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A comprehensive
characterization of metabolic
signatures—hypoxia, glycolysis,
and lactylation—in non-healing
diabetic foot ulcers

Bo Hu, Xuan Li, Yunfeng Li, Shengnan Chai, Mei Jin and
Long Zhang*

Wound Healing Center, Peking University Third Hospital, Beijing, China

Background and Objective: Diabetic foot ulcers (DFUs) are chronic
complications of diabetes, driven by metabolic dysregulation and impaired
wound healing. This study investigates the roles of hypoxia, glycolysis,
and lactylation in DFUs and identifies potential diagnostic and therapeutic
biomarkers.

Methods: Single-cell RNA sequencing (scRNA-seq) was employed to assess
cellular diversity, metabolic states, and intercellular communication in
DFUs. KEGG/GO enrichment, pseudotime trajectory analysis, and cell-cell
communication profiling were conducted to explore metabolic and cellular
dynamics. Bulk RNA-seq was integrated for differential expression analysis and
biomarker validation. Machine learning methods, including LASSO, Support
vector machine, and Random Forest, were applied to identify and validate
biomarkers across external datasets.

Results: Metabolic shifts in hypoxia, glycolysis, and lactylation were observed,
with keratinocytes displaying the highest metabolic activity. Pseudotime analysis
revealed distinct wound-healing phases, while cell-cell communication profiling
identified increased signaling among keratinocytes, fibroblasts, and SMCs in
high-metabolic states, disrupting key pathways like ECM-receptor interaction
and focal adhesion. Machine learning integration of scRNA-seq and bulk RNA-
seq identified PKM, GAMT, and EGFR as diagnostic biomarkers strongly linked to
metabolic and immune regulation. Functional analyses highlighted their roles in
energy metabolism, cellular proliferation, and immune signaling, providing new
insights into DFU pathogenesis.

Conclusion: This study reveals metabolic dysregulation and disrupted cellular
communication as central to the non-healing DFU microenvironment, with
validated biomarkers and pathways offering potential targets for improved
diagnosis and treatment.
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1 Introduction

Diabetic foot ulcers (DFUs) represent a severe and complex
complication of diabetes mellitus, contributing significantly to
patient morbidity, reduced quality of life, and healthcare costs
worldwide (Basiri et al., 2024; Mohsin et al., 2024). Despite
advancements in wound care and diabetes management, DFUs
remain a major clinical challenge, with chronic non-healing
wounds often leading to infection, gangrene, and ultimately
amputation. The multifactorial nature of DFU pathology
involves a combination of neuropathy, ischemia, infection, and
persistent inflammation, all of which disrupt the normal wound
healing process (Manisha et al., 2024).

A central feature of DFUpathophysiology is the dysregulation of
thewoundmicroenvironment, characterized by profoundmetabolic
disturbances, particularly hypoxia, glycolysis, and lactylation.
Chronic hypoxia, arising from reduced vascular perfusion and
impaired angiogenesis, is a hallmark of DFUs (Catrina and Zheng,
2016). It drives metabolic reprogramming in wound cells, shifting
energy production from oxidative phosphorylation to glycolysis,
a less efficient but faster pathway for ATP generation. While this
shift is an adaptive response to limited oxygen availability, it also
exacerbates local tissue acidosis, increases lactate production, and
disrupts cellular homeostasis, thereby perpetuating the chronic
wound state (Zhang et al., 2019).

Lactylation, a post-translational modification of histones
mediated by lactate, has emerged as a key player in regulating
macrophage polarization, gene expression, and cellular responses
to metabolic stress (Zhang et al., 2019; Chen et al., 2021).
Inflammatory macrophages, commonly observed in DFUs, shift
toward glycolysis and lactate production, reinforcing the pro-
inflammatory microenvironment and impeding the transition to
a reparative M2 phenotype (Nonnenmacher and Hiller, 2018;
Zhu et al., 2023). Similarly, T cells and neutrophils within
DFUs demonstrate metabolic reprogramming that perpetuates
inflammation, further disrupting immune homeostasis and wound
resolution (Clayton et al., 2024). Beyond immune cells, fibroblasts
under chronic metabolic stress exhibit excessive glycolysis and
lactylation, driving aberrant extracellular matrix production and
fibrosis (Henderson and O’Reilly, 2021). Keratinocytes, essential
for re-epithelialization, face impaired migration and proliferation
due to metabolic stress induced by hypoxia, glycolysis, and
lactylation (Haller et al., 2021). These cellular dysfunctions
collectively hinder angiogenesis, extracellular matrix remodeling,
and tissue repair, establishing a self-perpetuating cycle of chronic
inflammation and delayed wound healing in DFUs.

Recent advances in single-cell RNA sequencing (scRNA-
seq) have provided unprecedented insights into the cellular and
molecular heterogeneity of DFUs (Xiang et al., 2024). This high-
resolution approach enables the identification of distinct cell
populations, metabolic states, and intercellular communication
networks, offering a deeper understanding of the dynamic processes
underlying wound pathology. Metabolic states, such as hypoxia,
glycolysis, and lactylation, can now be spatially and temporally
mapped across specific cell types, providing critical insights into
their roles in wound progression.

In this study, we utilized scRNA-seq to investigate the metabolic
and cellular landscape of DFUs, with a particular focus on

hypoxia, glycolysis, and lactylation. By stratifying cells into high-
and low-metabolic states, we elucidated the profound impact
of these metabolic pathways on cellular behavior, intercellular
communication, and wound healing dynamics. Subsequent analyses
in bulk RNA-seq datasets identified key diagnostic genes that
may serve as biomarkers for DFU pathophysiology, offering
valuable insights into the interplay between metabolism and
chronic wound progression. Our findings provide a comprehensive
framework for understanding themetabolic underpinnings of DFUs
and highlight potential avenues for improving diagnostic and
therapeutic strategies for these challenging chronic wounds.

2 Materials and methods

2.1 Data acquisition and scRNA-seq
processing and analysis

Expression matrices of metabolic signature-related genes, along
with relevant lesion status, were obtained from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
Specifically, GSE199939 was used as the training cohort, while
GSE7014 and GSE134431 served as external validation datasets.
Probe-level expression data were annotated and converted to official
gene symbols using custom Perl scripts based on the platform’s
annotation file. In cases where multiple probes mapped to the same
gene, the median expression value was retained. Fragments per
kilobase million (FPKM) values were transformed to transcripts per
kilobase (TPM), which were suggested to be the same as those from
microarray, according to previous description (Pachter, 2011). All
expression values were subsequently log2-transformed (log2 [TPM
+ 1]) to stabilize variance and approximate a normal distribution.

scRNA-seq analysis was conducted in R using raw count
matrices from the GSE165816 dataset. To ensure biological
comparability, we included only foot skin samples from healthy
non-diabetic individuals and non-healing DFU patients, excluding
forearm skin and PBMC samples present in the original dataset.
Raw counts were imported and processed using the Seurat package
(4.4.0). Quality control filtered out cells with fewer than 200 or
more than 6,000 detected genes or with >10% mitochondrial gene
content. The filtered gene-cell matrix was then log-normalized,
scaled, and subjected to PCA-based dimensionality reduction and
UMAP visualization. Cell clustering was performed using the
Louvain algorithm (resolution = 0.5), identifying 24 clusters. Cell
types were annotated based on canonical marker genes provided
in the original GSE165816 study (Theocharidis et al., 2022). A
summary of cell type annotations and representative markers
is provided in Supplementary Table S1. To further characterize
macrophage subtypes, we subsetted macrophages from the
integrated dataset and reprocessed them via normalization, scaling,
and PCA. UMAP visualization and Louvain clustering (resolution
= 0.3) were performed. M1-macrophages were annotated based
on expression of CD86, CXCL9, CXCL10, and TNF; M2-like
macrophages were identified via CD163 and MRC1. These markers
were visualized using UMAP and dot plots to guide subtype
assignment.

Proportional differences in cell-type composition between
Control (healthy) and Treat (non-healing) groups were visualized
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using ggplot2 bar plots. DEGs in each cluster were identified
using the Wilcoxon rank-sum test, with heatmaps generated via
ComplexHeatmap to highlight transcriptional heterogeneity across
conditions.

Metabolic states, including hypoxia, glycolysis, and lactylation,
were analyzed using AUCell (1.28.0) to calculate single-cell
enrichment scores. Hypoxia and glycolysis gene sets were sourced
from GSEA Hallmark datasets, while lactylation-associated genes
were curated from prior literature (Cheng et al., 2023). Spearman
correlation coefficients were computed to quantify the associations
between hypoxia, lactylation, and glycolysis and a panel of signaling
pathways implicated in wound repair and immune regulation. To
facilitate a qualitative visual summary, absolute correlation values
were categorized into three tiers: 0–0.3 was denoted by a single plus
sign (+), 0.31–0.6 by two plus signs (++), and 0.61–1.0 by three
plus signs (+++). Statistical significance was conveyed via color
coding: black plus signs indicated correlations with p < 0.05, while
dark grey plus signs denoted non-significant associations (p ≥ 0.05).
Violin plots illustrated metabolic state differences, with statistical
annotations highlighting significant findings.

2.2 Metabolic state profiling and functional
analysis

Data processing for theTreat group followed the aforementioned
workflow. After quality control, normalization, and clustering as
described, After performing quality control, normalization, and
clustering, UMAP visualization was applied to delineate distinct
clustering patterns among the identified cellular populations.
Subsequent KEGG pathway enrichment analysis was performed for
each identified cell type using the clusterProfiler package (4.14.6).
Additionally, cell-type-specific comparisons of AUCell scores were
conducted to evaluate differences in metabolic states between cells
in high and low activity groups. Bar plots and violin plots were
generated to visualize the proportion of cells exhibiting high or low
metabolic states and to highlight statistically significant differences
across cell types.

Pseudotime trajectory analysis was performed using Monocle3
(1.3.7). To define the root of the trajectory in a biologically
meaningful manner, we first identified basal keratinocytes based
on their high expression of canonical markers KRT14 and KRT5,
which are well-established indicators of undifferentiated epidermal
progenitor cells. Cells with high KRT14/KRT5 expression were
selected and manually designated as the trajectory origin using
the order_cells() function. Generalized Additive Models (GAM)
were fitted using the mgcv package (1.9.1) to capture trends in
hypoxia, glycolysis, and lactylation scores over pseudotime. Cell-
type-specific metabolic trends over pseudotime were visualized
using ggplot2 (3.5.1). To investigate branch-specific heterogeneity,
we constructed pseudotime trajectories using Monocle3 and
partitioned the resulting principal graph into three major branches
based on key bifurcation points identified via Monocle3’s branch_
nodes() and choose_graph_segments() functions. The number of
cells and median pseudotime values within each branch were
compared using ggplot2 and statistical tests. Gene Ontology (GO)
enrichment analysis was performed for each pseudotime branch
using branch-specific marker genes, and heatmaps of the top 10

differentially expressed genes per branch were generated to visualize
molecular distinctions. Violin plots were employed to visualize
differences in metabolic states among branches.

Afterwards, cells were categorized into the High-state group
if all three states exhibited enrichment scores above the median,
and into the Low-state group if all three states had enrichment
scores below the median. The use of median thresholds to
define high versus low states is a common and robust approach
in single-cell analysis, offering simplicity and interpretability
when evaluating metabolic activation patterns. Intercellular
communication between high- and low hypoxia, glycolysis, and
lactylation states was analyzed using CellChat (2.1.2) to quantify
interaction numbers and strengths based on known ligand-
receptor pairings. Communication networks were visualized, and
interaction weights were compared using netVisual_circle and
ggplot2. Differential signaling pathway activity was assessed using
netAnalysis_signaling Role. Ligand-receptor pair analysis revealed
significant differences in communication weights across states.

2.3 Integrative analysis for diagnostic gene
identification in DFUs

Subsequently, single-cell data from DFU samples were stratified
into a High-state group and an Other-state group based on hypoxia,
glycolysis, and lactylation states. Cells with at least one state scoring
below the median were categorized into the Other-state group.
This more inclusive grouping strategy was designed to increase the
number of differentially expressed genes for downstream analyses.
Enrichment of inflammation-associated pathways was quantified
alongside stress- and cell death–related programs using AUCell,
based on curated gene sets from MSigDB (Subramanian et al.,
2005) and previously published literature (Pan et al., 2024). To
identify candidate transcription factors (TFs) regulating metabolic-
inflammatory programs, we applied the SCENIC (1.3.1) workflow.
Gene regulatory networks were inferred using GENIE3 based on
the filtered expression matrix. AUCell was then used to compute
regulon activity scores (AUC) for each cell. Differential regulon
activity between High-state and Other-state cells was assessed using
the limma package (3.62.2). To avoid redundancy and simplify
interpretation, we prioritized core regulons over their extended
versions when both showed statistical significance. Extended
regulons were retained only when uniquely significant. The top
10 differentially active regulons (ranked by adjusted P value) were
selected for downstream visualization and interpretation. Spearman
correlations betweenAUCell scores of the top 10 differentially active
TF regulons and three keymetabolic programswere calculated at the
single-cell level.

Differential gene expression (DEG) analysis between the High-
state and Other-state groups was performed using the Wilcoxon
rank-sum test. Genes with an absolute log2 fold change (FC) >
0.5 and p-value <0.05 were considered significantly dysregulated.
In parallel, bulk RNA-seq data from the GSE199939 dataset were
analyzed using the same test, followed by Benjamini–Hochberg
correction to control the false discovery rate (FDR < 0.05). The
intersection of DEGs from both analyses, performed using the
VennDiagram package (1.7.3), served to integrate single-cell and
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bulk transcriptomic findings, thereby refining the identification of
candidate diagnostic biomarkers.

To ensure robustness, three machine learning algorithms
were applied to the GSE199939 dataset. LASSO regression was
conducted using the glmnet package (4.1.8), with 10-fold cross-
validation optimizing model parameters and penalization strength.
A predicted probability threshold of 0.5 was used to assign class
labels, consistent with standard practice in logistic regression.
Random forest (RF) analysis, implemented via the randomForest
package (4.7.1.2), identified genes with the highest mean decrease
in classification accuracy, indicating their contribution to model
performance. A classification threshold of 0.5 (i.e., ≥50% of trees
voting for a class) was used to assign binary group labels. Support
vector machine (SVM) modeling assigned predictive weights to
genes based on a linear kernel. Class labels were derived using the
default SVM decision rule, with a cutoff score of 0: samples with
positive decision values were classified as DFU, and negative values
as Control. The overlap of diagnostic genes identified by LASSO,
random forest, and SVM was visualized in a Venn diagram to
highlight shared markers.

2.4 Validation of diagnostic biomarkers
using independent datasets

The validation of diagnostic biomarkers was conducted using
three independent GEO datasets: GSE199939 (Jiang et al., 2024),
GSE7014 (Vihola et al., 2010), and GSE134431 (Sawaya et al.,
2020). To evaluate the diagnostic performance of the selected
genes, we built a multivariate logistic regression model based on
their expression profiles. Receiver Operating Characteristic (ROC)
analysis was performed using the pROC package (v1.18.5) to
evaluate the diagnostic performance of the combined model, with
95% confidence intervals (CIs) for AUCs computed via bootstrap
resampling (2,000 iterations) using the ci.auc() function to assess the
robustness and reliability of model discrimination. The diagnostic
score used for ROC and AUC calculations corresponded to the
predicted probability values derived from a multivariate logistic
regression model constructed using the selected genes as predictors.
Nomograms were constructed utilizing the rms package to illustrate
the relative contributions of individual diagnostic genes to the total
risk score. Additive risk scores were generated for each sample to
assess the cumulative diagnostic probability. Decision curve analysis
(DCA) was conducted using the rmda package (1.6) to assess the
clinical utility of the combined model by calculating net benefit
across a range of risk thresholds. Clinical impact curves were
generated to estimate the number of high-risk predictions and their
alignment with actual clinical outcomes.

2.5 Analysis of functional profiles, gene
expression, and immune landscapes

Thereafter, the datasets GSE199939, GSE7014, and GSE134431
were integrated following standard preprocessing protocols,
including batch correction using the ComBat function from the
sva package (3.54.0). Weighted gene co-expression network analysis
(WGCNA) was employed to construct co-expression modules.

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were performed to uncover enriched biological processes
and pathways. ClusterProfiler internally applies a hypergeometric
test for enrichment and corrects for multiple testing using the
Benjamini–Hochberg method, with adjusted p-values <0.05
considered statistically significant.

Differential expression analysis between control and treatment
samples in the bulk RNA-seq dataset was performed using the
Wilcoxon rank-sum test, withmultiple testing correction applied via
the Benjamini–Hochberg method. xCell was applied for immune
infiltration profiling to estimate the relative abundance of 64
immune and stromal cell types. The analysis was performed
using the xCell package (1.1.0), which applies gene signature-
based enrichment and spillover compensation to deconvolute bulk
transcriptomic profiles into immune cell-type–specific signals. Prior
to xCell analysis, raw count data were normalized to TPM values
and subsequently log2 (TPM + 1)–transformed to ensure positivity
and approximate normality, as recommended for optimal algorithm
performance.The correlation analysis betweenPKM,GAMT,EGFR,
and immune cell types was performed using Spearman’s rank
correlation, with heatmaps visualized using the ComplexHeatmap
package (2.22.0).

2.6 Analysis of diagnostic gene dynamics
and associations

The expression trajectories of PKM, GAMT, and EGFR
along pseudotime were analyzed using the Monocle3 package to
capture their dynamic changes across cellular states. Differential
expression across pseudotime branches was assessed using GAMs
within the mgcv package, allowing for precise modeling of gene
expression trends. The Seurat package facilitated comparisons
of gene expression between control and non-healing groups,
while correlations with glycolysis, hypoxia, and lactylation states
were quantified using AUCell to derive enrichment scores. To
investigate potential functional relationships among EGFR, PKM,
and GAMT, we performed protein–protein interaction analysis
using the GeneMANIA platform (https://genemania.org/). The
analysis was conducted in Homo sapiens with default settings,
integrating data sources such as physical interactions, co-expression,
pathway, and genetic interactions.

2.7 Statistical analysis

All statistical analyses were conducted in R (v4.4.2) to ensure
robust and reproducible findings. Non-parametric tests were used
throughout, including the Wilcoxon rank-sum test for AUCell-
derived metabolic score comparisons and differential expression
analysis, and Fisher’s exact test for evaluating cell-type proportion
differences due to small sample sizes in some categories. For
pseudotime trajectory analysis, gene expression trends across
branches were assessed using the Kruskal–Wallis test, followed by
Bonferroni-adjusted pairwise Wilcoxon tests. Correlations between
metabolic states and gene expression were inferred throughAUCell-
based enrichment scoring. Statistical significance was defined as
two-sided p < 0.05, and statistical significance was defined as an
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FDR-adjusted p < 0.05 using the Benjamini–Hochberg method for
multiple testing correction.Multiple testing correctionswere applied
within each individual analysis as appropriate.

3 Results

3.1 scRNA-seq data QC and normalization

The workflow of this study is illustrated in Supplementary
 Figure S1. The present work acquired a total of 25,184 cells and
25,981 genes from GSE165816-derived DFU and heathy samples,
which passed QC. Among these, the healthy tissue, referred to
as the Control group, consisted of 18 samples and 19,367 genes,
whereas the non-healing ulcer tissue, referred to as the Treat
group, exhibited five samples and 9,914 genes. A standardized
workflow, encompassing quality control to filter low-quality cells,
normalization to account for sequencing depth, identification of
highly variable genes to capture key features, scaling to standardize
expression values, dimensionality reduction through principal
component analysis (PCA), batch effect correction using Harmony,
unsupervised clustering for group identification, and visualization
via UMAP and t-SNE, was implemented for comprehensive data
processing (Supplementary Figures S2A–S2F).

As shown in Figure 1A, 24 distinct cell clusters were identified.
Subsequent cell-type annotation (Figure 1B) classified these
clusters into major populations, including Smooth Muscle Cells
(SMC), Vascular Endothelial Cells (VasEndo), Keratinocytes
(Kera), Fibroblasts (Fibro), T Cells (T_cells), Macrophages
(Macro), Lymphatic Endothelial Cells (LymphEndo), Natural
Killer Cells (NK), B Cells (B_cells), Plasma Cells (Plasma),
Melanocytes/Schwann Cells (Melano_Schwann), Mast Cells (Mast),
Sweat and Sebaceous Gland Cells (Sweat_Seba). Further analysis
(Figure 1C) revealed distinct differences in cell proportions between
the Treat and Control groups, with the former showing relatively
lower proportions of fibroblasts and SMCs but higher proportions
of keratinocytes and T cells. Distinct marker gene expression
patterns (Figure 1D) were observed across cell types, revealing clear
transcriptional heterogeneity among the identified cell populations.
Condition-specific UMAP plots (Figure 1E) confirmed distinct
clustering of cells from the Treat and Control groups. A total of 199
hypoxia-related genes (Supplementary Table S2), 200 glycolysis-
related genes (Supplementary Table S3), and 327 lactylation-related
genes (Supplementary Table S4) were collected for subsequent
analyses. Moreover, hypoxia (Figure 1F), glycolysis (Figure 1G),
and lactylation (Figure 1H) levels were significantly elevated in
the Treat group (p < 0.0001). In the hypoxia state (Figure 1I),
keratinocytes, mast cells, plasma cells, melanocytes/schwann
cells and macrophages display a pronounced upregulation in
the Treat group compared to the Control group. Under the
glycolysis condition (Figure 1J), SMCs, vascular endothelial cells,
keratinocytes, T cells, plasma cells, melanocytes/schwann cells as
well as sweat and sebaceous gland cells exhibit markedly elevated
expression levels in the Treat group. Moreover, apart from B cells
and fibroblasts, the Lactylation levels in all other cell types exhibit
a consistent and substantial elevation in the Treat group relative to
the Control group (Figure1K).

3.2 Analysis of hypoxia, glycosis and
lactylation states of non-healing DFUs

Afterwards, UMAP visualization of the Treat group
revealed distinct clustering of major cell populations—including
keratinocytes, fibroblasts, smooth muscle cells (SMCs), various
immune cell populations, and endothelial subsets (Figures 2A,B).
Subsequent GO (Supplementary Figures S3A–S3C) and KEGG
pathway enrichment analyses (Supplementary Figure S3D) further
delineated diverse functional signatures and uniquely activated
pathways across these cellular compartments. We also examined the
correlations between three key parameters—hypoxia, lactylation,
and glycolysis—and multiple signaling pathways known to
influence wound repair and immune regulation. As shown
in Figure 2C, hypoxia exhibited moderate to strong positive
correlations with pathways regulating inflammation (e.g., TNFA
signaling via NFκB, IL6 signaling, Toll-like receptor signaling)
as well as those involved in extracellular matrix organization
(e.g., focal adhesion, matrix remodeling) and angiogenesis.
Lactylation similarly demonstrated robust positive associations,
particularly with immune and cytokine-related pathways, implying
that lactate-driven epigenetic modifications may contribute
to the persistent inflammatory milieu in DFUs. In contrast,
glycolysis exhibited mild to moderate inverse correlations
with several immune-associated pathways—including the T
cell receptor signaling pathway, NK cell–mediated cytotoxicity,
and the broader immune response gene set—while showing
positive correlations of varying magnitudes with pathways
implicated in oxidative stress and those related to diabetes and
insulin resistance, such as the reactive oxygen species pathway,
oxidative stress response, insulin signaling pathway, and type II
diabetes mellitus (Supplementary Table S5).

Cellular heterogeneity of metabolic activities across cells
using AUCell scores revealed elevated hypoxia, predominantly
observed in keratinocytes and macrophages (Figures 2D,G);
increased glycolysis, primarily in keratinocytes and fibroblasts
(Figures 2E,H); and heightened lactylation activity, notably in
keratinocytes and SMCs (Figures 2F,I). Single-cell level mapping
of metabolic activities across cells, based on AUCell scores,
identified distinct patterns: hypoxia was predominantly elevated
in keratinocytes and macrophages (Figures 2D,G); glycolysis was
markedly increased in keratinocytes and fibroblasts (Figures 2E,H);
and lactylation activity was notably heightened in keratinocytes
and SMCs (Figures 2F,I). Among all cell types, keratinocytes
consistently exhibited the highest levels across all three metabolic
states, with significant differences observed compared to most
other cell populations (Supplementary Figures S4A–S4C). Pairwise
comparisons of metabolic states (Figures 2J–L) revealed strong
interdependencies among hypoxia, glycolysis, and lactylation.
Specifically, high hypoxia levels were associated with increased
glycolytic activity and lactylation scores. Similarly, elevated
glycolysis correlated with lactylation activity, underscoring the
interplay between these processes. Lastly, Figures 2M–O compared
the proportions of Control and Treat cells within high and low
metabolic states.

Moreover, based on canonical marker expression, macrophage
clusters were annotated as M1- or M2-subtypes. Subsequent
AUCell-based metabolic scoring revealed that M1-macrophages
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FIGURE 1
Integrated single-cell analysis reveals distinct cellular compositions, transcriptional heterogeneity, and metabolic reprogramming in DFUs between
Control and Treat groups. (A) UMAP visualization of cell clusters derived from single-cell RNA-seq data, identifying 24 distinct cell populations from
both Control and Treat groups. Each cluster is color-coded, representing transcriptionally distinct cell populations. (B) Cell-type annotation of the
identified clusters. (C) Proportion of different cell types in Control and Treat groups. (D) Heatmap of marker gene expression across identified cell
types. (E) UMAP embedding displaying cells stratified by condition. (F–H) Violin plots showing significant differences in hypoxia (F), glycolysis (G), and
lactylation (H) AUCell scores between Control and Treat groups. (I–K) Violin plots of hypoxia (I), glycolysis (J), and lactylation (K) scores across different
cell types in Control and Treat groups. DFU, diabetic foot ulcer; UMAP, uniform manifold approximation and projection.∗, P < 0.05;∗∗, P < 0.01;∗∗∗, P <
0.001;∗∗∗∗, P < 0.0001.

exhibited significantly higher activity in glycolysis, lactylation,
and hypoxia pathways compared to their M2-like counterparts
(Supplementary Figure S5).

3.3 Metabolic and cellular dynamics in
DFUs revealed by pseudotime analysis

The trajectory analysis (Figure 3A) revealed the pseudotime
progression of single cells derived from DFU samples. GAM
fits showed significant trends for hypoxia (Figure 3B), glycolysis
(Figure 3C), and lactylation (Figure 3D). Hypoxia-related activity
exhibited a biphasic trajectory: it peaked in early-stage cells,
decreased duringmid-pseudotime, and showed amodest resurgence
in late-stage cells (p < 0.001). Glycolysis activity displayed a biphasic
trend, with an initial rise during early pseudotime followed by
a decline and a mild rebound in the later stage (p < 0.001).
Notably, lactylation scores showed a consistently elevated profile
across the trajectory, with a modest dip at mid-pseudotime

followed by a recovery in the late phase. Module scores for
hypoxia, glycolysis, and lactylation were analyzed across individual
cell types over pseudotime (Figure 3E). Keratinocytes exhibited
a distinct metabolic trajectory along pseudotime. Lactylation
scores gradually declined after an early peak, while hypoxia
showed a mild early elevation followed by a continuous decrease.
Glycolysis remained relatively stable with a slight late-stage
increase. Fibroblasts displayed stable lactylation scores across
pseudotime, while hypoxia levels slightly decreased. Glycolysis
remained consistently low. Macrophages showed a steady increase
in hypoxia scores toward later pseudotime, whereas lactylation
gradually declined. Glycolysis remained low and flat. To evaluate
the activation state of wound healing programs in non-healing
DFU tissue, we profiled the expression trajectories of key genes
involved in epithelial repair, angiogenesis, inflammation, and
matrix remodeling (e.g., KRT14, VEGFA, MMP9, COL1A1)
along pseudotime (Supplementary Figure S6A). Strikingly, most
healing-associated genes exhibited blunted or delayed upregulation,
with relatively low and flat expression levels across pseudotime,
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FIGURE 2
Comprehensive single-cell analysis of metabolic states reveals hypoxia, glycolysis, and lactylation differences across cell types within the Treat group of
DFUs. (A) UMAP visualization of 17 cell clusters derived from single-cell RNA-seq data in the Treat group, with clusters color-coded to represent
transcriptionally distinct populations. (B) Cell-type annotation of clusters. (C) Correlation heatmap illustrating associations between metabolic
parameters (hypoxia, lactylation, glycolysis) and key signaling pathways involved in wound healing, inflammation, immune regulation, and metabolic
dysregulation in non-healing diabetic foot ulcers (DFUs); correlation strength is indicated by “+” signs (|r|: 0–0.3 = +, 0.31–0.6 = ++, 0.61–1.0 = +++),
with black symbols representing statistically significant correlations (p < 0.05) and dark grey representing non-significant correlations (p ≥ 0.05). (D–F)
UMAP plots showing distribution of cells stratified by hypoxia (D), glycolysis (E), and lactylation (F) metabolic states within the Treat group. (G–I) Violin
plots displaying AUCell scores for hypoxia (G), glycolysis (H), and lactylation (I) across different cell types. (J–L) Violin plots comparing hypoxia (J),
glycolysis (K), and lactylation (L) scores between high and low metabolic states within the Treat group. (M–O) Bar charts illustrating the proportions of
cells in high versus low metabolic states for hypoxia (M), glycolysis (N), and lactylation (O) across annotated cell types. DFU, diabetic foot ulcer; UMAP,
uniform manifold approximation and projection; KEGG, Kyoto Encyclopedia of Genes and Genomes.∗∗∗∗, P < 0.0001.

suggesting a failure to robustly activate regenerative programs. For
instance, VEGFA and PDGFB, essential for neovascularization,
showed only mild expression increases.

To further dissect heterogeneity, pseudotime trajectories were
divided into three branches (Branch1, Branch2, Branch3) as
shown in the UMAP embedding (Figure 3F). Branch-specific
cell distributions revealed significant differences, with Branch2
containing the highest number of cells (n = 3,306), followed
by Branch1 (n = 1,654) and Branch3 (n = 1,654) (Figure 3G).
Branch comparisons of median pseudotime values (Figure 3H)
highlighted significant differences across branches, with Branch3
demonstrating the highest median pseudotime, suggesting it
represents a later stage in the trajectory. Module score analysis
across branches (Figure 3I) further revealed significant differences
for glycolysis, hypoxia, and lactylation. All three metabolic
states—hypoxia, glycolysis, and lactylation—were significantly
elevated in Branch 1 compared to Branches 2 and 3 (p <
0.0001). For lactylation, levels were also significantly higher in
Branch 3 than in Branch 2 (p < 0.0001), whereas glycolysis
showed the opposite trend, with Branch 2 exceeding Branch

3 (p < 0.0001). However, no significant difference in hypoxia
levels was observed between Branches 2 and 3. To interpret the
biological relevance of the three pseudotime trajectory branches,
we performed GO enrichment and analyzed the top 10 branch-
specific genes (Supplementary Figure S6B). Branch 1 represented a
proliferative basal-like program, enriched for epithelial structure
and junctional genes such as KRT5, DSP, SFN, FXYD3, and
GO terms related to epidermal development and cell adhesion
(e.g., “keratinocyte differentiation”, “epidermis development”)
(Supplementary Figure S7A; Supplementary Table S6). Branch
2 was characterized by fibrotic remodeling features, with top
markers including COL4A1, COL6A1, THY1, SPARC. GO
analysis revealed enrichment in extracellular matrix organization
and tissue remodeling processes (Supplementary Figure S7B;
Supplementary Table S7). Branch 3 exhibited an inflammatory
immune response signature, marked by high expression of
leukocyte-related genes such as PTPRC, CXCR4, CD37, and
significant enrichment in GO terms like “leukocyte chemotaxis”,
“T cell activation”, and “mononuclear cell proliferation”
(Supplementary Figure S7C; Supplementary Table S8).
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FIGURE 3
Pseudotime and branch-specific metabolic dynamics reveal distinct trajectories in the Treat group of DFUs. (A) Pseudotime trajectory analysis of
single-cell data from the Treat group, identifying dynamic transitions between cell states. (B–D) GAM fits showing the trends of hypoxia (B), glycolysis
(C), and lactylation (D) module scores over pseudotime. (E) Line plots depicting module scores for hypoxia, glycolysis, and lactylation across
pseudotime in individual cell types. (F) UMAP visualization of cells stratified into three distinct branches (Branch 1, Branch 2, Branch 3) based on
pseudotime analysis. (G) Bar chart showing the distribution of cell numbers across the three branches. (H) Median pseudotime values for each branch.
(I) Violin plots comparing glycolysis, hypoxia, and lactylation scores across branches. DFU, diabetic foot ulcer; UMAP, uniform manifold approximation
and projection; GAM, Generalized Additive Model.∗∗, P < 0.01;∗∗∗, P < 0.001;∗∗∗∗, P < 0.0001.

3.4 Differential intercellular
communication and ligand-receptor
interactions in hypoxia, glycolysis, and
lactylation states

Intercellular communicationwasmarkedly altered betweenhigh
and low hypoxia, glycolysis, and lactylation states. A significant
increase in the number of intercellular interactions was observed
in the high state compared to the low state, with specific cell
types such as SMCs and keratinocytes contributing prominently
to the overall interaction landscape (Figures 4A,B). Quantitative
comparison further revealed that the total number of interactions
in the high state was significantly greater than in the low
state (Figure 4C). The strength of intercellular communication,
represented by interaction weights, was consistently higher
in the high state across most cell types (Figures 4D,E). This
observation was further validated by aggregate interaction
weights, which demonstrated a marked increase in the high
state compared to the low state (Figure 4F). Interestingly,
intercellular communication involving plasma cells and B cells is
notably absent in the high-state group. Communication weights
differed significantly between high and low states (Figure 4G).
Fibroblasts, keratinocytes, and SMCs showed markedly higher
weights in the high-state group (p < 0.05), while T cells,

macrophages and Melano_Schwann cells exhibited minimal
communication, particularly in the high-state group. Analysis
of signaling pathways revealed key differences between states,
with pathways such as THBS, MK, VISFATIN, and NOTCH
showing statistically significant alterations (Figure 4H). In the
analysis of ligand-receptor pairs, SMCs and keratinocytes displayed
a predominance of interactions with higher weights in the
high-state group compared to the low-state group. Conversely,
fibroblasts exhibited more ligand-receptor pairs with greater
communication weights in the low-state group. Notably, all
pairwise comparisons of ligand-receptor interactions between
cell types demonstrated statistically significant differences (p
< 0.001) (Figure 4I). The comprehensive interactions between
fibroblasts, keratinocytes, and SMCs, including all ligand-
receptor pairings, are systematically delineated and illustrated in
Supplementary Figures S8A, S8B.

3.5 Identification of diagnostic genes
through molecular and cellular analysis in
DFUs

Afterwards, single-cell data from DFU samples were stratified
into two groups based on levels of hypoxia, glycolysis, and lactylation
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FIGURE 4
Intercellular communication analysis reveals enhanced interaction dynamics in high metabolic states of DFUs. (A, B) Intercellular interaction networks
showing the number of interactions for high (A) and low (B) metabolic states across different cell types in DFUs. Thicker and darker edges indicate
stronger interactions. (C) Quantification of the total number of intercellular interactions in high and low metabolic states. (D–E) Interaction weight
networks illustrating the strength of interactions in high (D) and low (E) metabolic states. (F) Aggregate interaction strengths between cell types in high
and low metabolic states. (G) Comparison of communication weights across all cell types. (H) Differential analysis of signaling pathways between high
and low metabolic states. (I) Differential ligand-receptor pair expression in SMCs, fibroblasts, and keratinocytes between high and low metabolic states.
DFU, diabetic foot ulcer; SMC, smooth muscle cell.∗, P < 0.05;∗∗, P < 0.01;∗∗∗, P < 0.001.

(Figure 5A). The cellular composition analysis revealed notable
differences in the proportion of specific cell types between the two
groups, with marked shifts in the prevalence of key populations
such as fibroblasts, keratinocytes, and immune cells (Figure 5B).
Gene set enrichment analysis revealed significant activation of
key biological pathways in the High-state group. Notably, the
Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) Pathway
(Figure 5C), Toll-Like Receptor (TLR) Signaling (Figure 5D) and
Inflammatory Response (Figure 5E) were upregulated in the High-
state group. In contrast, genes involved in Extracellular Matrix
(ECM) Receptor (Figure 5F), Response to Hypoxia (Figure 5G),
Angiogenesis (Figure 5H), Cytokine-Cytokine Receptor Interaction
(Figure 5I) and Focal Adhesion (Figure 5J) were expressed at
higher levels in the Other-state group. To explore the functional
implications of high metabolic states, we evaluated enrichment
of eight stress- and cell death–related pathways, including
oxidative stress, apoptosis, anoikis, cuproptosis, ferroptosis,
autophagy, immunogenic cell death, and necroptosis. Using AUCell
scoring, we found that High-state cells showed significantly
higher activity across all pathways compared to Other-state cells
(Supplementary Figures S9A–S9H, p < 0.001). Gene expression
analysis revealed significant differences between the High-
and Other-state groups (Figure 5K). Several genes, including
BAX, CASP3, CCL2, CDKN1A, FOXO1 and SLC2A1, were

significantly upregulated in the High-state group (p < 0.001).
TIMP1, COL1A1 and COL3A1 exhibited higher expression in
the Other-state group (p < 0.001). To uncover TFs that may
drive the metabolic-inflammatory reprogramming of High-
state cells, we applied SCENIC to reconstruct gene regulatory
networks and quantify regulon activity across individual cells.
Limma-based differential analysis of AUCell scores revealed
a panel of transcription factors with significantly elevated
activity in High-state cells compared to Other-state counterparts
(Supplementary Table S9). The top 10TF regulons included MYC,
KLF4, MAF, ATF3, and CEBPB—all known to orchestrate
stress response, immune activation, and cellular plasticity.
As shown in Figure 5L, TFs such as EGR1, FOS, CEBPB, and
CEBPD exhibit consistent positive correlations with hypoxia.
Notably, CEBPB and KLF4 are more strongly associated with
glycolysis, while HMGB2 and ATF3 show stronger associations
with lactylation.

Differential gene expression analysis between the
High- and Other-state groups identified 196 significantly
altered genes (Figure 5L). By intersecting these single-cell-derived
genes with differentially expressed genes from the control and ulcer
groups in the GSE199939 dataset, we identified 110 overlapping
genes, bridging single-cell and bulk RNA-seq data to refine potential
diagnostic biomarkers.
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FIGURE 5
Identification of diagnostic genes through metabolic and transcriptomic analysis in DFUs. (A) UMAP visualization of cells stratified into high- and
low-metabolic states based on hypoxia, glycolysis, and lactylation scores. (B) Proportions of cell types in high- and low-metabolic states. (C–J) Violin
plots showing differential gene expression in various pathways and cellular processes between the High- and Other-states. (K) Heatmap displaying top
differentially expressed genes between the two groups. (L) Spearman correlation between top transcription factor regulons and metabolic programs in
High-versus Other-state cells. (M) Volcano plot illustrating differentially expressed genes between high- and low-metabolic states, with upregulated
genes in red and downregulated genes in blue. (N, O) LASSO regression model outputs, including the coefficient path plot (N) and cross-validation
error curve (O), used for feature selection of diagnostic genes. (P) Random forest error curve demonstrating model accuracy for classifying control and
DFU groups. (Q) Top-ranked genes contributing to classification accuracy in the random forest model, based on mean decrease in accuracy. (R) SVM
model outputs highlighting gene weights, identifying key genes associated with DFUs. (S) Venn diagram of overlapping diagnostic genes identified
through LASSO, random forest, and SVM models, pinpointing three core diagnostic biomarkers. DFU, diabetic foot ulcer; UMAP, uniform manifold
approximation and projection; LASSO, least absolute shrinkage and selection operator; RF, random forest; SVM, support vector machine.

To identify robust diagnostic markers, three machine learning
algorithms were employed. The LASSO regression model
highlighted key genes contributing to group differentiation, as
shown by the coefficient path plot and cross-validation error curve
(Figures 5M,N). Random forest analysis further identified the most
important genes driving classification based on mean decrease
in accuracy, emphasizing the contributions of inflammatory and
extracellular matrix-related genes (Figures 5O,P). Similarly, the
SVM algorithm assigned significant weights to genes associated
with cellular stress and metabolic pathways (Figure 5Q). The
overlap of diagnostic genes across these three approaches was
visualized using a Venn diagram (Figure 5R), revealing a core
set of shared markers, including EGFR, GAMT, and PKM,
which were identified as pivotal genes. The corresponding model
coefficients and feature weights for each algorithm have been
provided in Supplementary Tables S10–S12.

3.6 Robust validation of diagnostic
biomarkers across independent cohorts

The diagnostic potential of the selected biomarkers was
systematically validated using three independent GEO datasets.
The ROC curves (Figures 6A,E,I) exhibited compelling predictive
performance for the combined model, yielding AUC values
of 0.9364, 0.7222, and 0.7115 for GSE199939, GSE7014, and
GSE134431, respectively. The nomograms (Figures 6B,F,J) elucidate
the contributions of individual genes to the total diagnostic risk
score. The additive risk model highlights a consistent alignment
of higher total scores with an increased probability of diagnostic
classification, signifying the synergistic contribution of these
genes within the predictive framework. Decision curve analysis
(Figures 6C,G,K) provided a robust assessment of the model’s
clinical utility by evaluating net benefit across a range of risk
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FIGURE 6
Validation of diagnostic performance of combined biomarkers (PKM, GAMT, and EGFR) across independent datasets. (A, E, I) ROC curves for the
combined model demonstrate consistent diagnostic performance with AUC values of 0.9364 (GSE199939), 0.7222 (GSE7014), and 0.7115 (GSE134431).
(B, F, J) Nomograms illustrating the individual contributions of PKM, GAMT, and EGFR to the total diagnostic risk score in each dataset. (C, G, K)
Decision curve analyses showing the net clinical benefit of the combined biomarker model compared to baseline scenarios (“none” and “all”). (D, H, L)
Clinical impact curves illustrating the relationship between high-risk predictions and actual events, validating the clinical applicability of the combined
model in all three datasets. AUC, area under the curve; ROC, receiver operating characteristic; DFU, diabetic foot ulcer.

thresholds. The combined model consistently demonstrated higher
net clinical benefit compared to the “treat-all” or “treat-none”
strategies across a wide range of threshold probabilities, particularly
between 0.3 and 0.8. In parallel, CIC results (Figures 6D,H,L)
showed that the number of predicted high-risk individuals closely
matched the number of actual DFU cases. Across all three
datasets, the combined model demonstrated robust performance
in identifying individuals at high risk, consistently showcasing its
predictive accuracy and reliability across independent cohorts.

3.7 Comprehensive functional profiling,
differential expression analysis, and
immune landscape characterization of
diagnostic genes in DFUs

To further validate the diagnostic significance of PKM, GAMT,
and EGFR, we performed an integrated analysis of datasets
GSE199939, GSE7014, and GSE134431. WGCNA identified several
co-expressionmodules associatedwith the diagnostic genes. Among

these, the darkgrey module stood out with the strongest correlation
to PKM, GAMT, and EGFR (correlation coefficient of 0.83;
Figures 7A–C). Given its robust association, the darkgrey module
was prioritized for further investigation. Functional enrichment
analysis of the darkgrey module revealed its involvement in
processes highly relevant to DFU pathology. GO analysis identified
key processes such as sarcomere organization, glucose metabolism,
and muscle contraction (Figure 7D). KEGG pathway enrichment
further highlighted dysregulation in glycolysis/gluconeogenesis
and cardiac muscle contraction pathways (Figure 7E). In the
integrated dataset, differential expression analysis revealed that
PKM and GAMT were significantly upregulated in DFU lesions,
while EGFR was predominantly expressed in control tissues
(Figure 7F).

Additionally, xCell-based immune infiltration profiling
demonstrated notable differences in the immune landscape between
DFU and control tissues. Specifically, DFU tissues exhibited
increased populations of Tregs, Th2 cells, Tgd cells, and CD4+

memory T cells, alongside reduced levels of fibroblasts, epithelial
cells, and HSCs (Figure 7G). Correlation analysis between PKM,
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FIGURE 7
Diagnostic gene enrichment analysis, differential expression, and immune-related profiling in DFUs. (A) Hierarchical clustering dendrogram from
WGCNA, identifying co-expression modules associated with DFUs. (B) Scale-free topology model fit and mean connectivity plot determining the
optimal soft-thresholding power for network construction. (C) Bar plot showing the correlation of co-expression modules with diagnostic genes,
highlighting the darkgrey module as the most significantly correlated. (D, E) GO and KEGG pathway enrichment analysis of the yellow module,
revealing significant associations with metabolic and muscle-related pathways critical to wound healing. (F) Violin plots showing the differential
expression of PKM, GAMT, and EGFR between Control and Treat groups, with upregulation of PKM and GAMT and downregulation of EGFR in DFUs. (G)
Violin plots displaying cell-type-specific expression levels of diagnostic genes, highlighting keratinocytes, fibroblasts, and immune cells. (H) Heatmap
of correlations between diagnostic genes (PKM, GAMT, EGFR) and immune cell types, showing distinct patterns of association with wound healing and
inflammation-related cells. WGCNA, weighted gene co-expression network analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes.∗, P < 0.05;∗∗, P < 0.01;∗∗∗, P < 0.001;∗∗∗∗, P < 0.0001.

GAMT, EGFR, and immune cell types revealed that PKM and
GAMT were positively correlated with most immune cells, while
EGFR exhibited negative correlations (Figure 7H).

3.8 Pseudotime and differential expression
analysis of diagnostic genes in scRNA-seq
data

In the scRNA-seq dataset GSE165826, the expression
trajectories of PKM, GAMT, and EGFR were analyzed along
pseudotime, revealing distinct temporal patterns (Figure 8A). EGFR
expression exhibited a high initial level, rapidly declined in early
pseudotime, and remained suppressed throughout the trajectory
with only minor fluctuations. GAMT exhibited a sharp decline in
expression after an initial high level in early pseudotime. While
its expression remained low throughout most of the trajectory,
a subtle upturn was observed at the terminal stage. PKM, in
contrast, showed a sustained and dynamic profile. After an initial
decline, expression rebounded in mid-pseudotime and gradually
increased again at late pseudotime. Stratified by pseudotime
branches, all three genes—PKM, GAMT, and EGFR—exhibited

the highest expression levels in Branch 1 (Figure 8B). All
three genes exhibited significant differential expression across
pseudotime branches.

Regional mapping of gene expression in the non-healing
subgroup of the single-cell dataset revealed differential distribution
patterns of PKM, GAMT, and EGFR across cell clusters
(Figures 8C,D). PKM expression was highest in keratinocytes,
followed by melanocyte/Schwann cells and SMCs. GAMT
expression was also predominantly observed in keratinocytes,
with lower levels in SMCs and plasma cells. EGFR expression
was most prominent in keratinocytes, with moderate expression
in fibroblasts and SMCs. When comparing the control and non-
healing groups, PKM and GAMT were significantly upregulated
in the non-healing group, while EGFR exhibited a contrasting
downregulation (Figure 8E). Correlation analysis between the
diagnostic genes and glycolysis, hypoxia, and lactylation states in
the non-healing group revealed strong and statistically significant
associations. PKM displayed the highest correlations across all
states, particularly with hypoxia (R = 0.35, p < 0.001). EGFR showed
moderate correlations with these states, while GAMT demonstrated
weaker yet significant correlations (Figure 8F). To assess the
potential synergy and complementarity among the three selected
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FIGURE 8
Pseudotime analysis, differential expression, and metabolic correlations of diagnostic genes in single-cell data. (A) Pseudotime trajectories of PKM,
GAMT, and EGFR expression levels, highlighting distinct temporal patterns associated with metabolic states. (B) Boxplots illustrating significant
expression differences for PKM, GAMT, and EGFR across pseudotime-defined branches. (C) Combined expression levels of diagnostic genes mapped
onto the UMAP. (D) UMAP visualization showing cell-specific expression patterns of PKM, GAMT, and EGFR within the Treat group. Bar plots displaying
the top three cell types with the highest average expression for each gene. (E) Violin plots of PKM, GAMT, and EGFR, displaying significant differential
expression between Control and Treat groups in single-cell data. (F) Heatmap of correlations between diagnostic gene expression and metabolic states
(glycolysis, hypoxia, and lactylation). (G) PPI network of metabolism-related genes enriched in non-healing DFU tissues. UMAP, uniform manifold
approximation and projection; DFU, diabetic foot ulcer; PPI,Protein-protein interaction∗∗, P < 0.01;∗∗∗, P < 0.001.

genes, we constructed a functional network using GeneMANIA.
The resulting network showed that EGFR is embedded in a
signaling hub connected to downstream effectors such as PIK3CA,
ABL1, and EPS8, highlighting its role in epithelial proliferation
and signal transduction. PKM clustered with glycolytic enzymes
including LDHA, ENO3, and PKLR, indicating its metabolic
function in glucose processing and lactate production. In contrast,
GAMT formed a discrete module with mitochondrial creatine
kinases (e.g., CKMT1A, CKMT2), involved in cellular energy
buffering. While GAMT lacked direct interaction with the other
two genes, PKM and EGFR were connected through multiple
intermediary nodes (Figure 8G).

4 Discussion

DFUs represent a severe and debilitating complication of
diabetes mellitus, characterized by chronic, non-healing wounds
that result from a complex interplay of metabolic, vascular,
and immunological dysregulation (Zhang et al., 2024a). Despite
advances in wound care, DFUs remain a leading cause of lower
extremity amputations, necessitating a deeper understanding of
their molecular underpinnings to identify effective diagnostic
and therapeutic targets. In this study, leveraging both single-cell
and bulk transcriptomic datasets, we identified key diagnostic
biomarkers—PKM, GAMT, and EGFR—and elucidated their
roles in metabolic and immune remodeling within the DFU
microenvironment.

Initially, scRNA-seq analysis comprehensively provided a high-
resolution perspective on the metabolic heterogeneity within DFU
lesions. Hypoxia, glycolysis and lactylation are deeply intertwined
in the pathophysiology of non-healing DFUs, reflecting critical

disruptions in the metabolic and immune microenvironments.
Hypoxia, driven by impaired vascularization, stabilizes hypoxia-
inducible factor 1-alpha (HIF-1α), which enhances glycolytic
flux through enzymes such as PFKFB3, allowing cells to adapt
to oxygen deprivation by prioritizing glycolytic ATP production
(Irizarry-Caro et al., 2020; Zhang et al., 2021a). However, the
adaptation becomes pathological in DFUs, with excessive glycolysis
fueling lactate accumulation, chronic inflammation, and insufficient
angiogenesis (Dichtl et al., 2021; Yang et al., 2017). Lactylation, as
both a metabolic and epigenetic response to glycolysis, further
complicates wound healing in DFUs. Elevated lactate levels not
only stabilize HIF-1α and induce VEGF signaling but also modify
histones, influencing macrophage polarization and tissue repair
gene expression (Dichtl et al., 2021). While lactylation promotes
reparative M2 macrophage phenotypes under physiological
conditions, its dysregulation in DFUs perpetuates inflammatory
imbalance and delays resolution (Alvarez et al., 2021). This
maladaptive metabolic-immune feedback loop sustains a hypoxic,
inflammatory microenvironment, preventing effective angiogenesis
and tissue regeneration. Our comprehensive correlation analyses
further reveal that the upregulation of hypoxia, lactylation, and
glycolysis is intricately linked to multiple signaling pathways that
govern wound repair and immune regulation in non-healing DFUs.
The robust positive correlations between hypoxia and pathways
involved in inflammation, extracellular matrix organization,
and angiogenesis suggest that chronic hypoxia may trigger
compensatory repair responses, yet simultaneously perpetuate
maladaptive proinflammatory cascades, thereby impeding effective
wound resolution. Similarly, the strong positive associations
between lactylation and cytokine-related and immune pathways
are in line with reports that H3K18 lactylation activates NF-
κB signaling and induces proinflammatory cytokines such as
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IL-6 and IL-8 (Wei et al., 2023a). This supports the hypothesis
that lactylation may promote a sustained proinflammatory
state by skewing macrophages toward an M1-like phenotype
in DFUs (Zhou et al., 2022). Furthermore, glycolysis exhibited
mild to moderate inverse correlations with several immune-
associated pathways, suggesting that heightened glycolytic
flux may concomitantly dampen effective immunoregulatory
mechanisms (Zhu et al., 2025). Concurrently, positive correlations
were observed between glycolysis and pathways related to oxidative
stress, hyperglycemia, and insulin resistance, implying that
increased glycolytic activity not only reflects but may further
exacerbate the pro-oxidative, hyperglycemic, and insulin-resistant
conditions characteristic of DFUs.

Moreover, keratinocytes demonstrated the highest levels
of hypoxia, glycolysis, and lactylation in non-healing DFU
lesions, likely due to their pivotal role in wound healing
and re-epithelialization. Keratinocytes are metabolically active,
requiring substantial energy for migration, proliferation, and
extracellular matrix remodeling under ischemic and nutrient-
deprived conditions (Zhang et al., 2024b; Piipponen et al.,
2020). Hypoxia drives keratinocytes to upregulate glycolysis as a
compensatory mechanism, while lactylation may regulate gene
expression critical for tissue repair. However, dysregulation of
this heightened metabolic activity may exacerbate chronic wound
pathology, disrupting the delicate balance required for proper tissue
repair and contributing to sustained inflammation and progressive
tissue damage. Similarly, the elevated glycolytic, hypoxic, and
lactylation activities observed inM1-likemacrophages are indicative
of their pro-inflammatory and metabolically active phenotype. In
the context of non-healing DFUs, such metabolic reprogramming
may signify chronic inflammatory activation and insufficient
adaptation to the hostile wound microenvironment (Xu et al.,
2024). Sustained hypoxia and metabolic stress can stabilize HIF-
1α, reinforcing glycolytic flux and driving M1 polarization, thereby
creating a self-amplifying cycle of inflammation and tissue damage
that impedes wound resolution (Wu et al., 2023). Collectively,
the interplay of hypoxia, glycolysis, and lactylation establishes
a self-perpetuating cycle of metabolic dysfunction and immune
dysregulation in DFUs.

Pseudotime analysis of non-healing DFUs revealed distinct
metabolic dynamics across key cell types. In macrophages,
glycolysis levels are elevated during early pseudotime, reflecting
M1 activation via the HIF-1α/PKM2 axis, which promotes
pro-inflammatory responses through glycolytic reprogramming
and IL-1β production (Corcoran and O’Neill, 2016; Palsson-
McDermott et al., 2015). Persistently low lactylation levels, however,
indicate an impaired M1-to-M2 transition, critical for resolving
inflammation (Forteza et al., 2023; Semba et al., 2016). This
disrupted metabolic-epigenetic axis, characterized by inadequate
macrophage polarization, exacerbates chronic inflammation and
delays wound healing in DFUs (Iniesta et al., 2001). Keratinocytes
exhibited sustained lactylation early in pseudotime, aligning with
their role in promoting angiogenesis via lactylation-mediated
stabilization of HIF-1α (Kato et al., 2021). However, the muted
hypoxia and glycolysis levels suggest impaired metabolic flexibility
in the hypoxic DFU microenvironment, potentially limiting
epithelial migration and tissue closure. Fibroblasts demonstrated a
late-stage surge in the three metabolic states, indicative of metabolic

adaptation to extracellular matrix production. Yet, relatively low
hypoxia levels throughout pseudotime may suggest inadequate
activation of angiogenic or granulation functions (Li et al.,
2021). The differential glycolysis, hypoxia, and lactylation levels
across pseudotime branches reflect distinct metabolic states and
temporal dynamics in non-healing DFUs. Branch 1, with the
highest metabolic activity, likely represents an early, hypoxia-driven
adaptive response aimed at wound closure through glycolysis,
lactate signaling, and inflammatory pathways such as MAPK
and Rap1 signaling. In contrast, Branch 2, characterized by the
lowest metabolic activity, reflects a later, metabolically quiescent or
dysregulated state with impaired reparative capacity, as evidenced
by pathways related to ECM-receptor interactions and focal
adhesion, indicative of inadequate matrix remodeling and tissue
repair. Branch 3 occupies an intermediate position, reflecting
a transitional phase with partial metabolic adaptation. These
findings underscore the temporal and cellular heterogeneity
of metabolic responses in DFUs, highlighting the disrupted
coordination of metabolic states across time as a key barrier to
effective healing.

The augmented intercellular communication between
fibroblasts and keratinocytes, as well as SMCs and keratinocytes,
observed in high metabolic states, underscores an intensified
metabolic response aimed at mitigating the severe stress within
the non-healing DFU microenvironment. In SMCs, GAS6–AXL
was among the most enriched pairs in High-state cells, consistent
with its known role in vascular remodeling and anti-inflammatory
signaling. Additionally, several extracellular matrix (ECM)-integrin
pairs—LAMC1–CD44, LAMB2–CD44, COL4A2–ITGA1–ITGB1,
and COL4A1–ITGA1–ITGB1—were activated, suggesting
enhanced ECM interaction and potential migration readiness in
metabolically active SMCs (Barbosa et al., 2024). In fibroblasts,
the top L–R pairs included GAS6–AXL, along with multiple
collagen–CD44 interactions (COL6A2–CD44, COL6A1–CD44,
COL1A1–CD44, COL1A2–CD44). These signals are tightly linked
to matrix production, fibroblast activation, and wound fibrosis,
highlighting their pathogenic relevance in chronic wound states
(Yang et al., 2025; Zhang et al., 2022). In keratinocytes, top-ranked
ligand–receptor pairs such as COL1A1–SDC1, COL6A2–SDC1,
COL1A2–SDC1 and DSG1–DSC3 were elevated in the High-state
group. These interactions are essential for epithelial–mesenchymal
adhesion, cell–matrix contact, and barrier integrity (Wei et al.,
2023b; Huang et al., 2023). These ligand–receptor interactions
have been extensively studied in tumor biology, yet their specific
roles in the context of DFU remain largely unexplored and
warrant further investigation. Fibroblast-keratinocyte interactions
likely promote ECM synthesis and keratinocyte migration,
processes essential for initiating re-epithelialization and wound
closure (Russo et al., 2020). Concurrently, the elevated crosstalk
between SMCs and keratinocytes may drive angiogenic pathways,
potentially mediated by the secretion of hypoxia-responsive
pro-angiogenic factors such as VEGF via HIF-1α activation
(Liu et al., 2023). However, the chronic hypoxia and dysregulated
metabolic states characteristic of DFUs may shift these adaptive
interactions toward pathological outcomes (Manchanda et al.,
2023). Excessive ECM deposition from hyperactive fibroblast
signaling may lead to fibrosis, while aberrant SMC-driven
vascular remodeling may result in dysfunctional angiogenesis
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and capillary leakage (Xiong and Liu, 2017). Additionally, the
sustained pro-inflammatory milieu, compounded by unresolved
metabolic stress, perpetuates tissue damage and hinders resolution
of the wound (Alfaro et al., 2022). Thus, while the enhanced
communication between these cell types reflects an inherent attempt
to restore homeostasis, it paradoxically exacerbates the chronic
wound pathology in DFUs under conditions of severe metabolic
dysregulation.

Subsequent investigations have demonstrated that DFU cells
exhibiting more pronounced hypoxic, glycolytic, and lactylation
states are characterized by enhanced chronic inflammation and
cellular stress. In contrast, cells from the Other-state group
exhibit superior capabilities in tissue repair, adaptation to hypoxic
environments, promotion of neovascularization, regulation of
inflammation, and enhancement of cellular adhesion andmigration.
Cells in the High-state exhibited significantly elevated enrichment
of multiple cell death–associated programs. This coordinated
activation of diverse death pathways suggests a highly stressed
or immunologically engaged microenvironment, in which parallel
mechanisms converge to restrict cell survival (Li et al., 2024).
These observations imply that the High-state may represent a
metabolically and immunologically vulnerable cell population
undergoing active elimination or transition. Gene-related analysis
corroborated these findings. Genes implicated in the promotion of
chronic inflammation (Schonthaler et al., 2013; Christmann et al.,
2021; Zhang et al., 2021b), including S100A8, S100A9, CCL2,
and IL1B, as well as those associated with oxidative stress
(Gao et al., 2020; Li and Gao, 2023; Hori et al., 2013), such
as SOD2 and FOXO1, were markedly upregulated in the High-
state. Additionally, genes like BAX and CASP3, which are known
to mediate apoptosis (Kiraz et al., 2016), were also highly
expressed, potentially contributing to the apoptotic processes that
may lead to keratinocyte and endothelial cell death. Furthermore,
genes related to disrupted keratinization and impaired epidermal
differentiation (Grzanka et al., 2012; Dull et al., 2023), such
as KRT16, KRT6A, and IVL, were found to be elevated in
the High-state, suggesting a pathological exacerbation of chronic
wound healing. In contrast, genes involved in the inhibition
of matrix metalloproteinases (MMPs) and the promotion of
collagen deposition (Yim et al., 2018; Ana et al., 2025), namely
TIMP1, COL1A1, and COL3A1, exhibited significantly higher
expression levels in the Other-state, indicative of enhanced
tissue repair and fibrosis processes. Moreover,the top enriched
TFs—including MYC, KLF4, ATF3, and CEBPB—have established
roles in glycolysis, oxidative stress response, and immune signaling
via TLR and NFκB pathways (Bhawe and Roy, 2018; Chen et al.,
2022; Nabar and Kehrl, 2017). For instance, MYC promotes
glycolytic gene expression (Bian et al., 2022; Yeung et al.,
2008); KLF4 and ATF3 mediate TLR feedback (Kim et al.,
2010; Liang et al., 2024); and CEBPB directly regulates pro-
inflammatory cytokines such as IL-6 and TNF (Ren et al., 2023;
Kim et al., 2009). MAF and HMGB2 further contribute to
immune tolerance and DAMP-related activation (Fan et al., 2024;
Koto et al., 2022).

The integration of single-cell and bulk transcriptomic analyses
established PKM, GAMT, and EGFR as robust diagnostic
biomarkers, with their performance validated across multiple
independent datasets. Nomograms constructed from these genes

provided a clinically interpretable framework for risk stratification,
while decision and clinical impact curves demonstrated the practical
utility of these biomarkers in identifying high-risk cases. The robust
diagnostic accuracy, reflected by high AUC values in multiple
datasets, underscores the potential of these markers for clinical
translation.

PKM, a critical enzyme in the glycolytic pathway, exerts
profound control over cellular energy metabolism and metabolite
production (Yang et al., 2012). Under hypoxic conditions, PKM
activity is likely altered, driving an upregulation of glycolysis
and subsequent lactate accumulation. The excess lactate not only
exacerbates local acidosis, impairing cellular functionality, but also
acts as a signaling molecule through lactylation modifications.
These effects collectively exacerbate the pathological progression
of DFUs. GAMT, a key enzyme in the creatine biosynthesis
pathway, is essential for maintaining cellular energy metabolism
and homeostasis (Baker et al., 2021). In DFUs, upregulated GAMT
likely represents a compensatory response to heightened energy
demands and metabolic stress. As a key enzyme in creatine
biosynthesis, GAMT supports intracellular energy reservoirs
(Mercimek-Mahmutoglu et al., 2006; Curt et al., 2015). However, the
chronic hypoxic and inflammatory microenvironment may impair
creatine utilization or disrupt downstream energy metabolism,
limiting its reparative potential. EGFR plays a fundamental role in
cellular proliferation and signal transduction (Wee andWang, 2017).
Hypoxia and metabolic dysregulation associated with DFUs may
result in suppression of the EGFR signaling pathway (Mamo et al.,
2020). Excessive glycolysis and lactylation may potentially
alter the extracellular microenvironment or post-translational
modifications, which could affect EGFR-ligand interactions.
However, direct mechanistic evidence for such disruption remains
to be established. Collectively, these findings highlight the distinct
but complementary roles of PKM, GAMT, and EGFR in the
non-healing DFU microenvironment. PKM and GAMT, while
orchestrating metabolic adjustments to the hypoxic and glycolytic
milieu of DFUs, paradoxically fail to facilitate wound resolution,
reflecting the persistent metabolic and inflammatory dysfunction.
In contrast, EGFR, with its diminished expression in lesion sites,
may signify impaired tissue repair mechanisms and a disrupted
equilibrium in the wound microenvironment, further perpetuating
chronic pathology. The coordinated dysregulation of these genes
not only mirrors the metabolic and inflammatory dysfunction
underlying DFU pathophysiology, but also suggests their potential
as novel, mechanistically informed biomarkers beyond classical
inflammatory markers.

These findings may provide a rationale for metabolic-targeted
therapies in DFUs. For instance, PKM2 inhibitors have been shown
to attenuate inflammation and improve macrophage polarization
(Xiang et al., 2025), while modulation of lactylation—though
still in early-stage research—represents a promising avenue for
reprogramming chronic inflammation. In parallel, strategies aimed
at restoring EGFR signaling, such as topical EGF application,
have demonstrated clinical benefit in wound repair and may
warrant reconsideration in DFUs with diminished EGFR
expression (Shakhakarmi et al., 2023). Although our study is
descriptive in nature and lacks experimental validation, it lays
a robust foundation for future mechanistic and interventional
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investigations into metabolic reprogramming as a therapeutic
strategy for chronic wound healing.

Notably, the xCell deconvolution revealed increased enrichment
of Tregs, Th2 cells, dendritic cells (DCs), and several other
immune and stromal cell types in DFUs. Interestingly, while
previous studies (Dawi et al., 2025) have reported reduced numbers
or impaired function of Tregs in diabetic patients, our xCell-
based deconvolution revealed an increased enrichment of Tregs
in non-healing DFUs compared to healing tissues. This apparent
discrepancy may reflect a compensatory accumulation of Tregs
in response to persistent, unresolved inflammation. Despite their
increased abundance, these Tregs may be functionally exhausted
or unable to effectively suppress chronic inflammatory signals
in the wound microenvironment. Alternatively, their expansion
could contribute to an overly suppressive immune milieu, limiting
the activity of effector immune cells necessary for infection
control and tissue regeneration (Alvarez et al., 2020). Th2 cells,
through cytokines such as IL-4 and IL-13, can promote fibrosis
and skew macrophage polarization toward anti-inflammatory M2-
like states (Allen and Wynn, 2011), which may contribute to
persistent chronic inflammation, fibrotic tissue remodeling, and
impaired re-epithelialization in DFUs. Collectively, our study
uniquely integrates single-cell and bulk transcriptomic data to
uncover the coordinated roles of hypoxia, glycolysis, and lactylation
in DFUs—three interrelated metabolic programs that have not been
jointly explored in this disease context and uncovers a previously
unrecognized metabolic gene signature with potential diagnostic
relevance.

While this study provides valuable insights into the molecular
and cellular mechanisms underlying DFUs, several limitations
should be addressed. First, the reliance on cross-sectional data limits
the ability to capture temporal dynamics of wound healing and
disease progression. Longitudinal studies are needed to delineate
causal relationships and identify stage-specific therapeutic targets.
Second, the functional roles of PKM, GAMT, and EGFR in DFU
pathogenesis require further validation through in vitro and in vivo
studies. Finally, while the integration of single-cell and bulk RNA-
seq data enhances the robustness of our findings, additional datasets
and larger sample sizes are warranted to validate these results in
diverse patient populations.

5 Conclusion

In conclusion, this study highlights the intricate interplay
between metabolic dysregulation, cellular communication, and
molecular dysfunction in the pathogenesis of non-healing DFUs.
Hypoxia, glycolysis, and lactylation states were found to be pivotal
drivers of cellular and molecular alterations, with significant
impacts on fibroblasts, keratinocytes, and smooth muscle cells,
which exhibited enhanced intercellular communication in high
metabolic states. PKM and GAMT highlight metabolic stress
in DFUs, while EGFR downregulation signals impaired tissue
repair and disrupted homeostasis. Together, these findings
provide critical insights into the contrasting roles of these
genes in DFU pathology and their potential as diagnostic
markers and therapeutic targets.
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