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Introduction: Small cell lung cancer (SCLC) remains a leading cause of
cancer mortality worldwide, characterized by rapid progression and poor
clinical outcomes, and the function of metabolic reprogramming remains
unclear in SCLC.

Methods: We performed multi-omics analysis using public SCLC datasets,
analyzing single-cell RNA sequencing to identify metabolic reprogramming
patterns between chemotherapy-resistant and sensitive samples. Bulk RNA
sequencing from GSE60052 and cBioportal cohorts was used to identify
metabolism-related gene modules through WGCNA and develop a Gradient
Boosting Machine prognostic model. Functional validation of MOCS2, the
top-ranked gene in our model, was conducted through siRNA knockdown
experiments in SCLC cell lines.

Results: Single-cell analysis revealed distinctmetabolic reprogramming patterns
between chemotherapy-resistant and sensitive samples. WGCNA identified a
turquoise module strongly correlated with metabolic reprogramming (cor =
0.56, P < 0.005). The GBM-based prognostic model demonstrated excellent
performance (C-index = 0.915) with MOCS2, USP39, SMYD2, GFPT1, and PRKRIR
identified as the most important variables. Kaplan-Meier analysis confirmed
significant survival differences between high-risk and low-risk groups in both
validation cohorts (P < 0.001). In vitro experiments showed that MOCS2
knockdown significantly reduced SCLC cell proliferation, colony formation, and
migration capabilities (all P < 0.01), confirming its crucial role in regulating
SCLC cell biology. Immunological characterization revealed distinct immune
landscapes between risk groups, and drug sensitivity analysis identified five
compounds with significantly different response profiles between risk groups.

Conclusion: Our study established a robust metabolism-based prognostic
model for SCLC that effectively stratifies patients into risk groups with distinct
survival outcomes, immune profiles, and drug sensitivity patterns. Functional
validation experiments confirmedMOCS2 as an important regulator of SCLC cell
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proliferation and migration, providing valuable insights for treatment selection
and prognosis prediction in SCLC.

KEYWORDS

metabolic reprogramming, small cell lung cancer, prognosis, immune
microenvironment, drug sensitivity

1 Introduction

Lung cancer remains the leading cause of cancer-related
mortality worldwide, with its histopathological classification
primarily divided into small cell lung cancer (SCLC) and non-small
cell lung cancer (NSCLC). SCLC constitutes approximately 14% of
all cases with a male predominance (Wang et al., 2023; Rudin et al.,
2021). This high-grade neuroendocrine carcinoma predominantly
affects middle-aged and elderly populations with chronic tobacco
exposure. Characterized by rapid proliferative capacity and poor
clinical outcomes, untreated SCLC patients exhibit a median overall
survival (OS) of merely 2–4 months from initial diagnosis (Petty
and Paz-Ares, 2023).

Therapeutic resistance and complex drug tolerance in SCLC
to insufficient understanding of its biological characteristics.
Histogenetic origins of SCLCcells demonstrate remarkable diversity,
including alveolar type 2 (AT2) cells, neuroendocrine (NE)
cells, club cells, and basal cells. However, genomic analyses
reveal that 75%–90% of SCLC cases exhibit inactivation of
tumor suppressor genes TP53 and RB1 (Redin et al., 2024;
Peifer et al., 2012;George et al., 2015).Molecularly targeted therapies
based on transcriptional signatures (ASCL1/NEUROD1/YAP1
subtypes) show emerging clinical promise (Hu et al., 2024;
Chen H. et al., 2023; Chen P. et al., 2023). Collectively, SCLC
manifests profound intratumoral and intertumoral heterogeneity
(Stewart et al., 2020; Rudin et al., 2019), a biological complexity
that substantially complicates prognostic prediction and therapeutic
response anticipation.

Tumor tissue needs to change its metabolic pathway to
meet its material needs during rapid growth, a process called
metabolic reprogramming. Metabolic alterations in tumors reshape
their microenvironment, which in turn further drives metabolic
changes, creating a reciprocal feedback loop that supports tumor
progression. This aberrant metabolic pattern and the resulting
tumor microenvironment contribute to immune cell dysfunction,
further promoting tumor progression (Liu et al., 2024). Studies
have confirmed that glucose, lipid, and amino acid metabolism
are altered in SCLC to sustain rapid proliferation and survival
(Huang et al., 2024). Targeting metabolism has been proposed as
a promising approach in cancer research. Key metabolic enzymes
such as LDH (Mezquita et al., 2018) and SLC7A11 (Iida et al., 2021)
have prognostic value in cancer patients, and drugs targeting these
enzymes have shown tumor-suppressive effects. However, research
on metabolic reprogramming in SCLC remains limited.

Using public SCLC datasets, we constructed a prognostic
model based on metabolism-related genes, analyzed the correlation
between metabolic genes and tumor immunity, and assessed the
potential drug resistance risks in patients with different metabolic
risk profiles.This study provides new insights for treatment selection
and prognosis prediction in SCLC.

2 Materials and methods

2.1 Data sources

Single-cell RNA sequencing (scRNA-seq) data were obtained
from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE138267
(Redin et al., 2024; Peifer et al., 2012; George et al., 2015). This
dataset initially comprised 19 samples, including 8 chemotherapy-
resistant and 11 chemotherapy-sensitive SCLC specimens.
Following rigorous quality control assessment, we excluded three
resistant samples and one sensitive sample due to insufficient
quality metrics. The final analytical cohort consisted of 5 resistant
and 10 sensitive samples, totaling 15 specimens for subsequent
single-cell analyses. Bulk RNA sequencing data were derived
from two independent sources: the GSE60052 dataset from GEO
(Jiang et al., 2016), which contained 79 SCLC tumor samples and 7
adjacent non-tumor control samples, with 48 samples qualifying for
inclusion in subsequent survival analyses after integrating clinical
information; and the cBioportal database (https://www.cbioportal.
org/) (Cerami et al., 2012), comprising 81 SCLC tumor samples, of
which 77 were retained for prognostic analyses following survival
data integration. To investigate metabolic reprogramming in SCLC,
we curated a comprehensive gene set from multiple authoritative
sources, including the GeneCards database (www.genecards.org)
(selecting genes with relevance scores greater than 5 for metabolic
processes) (Stelzer et al., 2016), the Kyoto Encyclopedia of Genes
and Genomes (KEGG) metabolic pathways (https://www.genome.
jp/kegg/) (Kanehisa et al., 2024), the REACTOME database (https://
reactome.org/) metabolic pathway annotations (Milacic et al.,
2023), and the Hallmark gene sets from the Molecular Signatures
Database (MSigDB v5.2) (Liberzon et al., 2015), focusing on
metabolism-related gene signatures.

2.2 Single-cell RNA-seq analysis

2.2.1 Data preprocessing, quality control and
integration

Single-cell RNA sequencing data were processed using the
Seurat package (version 5.1.0) in R (Hao et al., 2024). Raw data
from GSE138267 dataset were obtained as 10X Genomics format
files and systematically processed to standardize file formats. Quality
control metrics were calculated for each cell, including the number
of detected genes, total read counts, percentage of mitochondrial,
ribosomal, and hemoglobin genes. Cells were filtered using stringent
thresholds (200 < nFeature_RNA <6,000, nCount_RNA <25,000,
percent. mt < 10%, percent. HB < 1%) to retain high-quality
single cells.
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Data normalization was performed using Seurat’s
NormalizeData function, followed by identification of the top
3,000 highly variable genes and data scaling. Principal component
analysis was conducted with the optimal 30 principal components
determined via elbow plot analysis. To mitigate batch effects, we
employed the Harmony algorithm with 20 iterations, followed
by dimensionality reduction using t-SNE and UMAP based on
harmony-corrected principal components. Unsupervised clustering
was performed using FindNeighbors and FindClusters functions
with a resolution of 0.8.

2.2.2 Cell type identification and characterization
Cell clusters were annotated based on the expression of

canonical marker genes. We examined the expression patterns of
key marker genes (Baine et al., 2020), including SCLC molecular
subtype markers (ASCL1, NEUROD1), macrophage markers (VIM,
HLA-DRB1,HLA-DQA1, BCL2A1), andNKTcellmarkers (ASCL1,
CD1D, NCAM1). Four major cell populations were identified based
on their gene expression profiles and visualized through uniform
manifold approximation and projection (UMAP).

The cellular compositionwas compared between chemotherapy-
resistant and chemotherapy-sensitive samples to identify potential
differences in tumor cell distribution associated with treatment
response. Differential gene expression analysis was performed
between CTC type A and CTC type N cells to characterize their
molecular distinction using the FindMarkers function in Seurat with
parameters min. pct = 0.1 and logfc.threshold = 0.25.

2.2.3 Pathway analysis and metabolic
reprogramming assessment

Pathway enrichment analysis was conducted using the
irGSEA package (Fan et al., 2024), which integratesmultiple gene set
enrichment methods (AUCell, UCell, singscore, ssgsea, JASMINE,
and viper). We specifically examined hallmark gene sets from the
MSigDB database to identify key pathways differentially activated
between resistant and sensitive samples.

To evaluate metabolic reprogramming, we implemented a
single-sample Gene Set Enrichment Analysis (ssGSEA) approach
using a curated gene set derived from our integrated metabolic
reprogramming gene collection. The ssGSEA scores were calculated
for each cell, enabling us to quantify the degree of metabolic
reprogramming at the single-cell level.The distribution ofmetabolic
reprogramming scores was visualized across different cell types
and compared between treatment response groups using Wilcoxon
rank-sum tests. Cells were further stratified into “high” and
“low” metabolic reprogramming groups based on the median
score, and differential gene expression analysis was performed
to identify genes associated with metabolic reprogramming
phenotypes.

2.3 Weighted gene co-expression network
analysis (WGCNA)

WGCNA was performed to identify gene modules
associated with metabolic reprogramming in SCLC. The analysis
was conducted using the WGCNA package in R on the
GSE60052 dataset (Langfelder and Horvath, 2008), focusing on

the metabolic reprogramming-related genes identified from our
single-cell RNA-seq differential expression analysis.

Prior to network construction, data quality was assessed using
the goodSamplesGenes function to remove genes with zero variance
and detect outlier samples. Sample clustering was performed using
hierarchical clustering with complete linkage method based on
Euclidean distance to identify potential outliers. Following quality
control, a signed co-expression network was constructed with an
appropriate soft-thresholding power selected based on the scale-free
topology fit index (R2) and mean connectivity criteria.

The network was constructed using the blockwiseModules
function with the following parameters: TOMType = “unsigned”
(for unsigned network topology), minModuleSize = 50 (minimum
number of genes in a module), mergeCutHeight = 0.15 (threshold
for merging similar modules), and maxBlockSize = 22,000 (for
computational efficiency). This process enabled the identification
of distinct gene modules, which were assigned different colors for
visualization.

Module-trait relationships were evaluated by calculating
Pearson correlations between module eigengenes (first principal
component of each module) and the metabolic reprogramming
scores derived from ssGSEA. The statistical significance of these
correlations was determined using Student’s t-test with appropriate
adjustment for multiple comparisons.

For key modules of interest, we calculated module membership
(MM) values, which quantify the correlation between individual
gene expression profiles and the module eigengene, as well as
gene significance (GS) values, which represent the correlation
between gene expression and metabolic reprogramming scores.
The relationship between module membership and gene
significance was analyzed to identify potential hub genes
that might play essential roles in metabolic reprogramming
processes in SCLC.

2.4 Machine learning model construction

To develop a robust predictive model for SCLC prognosis
based on metabolic reprogramming gene signatures, we
employed multiple machine learning approaches and ensemble
strategies. The model development process involved data
preparation, feature selection, model training, and validation using
independent datasets.

Two independent SCLC cohorts were utilized: the GSE60052
dataset (n = 48) and the cBioportal dataset (n = 77). Common genes
between datasets were identified, and batch effects were corrected
using ComBat from the “limma” package. A combined training
dataset was constructed by randomly sampling 60% of samples from
each cohort, with the remaining samples reserved for validation.

We implemented and compared multiple survival prediction
algorithms, including Random Survival Forest (RSF), Cox
proportional hazards model with regularization (Lasso, Ridge, and
Elastic Net), Gradient Boosting Machine (GBM), CoxBoost, Partial
Least Squares Regression for Cox (plsRcox), Supervised Principal
Components (SuperPC), and survival-Support Vector Machine
(survival-SVM) (Sun et al., 2024). Additionally, we explored hybrid
approaches by combining feature selection from one algorithm with
model fitting from another.
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For each algorithm, hyperparameters were optimized using
cross-validation. For example, Random Survival Forest was
configured with 1,000 trees and optimal node size determined
through cross-validation. For Elastic Net, the alpha parameter was
systematically varied from 0.1 to 0.9 to identify the optimal balance
between ridge and lasso penalties.

Model performance was evaluated using Harrell’s concordance
index (C-index) across both the training dataset and independent
validation datasets. The C-index measures the model’s ability
to correctly rank patient survival times, with values ranging
from 0.5 (random prediction) to 1 (perfect prediction). Statistical
comparisons between models were conducted to identify the most
robust predictive approach for SCLC prognosis based on metabolic
reprogramming signatures.

2.5 Risk stratification using optimal
predictive model

To translate the metabolic reprogramming gene signature into a
clinically applicable risk stratification system, we implemented the
Gradient BoostingMachine (GBM) algorithm, which demonstrated
superior performance among all tested models. Using this optimal
model, patients were classified into high-risk and low-risk groups
based on the median risk score threshold. The prognostic value of
this risk stratification was evaluated using Kaplan-Meier survival
analysis and log-rank tests. Model performance was assessed
through Harrell’s C-index and time-dependent receiver operating
characteristic (ROC) curves at 1-year, 3-year, and 5-year time points
across all datasets. Additionally, variable importance analysis was
conducted to identify the keymolecular drivers within themetabolic
reprogramming signature that most significantly contributed to
outcome prediction.

2.6 Clinical analysis of metabolic risk
model

To assess the clinical utility of our metabolic risk stratification
model, we conducted comprehensive analyses of the relationship
between risk groups and various clinical features. Clinical
characteristics including gender, tumor stage (UICC stage, T
stage, N stage, and M stage), and survival status were compared
between high-risk and low-risk groups using chi-square tests. The
distribution of these features was visualized through pie charts for
each risk group, allowing for clear comparison of the proportional
differences.

We further investigated the relationship between risk scores and
tumor stage by examining the distribution of risk scores across
differentUICC stages. Violin plots combinedwith boxplots and jitter
points were used to visualize these distributions, andWilcoxon rank
sum tests were performed to evaluate statistical significance between
stage groups.

To evaluate the model’s ability to discriminate between early
(stage I-II) and late (stage III-IV) disease, we constructed receiver
operating characteristic (ROC) curves using logistic regression
analysis. Finally, the prognostic value of our risk stratification system

was assessed within specific clinical subgroups through Kaplan-
Meier survival analysis, including separate analyses for early-stage
(I-II) patients, late-stage (III-IV) patients, and different age groups
(≤60 years and >60 years).

2.7 Prognostic value assessment through
cox regression analysis

To determine the independent prognostic significance of our
metabolic risk model, we performed comprehensive univariate and
multivariate Cox regression analyses incorporating key clinical
variables (age, gender, T stage, N stage, M stage, UICC stage)
alongside the metabolic risk score. Forest plots were generated
to visualize hazard ratios with 95% confidence intervals for each
variable, enabling clear interpretation of their relative prognostic
impact. The univariate analysis identified factors significantly
associated with survival outcomes, while the multivariate analysis
determined which variables maintained independent prognostic
value when adjusted for other covariates.

Based on these findings, we developed an integrated
nomogram incorporating the metabolic risk score with significant
clinical parameters to provide individualized survival probability
predictions at 1, 3, and 5 years. The nomogram’s performance
was assessed through calibration curves comparing predicted
versus observed survival probabilities, while decision curve
analysis evaluated its clinical utility across various threshold
probabilities.

2.8 Immunological characterization of
metabolic risk groups

To explore the immunological differences between
metabolic risk groups, we conducted comprehensive immune
microenvironment analyses based on transcriptomic data. We
applied ssGSEA to evaluate the enrichment of various immune-
related pathways, with heatmap visualization highlighting
significantly different immune pathways between high and low
risk groups. The clear clustering pattern observed in the heatmap
demonstrated distinct immune pathway activation states associated
with our metabolic risk stratification.

For amore granular understanding of immune cell composition,
we employed CIBERSORT to deconvolute the proportions of
22 immune cell types within each sample (Chen et al., 2018).
Violin plots comparing immune cell fractions between risk
groups revealed significant differences in multiple immune cell
populations. Correlation analysis between risk scores and immune
cell abundances identified key immune components associated with
metabolic risk levels, providing insights into potential immune-
metabolic interactions in SCLC. We also assessed 28 immune cell
types using a published immune cell signature (Charoentong et al.,
2017), further delineating the relationship between our metabolic
risk model and tumor immune contexture. Finally, we examined
correlations between key metabolic genes in our signature
and specific immune cell populations, uncovering potential
mechanistic links between metabolic reprogramming and immune
regulation in SCLC.
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2.9 Drug sensitivity analysis

To identify potential therapeutic strategies for SCLC patients with
different metabolic risk profiles, we conducted a comprehensive drug
sensitivity analysis. Using the pRRophetic package (Geeleher et al.,
2014), we predicted the IC50 values of a wide range of anti-cancer
compounds from the Cancer Genome Project (CGP) 2016 dataset
(https://rdrr.io/github/xlucpu/MOVICS/man/cgp2016ExprRma.
html) for each sample in our cohort. Drug response was compared
between high-risk and low-risk metabolic groups using Wilcoxon
rank-sum tests. Significant differences in predicted sensitivity were
observed for several compounds, suggesting that our metabolic risk
stratification could serve as a potential biomarker for drug response.
Foreachdrugshowingstatistically significantdifferences (p<0.05),we
generated detailed boxplots visualizing the distribution of predicted
IC50 values across risk groups.

2.10 Experimental methods

2.10.1 Knockdown model
Small cell lung cancer cell line H446 was obtained from the Cell

Bank of the Chinese Academy of Sciences. Cells were cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum
and 1% penicillin-streptomycin, maintained at 37°C in a humidified
incubator with 5% CO2. siRNA transfection was performed using
Lipofectamine 3,000 reagent (Invitrogen,United States) according to
the manufacturer’s instructions. MOCS2-targeted siRNAs and non-
targeting control siRNA (si-NC) were synthesized by GenePharma
(Shanghai, China). The sequences of MOCS2 siRNAs were as
follows: siMOCS2-1: 5′-GGAUCAUACAGAUGAUAAAGU-3′;
siMOCS2-2: 5′-GAUUUACUAUGUUGCAUAACU-3′. Cells were
harvested 48 h post-transfection for subsequent experiments, and
knockdown efficiency was verified by Western blot analysis.

2.10.2 Western blot analysis
Total protein was extracted using RIPA lysis buffer containing

protease and phosphatase inhibitors. Protein concentration was
determined using the BCA Protein Assay Kit (Thermo Fisher
Scientific, United States). Equal amounts of protein samples (30 μg)
were separated on 12% SDS-PAGE gels and transferred to PVDF
membranes (Millipore, United States). Membranes were blocked
with 5% non-fat milk at room temperature for 1 h, then incubated
overnight at 4°Cwith rabbit anti-humanMOCS2 polyclonal antibody
(1:1000 dilution, Abcam, United Kingdom) and mouse anti-human
β-actin monoclonal antibody (1:5000 dilution, Proteintech, China).
After washing three times with TBST, membranes were incubated
with corresponding HRP-conjugated secondary antibodies (1:5000
dilution) at room temperature for 1 h. Protein bands were visualized
using an enhanced chemiluminescence kit (ECL, Millipore, United
States). Band intensities were analyzed using ImageJ software and
normalized to β-actin as an internal reference.

2.10.3 Colony formation assay
Transfected cells were seeded in 6-well plates at a density of 100

cells per well and cultured at 37°C with 5% CO2 for 14 days, with
complete medium replacement every 3 days. After the culture period,
mediumwas discarded, and cells were gently washed three times with

PBS, followed by fixationwith 4%paraformaldehyde for 15 min. After
PBS washing, cells were stained with 0.1% crystal violet solution for
30 min. Following PBSwashing and air-drying, images were captured
using a stereomicroscope, and colonies containing more than 50 cells
were counted. Three replicate wells were established for each group,
and experiments were independently repeated three times.

2.10.4 Cell migration assay (wound healing)
Transfected cells were seeded in 6-well plates at a density of

5 × 105 cells per well and cultured until 80%–90% confluence.
A sterile 200 μL pipette tip was used to create a straight scratch
on the cell monolayer. After gentle washing with PBS to remove
detached cells, serum-freemediumwas added to avoid the influence
of cell proliferation on migration results. The scratch width at 0 h
was photographed under an inverted microscope as a baseline, and
cells were further cultured for 24 h before re-imaging the same
position. Three replicate wells were established for each group, and
experiments were independently repeated three times.

2.10.5 Cell proliferation curve (CCK-8 method)
Transfected cells were seeded in 96-well plates at a density of 3 ×

103 cells per well, with five replicate wells per group. Measurements
were taken at 0, 24, 48, 72, and 96 h. At each time point, 10 μL ofCCK-
8 reagent (Dojindo, Japan) was added to each well and incubated
at 37°C for 2 h. Absorbance (OD value) was measured at 450 nm
using a microplate reader. Cell proliferation curves were plotted with
time as the abscissa and OD values as the ordinate. To eliminate the
influence of cell density differences, OD values at each time point
were normalized to growth rates relative to 0 h: relative proliferation
rate = (OD value at each time point - OD value at 0 h)/OD value at
0 h. Experiments were independently repeated three times. Statistical
analysis and graphing were performed using GraphPad Prism 8.0
software. Data are presented as mean ± standard deviation (Mean ±
SD), and comparisons between groups were analyzed using one-way
ANOVA. P < 0.05 was considered statistically significant.

3 Result

All analytical processes are illustrated in the flowchart (Figure 1).

3.1 Single-cell RNA sequencing analysis of
circulating tumor cell subtypes and
chemotherapy sensitivity

Cells were divided into nineteen clusters and visualized through
UMAP (Figure 2A). Based on canonical marker gene expression
profiles, we successfully identified four major cell populations: CTC
type A (UCHL1-high and ASCL1-high), CTC type N (NEUROD1-
high), NKT cells, and macrophages (Figure 2B), thereby revealing
the distribution patterns of various cell populations. The expression
of cell cluster-specific marker genes was visualized in the heatmap,
such as high expression of BCL2A1, HLA-DRB1, VIM and HLA-
DQA1 in macrophages (Figure 2C). Additionally, we divided cells
into two groups according to their sensitivity to chemotherapy
response, where light blue indicates sensitive cells, and dark blue
indicates resistant samples (Figure 2D). From the distribution, it
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FIGURE 1
Study flowchart.

can be seen that the sensitive and resistant samples show obvious
distribution differences through UMAP (Figure 2D). Notably,
comparative analysis of cellular composition between resistant and
sensitive samples revealed differences in tumor cell distribution
associated with chemotherapy response in SCLCmicroenvironment
(Figure 2E). Results presented that sensitive samples exhibited a
marked predominance of CTC type A cells (98.9%), whereas NKT
cells (66.1%) predominated in resistant samples (Figure 2E).

3.2 Single-cell transcriptome reveals
metabolic reprogramming patterns in SCLC

The differentially expressed genes (DEGs) across CTC type
A and CTC type N were systematically analyzed and visualized
via manhattan plot (Figure 3A). Results showed that the top
upregulated DEGs in CTC type A comprised CALCA, CXCL14,
TFF3, PPAP2C, ASCL1 and the top downregulated DEGs
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FIGURE 2
Cell clusters identifcation in scRNA-seq. (A) UMAP plot showing nineteen distinct cell clusters identified by unsupervised clustering analysis. (B) UMAP
plot displaying four major cell populations identified based on gene expression profiles. Different colors represent different cell subgroups. (C)
Heatmap depicting differential gene expression patterns across 4 cell types, where red and blue respectively indicate high and low gene expression
levels. (D) UMAP plot distinguishing between sensitive and resistant cell populations. (E) Stacked bar plot showing the distribution proportions of cell
subpopulations between sensitive and resistant samples.

including NIM1K, ARHGAP18, S100A1, FAM65B, and CCER2.
While in CTC type N, CCER2, FAM65B, ARHGAP18, S100A1,
NIM1K (upregulated) and ASCL1, PPAP2C, TFF3, CXCL14,
CALCA (downregulated) were annotated. Furthermore, key
pathways differentially activated between resistant and sensitive
samples were identified by pathway analysis (Figure 3B). The
bubble plot indicated that G2M-CHECKPOINT, PANCREAS-
BETA-CELLS, KRAS-SIGNALING-DN, TNFA-SIGNALING-
VIA-NFKB, and IL6-JAK-STAT3-SIGNALING were found to
be upregulated in resistant samples and downregulated in
sensitive samples (all P < 0.05). Moreover, results indicated that
metabolism-related pathways including GLYCOLYSIS, FATTY-
ACID-METABOLISM, OXIDATIVE-PHOSPHORYLATION,
REACTIVE-OXYGEN-SPECIES-PATHWAY, BILE-ACID-
METABOLISM, PEROXISOME, XENOBIOTIC-METABOLISM,
MTORC1-SIGNALING, and ADIPOGENESIS were found to be
upregulated in sensitive samples and downregulated in resistant
samples (all P < 0.05). Similarly, signaling and growth-related
pathways such as ANGIOGENESIS, ESTROGEN-RESPONSE-
EARLY, ESTROGEN-RESPONSE-LATE, and COAGULATION
showed the same patterns. These findings suggest that metabolic
reprogramming, particularly involving energy production, lipid
metabolism, and cellular detoxification processes, may contribute
to chemotherapy resistance mechanisms. In addition, the metabolic
reprogramming scores calculated through ssGSEA were visualized
by UMAP (Figure 3C). Further comparative analysis demonstrated

that CTC type A possesses significantly higher metabolic
reprogramming scores than CTC type N (P < 0.0001, Wilcoxon
rank-sum test, Figure 3D).

3.3 WGCNA analysis identifies key
metabolic reprogramming modules in
SCLC

Firstly, we displayed the DEGs between SCLC samples and
non-tumor control samples through a volcano plot (Figure 4A).
Compared with the non-tumor control samples, 1,153 genes were
found upregulated, and 1,100 genes were downregulated in SCLC
samples. Notably, the top five genes (HBA2, RP11-114H24.5, HBA1,
SFTPC, AGER) were found to be significantly downregulated;
whereas PABPC1P11, C17orf78, RP4-784A16.2, AC003102.3, and
TIGD3 were observed to be significantly upregulated. To deeply
analyze key regulatory genes, we then visualized the top 50 up-
and downregulated genes with the most significant differences
in a hierarchical clustering heatmap (Figure 3B). Results showed
that the number of up-and downregulated gene expression was
almost equal among these top 100 DEGs. Subsequently, GO
and KEGG functional enrichment analyses were performed to
investigate the distribution of these DEGs in biological processes
(BP), cellular components (CC), and molecular functions (MF), as
well as their potential roles in various biological pathways. Results
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FIGURE 3
Metabolic Reprogramming Characterization of SCLC Single-cell Transcriptome. (A) Manhattan plot showing DEGs across CTC type A and CTC type N,
with upregulated genes shown in red and downregulated genes in blue. Top 5 upregulated and top 5 downregulated genes are annotated. (B) Bubble
plot of pathway analysis showing key pathways differentially activated between resistant and sensitive samples. The upper color bars indicate cluster
identity (blue: resistant, red: sensitive) and regulatory direction (blue: downregulated, red: upregulated). Dot color indicates significance status (gray: no
significant, red: significant), while dot size represents statistical significance (larger dots indicate smaller p-values). (C) UMAP plot showing the
distribution of metabolic reprogramming scores, where a gradient from blue to red indicates increasing metabolic reprogramming scores. (D) Box plot
indicating the comparison of metabolic reprogramming scores between CTC type A and CTC type N cells, with asterisks (∗∗∗∗) indicating statistically
significant differences (p < 0.0001).

indicated that in terms of BP, CC, and MF, the genes were primarily
enriched in metabolic processes (icosanoid metabolic process),
membrane-associated components (apical plasma membrane), and
receptor-related molecular functions (G protein-coupled peptide
receptor activity). Moreover, KEGG analysis revealed that the
neuroactive ligand-receptor interaction pathway exhibited the most
significant (Figure 3C). To systematically explore co-expression
modules associated with metabolic reprogramming, WGCNA
was performed on DEGs. The hierarchical clustering dendrogram
demonstrated gene co-expression relationships and sample
metabolic reprogramming score distribution (Figure 4D). Using
the dynamic tree-cutting algorithm, six distinct functional modules
were identified (Figure 4E). Notably, module-trait correlation
analysis revealed that turquoise module showed strongest positive
correlation (cor = 0.56, P < 0.005, Figure 4F). Further module
membership analysis revealed that genes in the turquoise module
showed significant positive correlation between GS and MM (cor

= 0.45, P = 1.7e-18) (Figure 4G), strongly suggesting this module
plays a core role in the metabolic reprogramming.

3.4 Development and validation of
GBM-based prognostic prediction model

Through systematic evaluation of eight machine learning
algorithms and their various combinations, the GBM model
demonstrated superior predictive performance (combined_data:
AUC = 0.926, GSE60052: AUC = 0.892, cBioportal: AUC = 0.928,
and C-index = 0.915, Figure 5A). Through variable importance
analysis of the GBM model, the top 20 variables within the
metabolic reprogramming signature were identified based on
survival analysis in SCLC (Figure 5B). Among these, MOCS2,
USP39, SMYD2, GFPT1 and PRKRIR showed the 5 highest relative
importance.
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FIGURE 4
Identification of metabolic reprogramming-related genes in SCLC. (A) Volcano plot of differential expression analysis between SCLC samples and
non-tumor control samples. Red represents upregulated genes (n = 1153), blue represents downregulated genes (n = 1100), and grey represents
non-significant genes. The top 5 most significantly upregulated and downregulated genes are specially marked. (B) Hierarchical clustering heatmap of
the top 100 DEGs (50 upregulated and 50 downregulated) across tumor and normal groups. The upper color bars indicate different groups (green:
normal, red: tumor). Red indicates upregulated genes, and blue indicates downregulated genes. (C) GO and KEGG functional enrichment analysis
results of DEGs. GO enrichment analyses include BP, CC, and MF. (D) Hierarchical clustering dendrogram of differential genes and heatmap of
metabolic reprogramming score distribution. (E) Dendrogram revealing gene clustering relationships, with colored bands at the bottom representing 6
functional modules identified through the dynamic tree-cutting algorithm. (F) Module-trait correlation heatmap. Each row represents a co-expression
module, and color intensity indicates Pearson correlation coefficients with metabolic reprogramming scores. (G) Scatter plot of gene significance for
metabolic reprogramming versus module membership in the turquoise module (correlation = 0.45, p = 1.7e-18), identifying potential hub genes
involved in metabolic reprogramming in SCLC.

To evaluate the prognostic value of risk stratification in GBM
models, Kaplan-Meier survival analysis and time-dependent ROC
curves analysis were conducted. Kaplan- Meier survival curves
revealed significant prognostic differences between the groups
stratified by risk scores calculated using GBM model both in
the cBioportal and GSE60052 cohort (log-rank test, P < 0.001,
Figures 5C,D). Notably, patients in the low-risk group demonstrated
significantly prolonged OS compared to those in the high-risk
group. Furthermore, time-dependent ROC curve analysis revealed
consistent predictive performance across both cohorts. In the
cBioPortal cohort (Figure 5E), AUC values were 0.958 (1-year),
0.998 (3-year), and 0.995 (5-year). Similarly, the GSE60052 cohort
showed high AUC values of 0.905 (1-year), 0.979 (3-year), and 1
(5-year), indicating robust predictive efficiency (Figure 5F).

3.5 Clinicopathological characteristics of
the low- and high-risk groups

A comprehensive evaluation of the metabolic risk stratification
model’s clinical utility across diverse patient characteristics was

conducted. Pie charts (Figure 6A) comparing clinical features,
revealed the significant differences between high- (n = 62) and
low-risk (n = 62) groups across clinical characteristics including
survival status (P < 0.001), gender (P = 0.0478), UICC stage
(P = 0.0136), and M stage (P = 0.0424). Furthermore, the
distributions of risk scores across different UICC stages were
analyzed. Results demonstrated statistically significant variations
in risk score distribution across UICC stages (stages I vs. III,
P < 0.05; stages II vs. III, P < 0.001), highlighting the model’s
potential to capture disease progression (Figure 6B). Notably,
patients at three to four stages had significantly higher risk scores
than those at one to two stages. Additionally, five metabolic
reprogramming-related genes expression and clinicopathological
characteristics in both high-risk and low-risk groups were displayed
(Figure 6C). Subsequently, the ROC curve demonstrated themodel’s
discriminative power between early and late-stage, with an AUC
of 0.683. Furthermore, significantly higher survival probabilities
were consistently observed in low-risk groups across various clinical
subgroups via Kaplan-Meier survival curve, including early-stage (I-
II), late-stage (III-IV), and age-stratified cohorts (≤60 and>60 years)
(all P < 0.0001, Figures 6E–H).
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FIGURE 5
Construction and validation of Prognostic Signature Based on Integrated Machine Learning. (A) Performance evaluation heatmap of 64 machine
learning algorithms. Rows represent different algorithms, and columns represent different datasets, including combined_data (light blue), cBioportal
(green), and GSE60052 (dark blue). The color intensity indicates AUC values (red indicates higher AUC, blue indicates lower AUC). The extra last column
represents the C-index scores across training and validation cohorts, and the top one represents the highest C-index. (B) Bar plot showing top 20
variables importance ranking in GBM model. (C,D) Kaplan-Meier survival curves in the two independent validation sets. Curves respectively showed
survival differences between high (yellow) and low risk (blue) groups based on GBM risk scores for (C) cBioportal and (D) GSE60052. Shaded areas
indicate 95% confidence intervals. Risk table below shows follow-up numbers at each time point. (E,F) Time-dependent ROC curves in the two
independent validation sets. Green, red, and blue curves represent AUC values for 1-year, 3-year, and 5-year survival predictions. Curves respectively
represent (E) cBioportal and (F) GSE60052.

3.6 Establishment and validation of a
nomogram integrating clinical features

To evaluate the independent prognostic value of our metabolic
risk model, comprehensive cox regression analyses were performed
incorporating clinical parameters with the metabolic risk score
(Figures 7A,B). The forest plot of univariate cox regression
analysis identified multiple significant prognostic factors including
gender, T stage, N stage, M stage, UICC stage, and risk score as
significant prognostic factors (all P < 0.05, Figure 7A). Further
multivariate cox regression analysis confirmed the risk score as
independent prognostic indicator through (P < 0.001, hazard ratio
= 104.43, Figure 7B). Subsequently, we developed an integrated
nomogram prediction model based on these prognostic factors
including T stage, N stage, M stage, UICC stage, and risk score
(Figure 7E).The nomogram calibration curves were then conducted
to validate the predictive accuracy of the nomogram. Figure 7C
showed alignment between predicted and observed survival
probabilities across 1- and 3-year time points and highlighted the
model’s robust predictive performance (Figure 7C). Furthermore,
the nomogram was found to offer superior standardized net
benefits within specific high-risk threshold ranges compared
to individual clinical parameters alone through decision curve
analysis, suggesting enhanced utility for clinical decision-making
(Figure 7D).

3.7 Comprehensive immunological
characterization revealing
immune-metabolic interplay in SCLC
through risk-group stratification

The comprehensive immunological characterization reveals
distinct immune landscapes between metabolic risk groups in
SCLC. Differences in the activity of immune-related pathways
were confirmed between the high-risk and low-risk metabolic
groups, including FC_EPSILON_RI_SIGNALING_PATHWAY and
FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS (all P < 0.05,
Figure 8A). We further used the CIBERSORT algorithm to calculate
the abundance of 22 immune cells to further analyze the differences
in specific immune cell infiltration between the high-risk and
low-risk metabolic groups. It was found that high-risk metabolic
groups had a significantly higher abundance of plasma cells (P
= 0.029), T cells CD4 naïve (P = 0.018), while the low-risk
group had a significantly higher abundance of macrophages M0
(P = 0.049, Figure 8B). Subsequently, correlation analysis between
risk scores and immune cell infiltration (Figure 8C) indicated:
(Wang et al., 2023): Significant positive correlations with T cells
CD4 naive (P < 0.01), and plasma cells (P < 0.05); (Rudin et al.,
2021); Significant negative correlations with macrophages M0 (P
< 0.05). Moreover, potential mechanistic connections between
metabolic reprogramming and immune regulation were revealed
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FIGURE 6
Clinicopathological characteristics of the low- and high-risk groups. (A) Pie charts demonstrating the distribution of clinical characteristics between
low-risk (n = 63) and high-risk (n = 62) groups, including survival status (blue), gender (bright red), UICC stage (light green), T stage (purple), N stage
(dark green), and M stage (dark red). (B) Violin plots combined with boxplots and jitter points illustrating risk score distribution by UICC stages. Color
gradient from red (stage I) to dark blue (stage IV) reveals progressive risk score variations, with statistical significance levels denoted by∗(P ≤ 0.05),∗∗(P ≤
0.01), and∗∗∗(P ≤ 0.001). Non-significant differences are marked as “ns”, meaning P > 0.05. (C) Heatmap showing the expression levels of the five
metabolic reprogramming-related genes and the distribution of clinicopathological variables between the low-risk and high-risk groups.

(Continued)
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FIGURE 6 (Continued)

*P < 0.05; **P < 0.01; ***P < 0.001. (D) ROC curve for early or late-stage stratification. (E,F) Kaplan-Meier survival analyses for (E) early- (I-II) or (F)
late-stage (III-IV), revealing survival differences between high-risk and low-risk groups. Shaded areas indicate 95% confidence intervals. Risk table
below shows follow-up numbers at each time point. (G,H) Kaplan-Meier survival analyses for patients aged ≤60 and ≥60 years, illustrating
prognostic stratification across different age groups. Risk table below shows follow-up numbers at each time point.

FIGURE 7
Comprehensive Cox Regression and Nomogram Analysis. (A) Forest plot of univariate cox regression analysis of clinical variables and metabolic risk
score, presenting hazard ratios and statistical significance. (B) Forest plot of multivariate cox regression analysis revealing adjusted hazard ratios for
clinical variables and metabolic risk score. (C) Calibration curve of the nomogram for 1, 3, and 5-year OS. Nomogram-predicted OS probabilities at
different time points (red: 1-, blue: 3-, green: 5 - year), comparing predicted versus observed outcomes. (D) Decision curve analysis evaluating the
clinical utility and net benefit of the prognostic model across different risk thresholds. (E) Nomogram integrating risk score and clinical characteristics.

by correlation analysis between key gene expression and immune
cell infiltration (Figure 8D). Finally, we quantified scores for 28
immune cell phenotypes (Figure 9D). Effector memory CD4 T cell
(P < 0.01) showing a significant difference had higher expression
levels in the high-risk metabolic group, with CD56dim natural
killer cell (P < 0.001) showing higher expression in the low-risk
metabolic group (Figure 8E).

3.8 Drug sensitivity analysis

We evaluated the practical utility of GBM risk classification
for personalized treatment by analyzing drug sensitivity differences
between metabolic risk groups. Five compounds demonstrated
significant differential responses across risk strata (Figures 9A–E).
The high-risk metabolic group showed distinct sensitivity patterns
to several therapeutic agents: AG-014699 (PARP inhibitor, P =
3.25e-05, Figure 9A), ATRA (P = 0.00298, Figure 9B), Lenalidomide
(immune modulator, P = 0.00275, Figure 9C), PF-4708671 (S6K1
inhibitor, P = 0.000411, Figure 9D), and SB590885 (BRAF inhibitor,

P = 0.000998, Figure 9E). These findings establish a foundation
for developing treatment strategies tailored to metabolic risk
classification.

3.9 MOCS2 knockdown inhibits SCLC cell
proliferation and migration

To validate the functional role of MOCS2, identified as
one of the most important metabolism reprogramming-related
genes in our GBM model, in SCLC, we conducted a series
of in vitro functional experiments. First, we designed and
synthesized MOCS2-specific siRNA and transfected it into
SCLC cell lines. Western blot analysis showed that compared
to the negative control siRNA (siRNA-NC) group, the MOCS2
protein expression level was significantly reduced in the si-
MOCS2 treatment group, confirming the knockdown efficiency
(Figures 10A,B).

Subsequently, we evaluated the impact of MOCS2
knockdown on the biological characteristics of SCLC cells
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FIGURE 8
Comprehensive immunological characterization of metabolic risk groups. (A) Heatmap displaying the enrichment of immune-related pathways in
high-risk (red) and low-risk (blue) metabolic groups.∗P < 0.05,∗∗P < 0.01. (B) Violin plot of infiltration proportion differences across 22 immune cells
between (red) high- and (green) low-risk metabolic groups quantified by CIBERSORT algorithm. (C) Correlation scatter plot depicting relationship
between risk scores and immune cell abundances, with point sizes representing correlation strength and color indicating statistical significance levels.
(D) Correlation heatmap between metabolic risk score-related gene expression (columns) and immune cell populations (rows). Red indicates positive
correlation, blue indicates negative correlation, and color intensity represents correlation strength. (E) Box plots comparing 28 gene-defined immune
cell type abundances between high-risk (red) and low-risk (blue) metabolic groups. Box shows interquartile range, whiskers show 1.5 times interquartile
range, outliers shown separately.

FIGURE 9
Drug sensitivity analysis. (A–E) Violin combined with the box plots showing IC50 value distribution of 5 key drugs between high- and low-risk
metabolic groups. The Y-axis represents predicted IC50 values, with lower IC50 values indicating higher drug sensitivity. Red represents the high-risk
metabolic group and blue represents the low-risk metabolic group.

through multiple methods. Colony formation assay results
indicated that compared to the siRNA-NC group, the
number of colonies formed in the si-MOCS2 group was
significantly reduced (Figures 10C,D), suggesting thatMOCS2 plays
an important role in maintaining the survival and colony formation
ability of SCLC cells.

In the Transwell migration assay, we found that the migration
ability of cells in the MOCS2 knockdown group was significantly
lower than that of the control group (Figures 10E,F), indicating that
MOCS2 is involved in regulating the migratory properties of SCLC
cells. Furthermore, CCK-8 proliferation assay showed that during
the 96-h observation period, the proliferation rate of the si-MOCS2
transfection group remained consistently lower than that of the
siRNA-NC control group (Figure 10G).

4 Discussion

4.1 Metabolic reprogramming as a key
feature in SCLC progression and
chemotherapy resistance

Our single-cell RNA sequencing analysis revealed distinctive
metabolic reprogramming patterns between chemotherapy-
resistant and chemotherapy-sensitive SCLC samples. The
predominance of CTC type A cells in chemotherapy-sensitive
samples and their significantly higher metabolic reprogramming
scores compared to CTC type N cells suggests that specific
metabolic configurations may influence therapeutic vulnerability
in SCLC. Intriguingly, our pathway analysis demonstrated that
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FIGURE 10
MOCS2 Knockdown Inhibits SCLC Cell Proliferation and Migration. (A) Western blot analysis showing changes in MOCS2 protein expression levels after
siRNA transfection. (B) Quantitative analysis of MOCS2 protein expression levels, data presented as mean ± standard deviation (∗∗P < 0.01). (C) Colony
formation assay showing the effect of MOCS2 knockdown on cell colony formation ability. (D) Quantitative analysis of the colony formation assay,
demonstrating significantly reduced colony numbers following MOCS2 knockdown (∗∗∗P < 0.001). (E) Transwell migration assay showing the effect of
MOCS2 knockdown on cell migration ability. (F) Quantitative analysis of the wound healing assay showing significantly reduced wound closure
percentage at 24 h in MOCS2 knockdown cells (∗∗∗P < 0.001). (G) CCK-8 proliferation assay showing the effect of MOCS2 knockdown on cell
proliferation over 96 h (∗∗P < 0.01,∗∗∗P < 0.001).

several metabolism-related pathways—including glycolysis, fatty
acid metabolism, oxidative phosphorylation, and xenobiotic
metabolism—were significantly upregulated in chemotherapy-
sensitive samples while being downregulated in resistant samples.
This finding challenges the traditional Warburg effect paradigm
(Warburg, 1956; Gatenby and Gillies, 2004), which suggests that
increased glycolysis is predominantly associated with aggressive
tumor behavior and therapeutic resistance. Instead, our results align

with emerging evidence (Tavartkiladze et al., 2024) indicating that
metabolic flexibility, rather than a specific metabolic program, may
be crucial for therapy evasion in certain cancer contexts.

The identified metabolic differences between CTC type A
(ASCL1-high) and CTC type N (NEUROD1-high) cells reflect
the emerging recognition of molecular subtypes in SCLC. Our
observation that CTC type A cells exhibit significantly higher
metabolic reprogramming scores aligns with recent work by
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Zhang et al. (2022), who demonstrated distinct metabolic
dependencies across SCLC subtypes. The predominance of ASCL1-
high cells in chemotherapy-sensitive samples suggests that this
subtype may possess metabolic vulnerabilities that could be
therapeutically exploited, consistent with findings by Redin et al.
(2024), who identified subtype-specific metabolic targets in
SCLC. Furthermore, our results complement recent multi-omics
analyses by Paunovic et al. (2024), who identified metabolic
reprogramming as a key mechanism of acquired resistance in
SCLC, though our single-cell approach reveals intrinsic metabolic
differences that may predispose certain SCLC populations to
chemotherapy sensitivity or resistance.

In summary, our findings establish metabolic reprogramming
as a critical determinant of chemotherapy response in SCLC, with
distinct metabolic signatures characterizing sensitive and resistant
cell populations. These insights provide a foundation for developing
metabolism-targeted therapeutic strategies that could potentially
overcome or prevent chemotherapy resistance in this challenging
malignancy.

4.2 Clinical relevance of the metabolic
reprogramming signature

Our study identified a robust 5-gene metabolic signature
(MOCS2, USP39, SMYD2, GFPT1, PRKRIR) that effectively
stratifies SCLC patients into distinct prognostic groups. Unlike
previous gene signatures in SCLC that focused primarily on cell
cycle regulation or neuroendocrine differentiation (Wang et al.,
2022), our signature specifically captures metabolic reprogramming
processes, representing a novel perspective in SCLC risk
stratification. Compared to the 10-gene signature developed by
Xie et al. for SCLC (Xie et al., 2021), which showed moderate
prognostic performance without validation dataset (C-index = 0.8),
our metabolic model demonstrated superior predictive accuracy
(C-index = 0.915), suggesting that metabolism-focused biomarkers
may offer enhanced prognostic value in this disease context.

The clinical relevance of our metabolic risk classification
is underscored by its significant correlation with key
clinicopathological features and stage progression. This stage-
dependent risk stratification aligns with recent findings by
Shang et al. (2024), who observed increased metabolic pathway
activation in advanced SCLC using metabolomic profiling.
However, while their approach required specialized metabolomic
platforms, our transcriptome-based signature provides a more
clinically accessible tool for risk assessment. Furthermore, the
independent prognostic significance of our metabolic risk score
(HR = 104.43, P < 0.001) substantially exceeds that of previously
reported gene signatures in SCLC, including the immune-related
signature by Deng et al. (2022) (HR = 1.195).

Our nomogram integrating metabolic risk with clinical
parameters demonstrated excellent predictive accuracy and
enhanced clinical utility compared to conventional staging
systems alone. This suggests that metabolic profiling addresses
critical biological information not captured by traditional clinical
assessments, consistent with observations by Wu et al. (2024) in
their radiomics-based SCLC prognostic model. The consistent
performance of our signature across diverse clinical subgroups

further establishes its broad applicability as a prognostic tool,
potentially enabling more personalized treatment approaches based
on metabolic risk stratification in SCLC.

4.3 Immune-metabolic interplay in the
SCLC microenvironment

Our comprehensive immunological characterization revealed
distinct immune landscapes between high and low metabolic
risk groups, suggesting a significant immune-metabolic interplay
in SCLC. The high-risk metabolic group exhibited enrichment
of specific immune pathways, including FC_EPSILON_RI_
SIGNALING_PATHWAY and FC_GAMMA_R_MEDIATED_
PHAGOCYTOSIS, indicating altered immune response patterns
associated with metabolic reprogramming. This finding aligns with
recent work by Xie et al. (2021), who identified immune-related
pathways as prognostic determinants in SCLC, though our study
uniquely links these immune signatures specifically to metabolic
risk stratification.

The differential immune cell infiltration patterns observed
between risk groups provide particularly compelling evidence
for immune-metabolic interactions in SCLC. High-risk patients
demonstrated significantly increased infiltration of plasma
cells and naïve CD4 T cells, while low-risk patients showed
enhanced macrophage M0 infiltration. This pattern differs from
observations in NSCLC by Xiao et al. (2024), who found that
increased macrophage infiltration correlated with worse prognosis,
highlighting the unique immune microenvironment of SCLC. Our
finding of increased effector memory CD4 T cells in high-risk
patients, coupled with elevated CD56dim natural killer cells in
low-risk patients, further suggests that metabolic reprogramming
may influence both adaptive and innate immune responses in SCLC.

The significant correlations identified between our key
metabolic genes and specific immune cell populations provide
potential mechanistic insights into the immune-metabolic crosstalk
in SCLC. Similar immune-metabolic interactions have been
reported by Wang et al. in other cancers (Wang et al., 2024),
where glycolytic activity influenced T cell function through
lactate-mediated signaling. However, our study is the first to
comprehensively map these correlations in SCLC, revealing
potential therapeutic implications. For instance, the association
between high-risk metabolic profiles and increased plasma cell
infiltration suggests that targeting both metabolic pathways and B
cell-mediated immunity might offer synergistic benefits in high-risk
SCLC patients.

These findings extend beyond previous investigations by
Jin et al. (2024), who examined PD-L1 expression in SCLC
without considering themetabolic context. By integratingmetabolic
risk stratification with immune profiling, our study provides
a more nuanced understanding of the immunosuppressive
mechanisms in SCLC, potentially explaining the variable responses
to immunotherapy observed in clinical practice (Wu et al., 2025).
The distinct immune landscapes associated with different metabolic
risk profiles suggest that metabolic reprogramming may serve as
an upstream regulator of immune evasion in SCLC, offering novel
perspectives for developing combination therapies that target both
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metabolic vulnerabilities and immune checkpoints to overcome
treatment resistance in this challenging malignancy.

4.4 Limitations and future directions

While our study provides valuable insights into the
role of metabolic reprogramming in SCLC progression and
treatment response, several limitations warrant consideration.
The retrospective nature of our analysis and the relatively
modest sample size may limit the generalizability of our findings,
necessitating prospective validation in larger, independent cohorts.
Additionally, our reliance on transcriptomic data alone captures
only one dimension of the complex metabolic landscape in SCLC.
The computational inference of immune cell infiltration, while
validated, cannot replace direct histological assessment or flow
cytometry analysis of the tumor microenvironment. Our study
also lacks functional validation of the identified metabolic genes,
which is essential for establishing their causal roles in SCLC
pathogenesis and therapy resistance. Future research directions
should include in vitro and in vivo studies to verify the mechanistic
contributions of MOCS2, USP39, SMYD2, GFPT1, and PRKRIR
to metabolic reprogramming and immune modulation in SCLC.
The potential therapeutic implications of our findings warrant
exploration through preclinical studies of combinatorial approaches
targeting both metabolic vulnerabilities and immune checkpoints,
particularly in high metabolic risk SCLC models.

Development of metabolism-targeted therapies informed
by metabolic risk stratification represents an exciting Frontier
that may lead to more personalized treatment strategies.
Integration of additional omics data, including proteomics
and metabolomics, could further refine our current model by
capturing post-transcriptional modifications and actual metabolite
levels. Longitudinal studies examining changes in metabolic
profiles during disease progression and in response to therapy
would provide valuable insights into the dynamic nature of
metabolic reprogramming in SCLC. Finally, investigating the
potential interactions between metabolic reprogramming and other
hallmarks of cancer, such as epigenetic alterations andDNA damage
repair, may reveal more comprehensive therapeutic strategies for
this challenging malignancy.

5 Conclusion

Our study reveals metabolic reprogramming as a critical
determinant of SCLC progression and treatment response,
identifying a 5-gene metabolic signature that effectively stratifies
patients into distinct prognostic groups. This clinically robust
risk model demonstrated superior predictive accuracy compared
to conventional staging systems and correlated significantly with
clinicopathological features and immune cell infiltration patterns.
Our findings highlight the complex interplay between metabolic
alterations and immune regulation in the SCLC microenvironment,
offering potential explanations for variable therapeutic responses.
The integration of metabolic risk assessment with drug sensitivity
analysis provides a promising framework for personalized treatment
selection, potentially guiding rational combination strategies

targeting both metabolic vulnerabilities and immune checkpoints.
By elucidating the central role of metabolic reprogramming in
SCLC biology, our work contributes valuable insights that may
ultimately improve patient stratification, treatment planning, and
clinical outcomes in this challenging malignancy.
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