer protein interactions. By using the value of the
dynamic rates of full-length talinFL (wild-type) and modifying its
interactions with vinculin and actomyosin, we effectively simulated
scenarios representing a loss of vinculin interaction (resulting
in increased talin turnover rate), and constitutive binding to
actomyosin (resulting in reduced talin turnover).

4 Discussion

We developed a stochastic mathematical model based on
the analytical solution of the chemical master equation to infer
dynamic rates, kIn and kOut, from FRAP and FLAP experiments
of FA proteins (Table 3; Supplementary Table S2). These rates
provide additional information on the dynamic behavior of
proteins beyond the turnover rate, kT, typically extracted from
experimental data. Furthermore, our model was cross-validated
using K-Fold cross-validation technique eliminating the possibility
of overfitting (Table 2).

The model describes different protein dynamics with the
same accuracy as determined experimentally, distinguishing

between proteins in the mechanotransduction modules as
previously proposed (Stutchbury et al., 2017): structural (tensin1,
talin1, and vinculin, Supplementary Figure S2), intermediate
(α-actinin, ILK, α-parvin, kindlin2, Supplementary Figure S3),
and signaling (paxillin, p130Cas, VASP, FAK and zyxin,
Supplementary Figure S4). While previous studies attempted to
extract dynamic parameters from FRAP and FLAP experiments
(Sprague et al., 2004; Sprague and McNally, 2005; Alexander and
Lawley, 2022; Kang et al., 2009; Kang, 2020) our model is the first
to use the formalism of the chemical master equation to study
the dynamic behavior of FA proteins. Additionally, with only two
parameters, kIn and kOut our model effectively captures the phase
transition of protein dynamic, from a slower mechanical interaction
to a faster biochemical interaction (Supplementary Figures S2–S4;
Table 3). Each FA protein exhibits unique mechanisms in its
dynamics, and our stochastic model can describe them all based on
the values of kIn and kOut. It also provides new insights into how the
proteins interact and behave in the FA. Examination of kIn and kOut
(Table 3; Figure 5) revealed that kOut predominantly influences the
protein dynamics and represents how the proteins interact within
FAs. Low values of kOut indicate strong interactions, while high
values indicate weak interactions within FAs. kIn showed minimal
variation between proteins and represented the protein behavior
outside of FAs. Note that proteins from the structural module, such
as tensin, talin and vinculin, interact directly with integrins and
have a smaller value of kIn and kOut. In contrast, proteins from the
signaling module show higher values of kIn and kOut. This trend is
evident in the behaviors of tensin and FAK, as illustrated in Figure 5.

Several models have been described in the literature to extract
dynamic parameters from FRAP and FLAP experiments. The
reaction-diffusion model integrates molecular diffusion processes
and chemical reactions (such as binding and unbinding) to represent
molecular movement and interactions within cells (Carrero et al.,
2003; Phair and Misteli, 2001; Sprague et al., 2004; Mueller et al.,
2008). Key parameters inferred from FRAP experiments using this
model include the diffusion coefficient, binding rates, and unbinding
rates. However, a significant challenge is to accurately estimate
these parameters when the underlying model assumptions are
oversimplified, potentially resulting in misleading interpretations
and compromising the predictive reliability of the model (Mai et al.,
2011). On the other hand, kinetic models focus on biochemical
reaction rates, such as binding and unbinding, and use ordinary
differential equations (ODEs) to describe the temporal evolution of
molecular concentrations (Mai et al., 2011; Sprague et al., 2004). It
is a deterministic model that may not fully capture the stochastic
nature of biological systems. For more realistic representations,
stochastic models such as Monte Carlo simulations can apply
random sampling to probabilistically model molecular movements
and interactions in FRAP experiments (Mueller et al., 2008).

However, these simulations are computationally demanding,
and require substantial computational resources and time,
particularly for complicated or large-scale models (Lorén et al.,
2015). Another alternative for parameter estimation is the Hidden
Markov Model (HMM), which uses probabilistic frameworks
to describe systems where the state (hidden) is inferred from
observable data (emissions). In FRAP experiments, HMMs can
model the temporal dynamics of molecular interactions through
transitions between hidden states governed by transition and
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FIGURE 6
Abstract model for the network of interactions of vinculin and α-actinin with talin. (a) Deletion of vinculin interaction with talin. (b) Addition of
actomyosin interaction with talin.

emission probabilities (Braeckmans et al., 2003; Braga et al.,
2004; Mazza et al., 2008). However, the challenges of this type of
modeling include the complex estimation of these probabilities,
especially in the presence of noisy data or numerous hidden states.
In the present work, we present a straightforward model using
the chemical master equation and two parameters traditionally
obtained from FRAP and FLAP experiments: the turnover rate
kT and the stationary concentration of mobile proteins (nPin).
Unlike the other proposed mathematical models, it does not
require any prior assumptions about the proteins, takes into
account the stochastic nature of the experiments, and provides
an exact analytical solution for the system. The limitation of this
approach is the assumption that the molecules of the system are
uniformly distributed within the reaction volume since the cellular
environment is spatially heterogeneous or compartmentalized.
Yamashiro et al. (2023) (Yamashiro et al., 2023), used single-
molecule imaging studies to show that focal adhesion proteins,
such as talin, exist in multiple binding states: bound only to
actin filaments, attached only to integrins, or bridging both
actin and integrins. This heterogeneity is a key feature of focal
adhesion dynamics and contributes to the regulation of cytoskeletal
organization and cellular signaling. The ability of single-molecule
approaches to distinguish between these states, particularly through
the tracking of retrograde actin flow, provides mechanistic insights
that are not directly accessible through ensemble techniques such
as FRAP or FLAP. However, while FRAP/FLAP inherently averages
the behavior of a mixed population of molecules, our modeling
framework incorporates the dynamics of protein interactions via the
kinetic parameters kIn and kOut.These parameters allow us to resolve
subpopulations within the mobile fraction based on their distinct
exchange kinetics. By integrating interaction-based dynamics,
our approach provides a potential means to infer heterogeneous
behaviors within focal adhesion complexes, complementing and
extending the interpretive power of conventional fluorescence
recovery methods.

The chemical master equation also efficiently describes protein-
protein interactions and how they affect protein dynamics. This

information cannot be obtained from experimental data alone
(Sprague and McNally, 2005; Lippincott-Schwartz et al., 2018;
Geverts et al., 2015; Williamson et al., 2021). Knowing the values
of kIn and kOut for each protein, enabled to predict the influence of
vinculin and actin interaction on talin dynamics (Figures 6, 7). The
increased probability of talin remaining outside the FAs consistent
upon elimination of vinculin interaction is consistent with FLAP
experiments showing increased turnover of talin mutants with
deleted vinculin binding sites (Figure 7). Indeed, cells depleted of
vinculin have smaller andmore dynamic FAs (Atherton et al., 2015),
showing that the absence of vinculin will increase the turnover rate
of talin in FAs leading to less stable adhesions. On the other hand,
the interaction of actin with talin results in increased retention of
talin at FA (Figure 7) similar to FLAP experimental data of talin
with deleted R2 and R3 domains, which was shown to result in
the unmasking of the actin-binding site (ABS2) and a vinculin
independent stabilization of FAs (Atherton et al., 2015).

Here, we used α-actinin data to represent actin dynamics.Whilst
not ideal we believe that it best represents actin dynamics when
bundled and in connection with the adhesion plaque. The reason
for this is the observation that in experiments with expression
of constitutively active vinculin FAs, many other proteins become
stabilized in FAs, resisting even cytochalasin D treatment. In
the same cells α-actinin follow the dynamics of disrupted actin
cytoskeleton, suggesting their tight association (Carisey et al., 2013).
In addition, α-actinin and actin are absent from vinculin-stabilized
FAs (Carisey et al., 2013), further supporting the idea that α-
actinin is part of an actin regulatory module as observed by
super-resolution microscopy (Kanchanawong et al., 2010; Liu et al.,
2015). Our data show that although α-actinin has an intermediate
value of kT, the dynamics of kIn and kOut are more similar to
the signaling proteins. It deserves further investigation to define
better and characterize the proteins belonging to this new actin
regulatory module.

In summary, our model navigates in various environments
and can describe very different protein dynamics. Furthermore,
it predicts information for the influence of protein interaction
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FIGURE 7
Numerical solution of the stochastic model taking into account the influence of vinculin and actin in talin dynamics. The dynamic of talin-FL at FA is
represented in blue (−), which was obtained by FLAP experimental data and chemical master equation solution. The exclusion of vinculin (a,b)
contribution resulted in an increased turnover rate of the talin dynamics (orange line represents the mean curve of the 1000 simulations, and the grey
area represents the standard error). It is similar to FLAP experimental data of (a) talinΔR1R10 (•) and (b) talinΔR4R10 (■), which have 9 or 4 vinculin
binding sites deleted from talin, respectively. Each point of the experimental data represents mean ± SEM. (c) The solution of the stochastic model
representing talin interacting with actin shows an increased retention of talin at FA (the amber line represents the mean curve of 1000 simulations and
the grey area represents the standard error). It reproduces the FLAP experimental data of talinΔR2R3 (▴) where the removal of talin R2R3 activates ABS2.

using only kIn and kOut of the interacting proteins. The prediction
was validated using the information from the full-length wild-type
proteins and the mutants that affect the protein interaction. We
employed the analytical solution using the chemicalmaster equation

to extract new dynamic parameters and introduce a more refined
observation of FA protein behavior than kT alone. Importantly, our
model can be extended to study any other proteins of interest as
illustrated in the schematic workflow presented in Figure 8. Our
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FIGURE 8
Strategy workflow of the analytical solution of the chemical master
equation to infer dynamic rates from FRAP and FLAP experiments. The
experimental data (green boxes) allow the extraction of turnover rate
(kT) and the stationary distribution of the protein (nP)is equivalent to
fluorescence intensity. The analytical solution (red boxes) utilizes the
stochastic mathematical model represented by the chemical master
equation (blue boxes) combined with experimental data (green boxes)
to extract the dynamic rates kIn and kout to obtain the temporal
evolution of the protein behavior which is compared to experimental
data. The values of kIn for individual proteins allow the prediction of
protein-protein interaction by the numerical solution (yellow) using
the chemical master equation.

findings highlight the analytical solution as a valuable tool for
conducting in silico testing of protein interactions, thereby offering
new experimental insights into FA dynamics and various other
cellular processes.
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