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Background: The SPP1+ tumor-associated macrophages (TAMs) have been
implicated in tumor metastasis and immune evasion. However, the prognostic
significance of SPP1+ TAMs in hepatocellular carcinoma (HCC) remains largely
unexplored. This study aimed to identify SPP1+ TAMs-related genes and
construct a model to predict overall survival (OS) in HCC patients.

Methods: Single-cell RNA sequencing (scRNA-seq) datasets from HCC patients
were analyzed to identify SPP1+ TAMs. SPP1+ TAMs-related risk score (STRS)
was developed using Mendelian randomization (MR) analysis and Least Absolute
Shrinkage and Selection Operator (LASSO) regression. HCC patients from the
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts
were stratified into high- and low-STRS groups based on STRS. Kaplan-
Meier survival analysis, receiver operating characteristic (ROC) curve analysis,
and functional enrichment analysis were performed to assess the prognostic
value of STRS.

Results: SPP1+ TAMs exhibited strong associations with immunosuppressive
functions. 16 SPP1+ TAMs-related genes were used to construct STRS.
Patients in the high-STRS group had significantly worse OS than those in the
low-STRS group (p < 0.001). ROC analysis demonstrated robust predictive
power, with AUC values ranging from 0.685 to 0.748 for 1-year OS, 0.717
to 0.739 for 2-year OS, and 0.719 to 0.738 for 3-year OS. The STRS
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model also exhibited strong predictive capability for the distinction of drug
resistance.

Conclusion: This study identified SPP1+ TAMs-related genes as key prognostic
indicators in HCC. The STRS model provides an effective tool for predicting
patient survival and may facilitate personalized treatment strategies for
HCC. These findings enhance the understanding of TAMs-driven immune
modulation in HCC and highlight potential therapeutic targets for improving
patient outcomes.

KEYWORDS

hepatocellular carcinoma, SPP1+ TAMs,Mendelian randomization, prognostic signature,
UBE2I

Introduction

Hepatocellular carcinoma (HCC), originating from liver cells,
is the most common form of primary liver cancer and represents
a significant global health challenge (Gomaa et al., 2008). This
disease can be triggered by several risk factors, includingHBV/HCV
infections, non-alcoholic steatohepatitis (NASH), alcohol abuse,
and smoking (Villanueva, 2019; Bray et al., 2018). Treatment
options for HCC include surgery, transarterial chemoembolization,
and radiation therapy, which can significantly improve patient
survival rates (Vivarelli et al., 2013). Early-stage liver cancer can
be treated with tumor resection and liver transplantation; however,
many patients are not diagnosed until the disease has reached an
advanced stage. Due to its high recurrence and metastasis rates,
the five-year survival rate for liver cancer patients remains low.
Given the high heterogeneity of HCC, predictive, preventive, and
personalizedmedicine strategies are crucial for improving treatment
outcomes. Therefore, it is imperative to uncover the mechanisms
driving liver cancer progression and to identify effective biomarkers
for personalized treatment of HCC patients.

Crosstalk between tumor cells and cells within the tumor
microenvironment plays a critical role in tumor progression and
influences therapeutic responses (Dunn et al., 2002). Among
these, various populations of bone marrow-derived cells and
lymphocytes are key players in inflammation, immune evasion, and
responses to immunotherapy (Hackl et al., 2016; Ringelhan et al.,
2018; Zhang et al., 2019). Under normal physiological conditions,
hematopoietic stem cells in the bone marrow differentiate into
various mature immune cell subsets, including macrophages,
dendritic cells, and granulocytes. During the early stages of
tumorigenesis, bone marrow cells effectively eliminate tumor cells
through immune surveillance mechanisms (Condamine et al.,
2015). However, as the tumor progresses, secreted growth factors
reshape the differentiation process of bone marrow cells, inducing
the generation of immunosuppressive regulatory cell subsets that
further impair the host’s anti-tumor immune response (Hicks et al.,
2022; Lasser et al., 2024). Single-cell RNA sequencing (scRNA-seq)
has emerged as a powerful method for investigating the tumor
microenvironment, particularly the immune landscapes of various
cancers (Krishna et al., 2021; Sade-Feldman et al., 2018). Among
these, SPP1+ tumor-associated macrophages (TAMs) have been
frequently reported. For instance, Liu et al. identified SPP1+ TAMs
as a key subset that promotes liver metastasis in colorectal cancer,

influencing patient prognosis (Liu et al., 2022). In non-small cell
lung cancer, SPP1+ TAMs have also been shown to correlate with
poor prognosis (Leader et al., 2021). Although prognostic models
related to macrophages have been established (Qu et al., 2022),
models specifically associated with SPP1+ TAMs marker genes
remain underexplored.

In this study, we identified SPP1+ TAMs through scRNA-
seq data, performed Mendelian randomization (MR) analysis to
determine related genes, and constructed the SPP1+ TAMs-related
risk signature (STRS). We assessed the value of STRS in predicting
prognosis for HCC patients and its potential to inform responses
to immunotherapy. The findings of this study will provide deeper
insights into the role of SPP1+ TAMs in HCC and contribute to the
enhancement of personalized treatment strategies for HCC patients.

Materials and methods

Data collection

Transcriptomic data from the TCGA cohort were retrieved from
the University of California Santa Cruz (UCSC) Xena data portal
(https://xenabrowser.net) (Goldman et al., 2020). After removing
duplicate samples, those lacking clinical information, and samples
with a survival time of zero, a total of 363 HCC samples were
included in the analysis. Additionally, microarray data and clinical
characteristics from the GSE14520 dataset were obtained from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). ScRNA-seq data for HCC patients were sourced from
GSE151530, GSE125449, and GSE149614.

Developmental trajectory inference

To investigate functional heterogeneity and potential lineage
differentiation within endothelial cell subsets, we employed the
“Monocle3” R package (version 1.3.4) to reconstruct cellular
trajectories (Qiu et al., 2017; Cao et al., 2019). The preprocessed
single-cell expression matrix was converted into a “cell_data_set”
object using the “new_cell_data_set” function in Monocle3. Highly
variable genes were selected based on graph-based clustering results,
which guided the construction of the trajectories. Dimensionality
reduction was performed using the “learn_graph” function,
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which utilizes Principal Component Analysis (PCA), Uniform
Manifold Approximation and Projection (UMAP), and t-distributed
Stochastic Neighbor Embedding (t-SNE) for embedding. To infer
the developmental trajectory, the root node was manually defined
based on known biological markers or cluster characteristics, and
cells were ordered along the pseudotime axis using the “order_
cells” function. The resulting pseudotime trajectory provided
valuable insights into the differentiation and functional diversity
of endothelial cell subsets.

In addition to Monocle3, we used the “Slingshot” R package
(version 2.7.0) to infer the developmental trajectories of endothelial
cell subsets (Street et al., 2018). The data, reduced in dimensionality
through UMAP via the Seurat package, was utilized for trajectory
analysis. Cluster labels derived from Seurat’s clustering results
were employed as inputs for the analysis. The Slingshot algorithm
was then applied within a minimal spanning tree framework
to connect clusters, followed by the fitting of smooth curves
to model lineage trajectories. The “slingshot” function assigned
pseudotime values to each cell along the inferred developmental
lineages, with the root cluster determined by the trajectory
structure and the biological relevance of the endothelial cell subsets.
This approach allowed for the identification of potential lineage
relationships and differentiation pathways within the endothelial
cell subsets.

Gene set testing

We employed the AUCell package (version 1.24.0) to calculate
the AUCell scores for macrophage-related gene signatures in each
individual cell (Aibar et al., 2017). We then calculated the scores for
the following functional gene sets: Angiogenesis (Wu et al., 2022),
Antigen Processing and Presentation (Kanehisa et al., 2025), M1
polarization (Sun et al., 2021), M2 polarization (Sun et al., 2021),
and Phagocytosis (Wu et al., 2022).

MR analysis

To elucidate the causal relationship between SPP1+ TAMs-
related gene expression and HCC progression, we implemented
a two-sample MR framework utilizing expression quantitative
trait loci (eQTL) as instrumental variables (IVs). The eQTLs data
were sourced from eQTLGen consortium database (https://eqtlgen.
org/), which contained from 31,684 individuals (Vosa et al., 2021).
Genetic instruments were systematically selected through cis-
eQTL variants located within ±1 Mb of each gene’s transcription
start site (Vosa et al., 2021). Corresponding genome-wide
association study (GWAS) summary statistics for HCC were
derived from the FinnGen Project (https://r10.risteys.finngen.fi/),
comprising 500 cases and 314,193 control individuals (controls
excluding all cancers).

SNPs significantly associated with gene expression (p <
0.05) were clumped (r2 < 0.01, 10,000-kb window) to ensure
independence. Causal effects of gene expression on the progression
of HCC were estimated using inverse-variance weighted (IVW)
regression as the primary method, supplemented by MR-Egger
regression, weighted median estimator (WME), simple mode,

and weighted mode (Burgess et al., 2017; Long et al., 2023).
Horizontal pleiotropy was assessed via MR-Egger intercept tests (p
> 0.05 considered negligible), and heterogeneity across SNPs was
quantified usingCochran’sQ statistic.Outlier SNPs identified byMR
pleiotropy residual sum and outlier (MR-PRESSO) test (p < 0.05 for
global test) were iteratively removed (Burgess et al., 2017).

Construction of the STRS

Initially, genes associated with SPP1+TAMs were selected
through MR analysis. The filtering criteria were as follows: a β
value greater than 0, a p-value less than 0.05, a heterogeneity p-
value (Heter.p) greater than 0.05, and an Egger intercept p-value
greater than 0.05. After applying these filters, 31 genes remained
for further analysis. To construct a more accurate prediction model,
the Least Absolute Shrinkage and Selection Operator (LASSO)
method was applied using the “glmnet” package (Friedman et al.,
2010). This step generated a more precise model for predicting
STRS, employing a Cox proportional hazards model for survival
analysis. The STRS for each patient was then calculated using the
following formula:

STRS =
n

∑
i=1

Coe f(βi) ∗Exp(Xi)

In this formula, Coef (βi) represents the risk coefficient
derived from the LASSO regression model, Exp (Xi) is the
expression level of each gene selected by LASSO, and n is the
total number of genes included in the final model. This formula
sums the weighted gene expression values (where weights are
the regression coefficients) to generate a continuous risk score
for each patient. Based on the median STRS, HCC patients
were categorized into low- and high-STRS groups. Kaplan-Meier
survival analysis was performed using the “survival” (https://
github.com/therneau/survival) and “survminer” (https://github.
com/kassambara/survminer) R packages to assess the correlation
between overall survival (OS) and STRS. Additionally, Receiver
Operating Characteristic (ROC) curves were generated to evaluate
the prognostic efficacy of the STRS.

Drug sensitive analysis

The half-maximal inhibitory concentrations (IC50) of
common antitumor drugs were predicted for both STRS
groups using data from the Genomics of Drug Sensitivity in
Cancer (GDSC) database (Yang et al., 2013). IC50 differences
between the two groups were analyzed using the oncopredict R
package (Maeser et al., 2021).

Cell lines and cell culture

Human HCC Huh-7 cells were sourced from the China Center
for Type Culture Collection (Shanghai, China). These cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco)
supplemented with 10% fetal bovine serum (GIBCO, United States)
and 1%penicillin-streptomycin (GIBCO,United States). Cultivation
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was performed in a 5% CO2 atmosphere at 37°C using an incubator
(Thermo Scientific, United States).

Knockdown of UBE2I in HCC cells

The pLKO.1 lentiviral vectors expressing short hairpin RNA
(shRNA) targetingUBE2Iwere acquired fromUmineBiotechnology
Co., LTD (China). These shRNA constructs, along with the
packaging plasmid (pCMV-ΔR8.9) and the envelope plasmid
(pCMV-VSVG), were co-transfected into HEK293T cells using
Lipofectamine 3000 (Invitrogen, United States). After 48 h of
incubation, the viral supernatants were collected and used to infect
Huh-7 cells in the presence of polybrene (8 μg/mL) (Solarbio,
China). Stable cell lines were then selected by treatment with
puromycin (2.5 μg/mL) for 48 h. The shRNA sequence utilized in
this study is as follows: shUBE2I: TAAATTCGAACCACCATTATT.

Western blot

After homogenization and centrifugation, the supernatant was
collected for total protein quantification using the BCA protein
assay kit (Solarbio, China). Fifty micrograms of protein from each
sample were subjected to sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and subsequently transferred to
polyvinylidene difluoride (PVDF)membranes. To block nonspecific
binding, the membranes were incubated with 5% bovine serum
albumin (BSA) prior to antibody incubation. The membranes
were then incubated overnight at 4°C with primary antibodies
(Proteintech, China). Afterward, the membranes were washed
with TBS and incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies in blocking buffer for 1 h at
room temperature. Following three washes, protein bands were
visualized using an enhanced chemiluminescence detection kit
(Solarbio, China).

Cell viability, migration and invasion assays

For the viability assay, 2000 cells per well were seeded in 96-well
plates with fresh medium. Cell viability was assessed at 6, 24, 48,
72, 96, and 120 h using the Cell Counting Kit-8 (Dojindo, Japan),
following the manufacturer’s instructions.

For the migration assay, 5 × 10^4 cells suspended in 500 μL of
serum-free medium were placed in the upper chamber of transwell
inserts (Corning Falcon, United States).The inserts were then placed
in wells containing fresh medium supplemented with 20% fetal
bovine serum to induce cell migration. After 48 h, the cells that had
migrated to the lower surface were stained with 0.5% crystal violet
and counted to evaluate cell migration.

Additionally, an invasion assay was performed similar to
the migration assay. For this, a mixture of matri-gel was first
added to the upper chamber of the transwell inserts. Following
this, 5 × 10^4 cells suspended in 500 μL of serum-free fresh
medium were added to the upper chamber. After 72 h, the
invaded cells on the lower surface were stained with 0.5% crystal
violet, and the number of invaded cells was counted to analyze
cell invasion.

Determination of apoptosis

Huh7 cells were plated in six-well plates, and apoptosis
was assessed using an apoptosis detection kit according to
the manufacturer’s instructions (Dojindo, Japan). The cells were
harvested from the plates, and subpopulations were analyzed by
flow cytometry. Initial gating was performed based on forward
scatter (FSC) versus side scatter (SSC) to identify viable cells.
Doublets were excluded using consecutive gating on FSC-Area
versus FSC-Width and SSC-Area versus SSC-Width plots. Quadrant
gates were set on the Annexin V/PI dot plot to classify the
cells into four populations: living cells (Annexin V−/PI−), early
apoptotic cells (Annexin V+/PI−), late apoptotic cells (Annexin
V+/PI+), and necrotic cells (Annexin V−/PI+). The percentages
of each cell population (Annexin V+/PI−, Annexin V+/PI+,
Annexin V−/PI+, and Annexin V−/PI−) were determined based
on the quadrant gates. Data analysis was performed using FlowJo
v9.6.3 (TreeStar, Inc.).

Statistical analysis

Statistical analyses were conducted using R (version 4.1.2).
The Chi-square test or Fisher’s exact test was used for comparing
categorical variables, while the Student’s t-test or Wilcoxon rank-
sum test was applied to continuous variables. A p-value of less than
0.05 was considered statistically significant.

Results

Identification and classification of cell
types in the HCC via single-cell analysis

To investigate the tumormicroenvironment inHCCpatients, we
analyzed three publicly available single-cell transcriptome datasets
(GSE151530, GSE125449, and GSE149614). After quality control
and filtering, a total of 71,799 high-quality cells were obtained, with
an average of 2,564 cells per sample and a mean of 25,714 genes
detected per cell. Using the t-SNE method, the cells were classified
into six major cell types: immune cells (T/NK cells, myeloid cells,
and B/plasma cells), tumor cells, and stromal cells (endothelial cells
and fibroblasts) (Figure 1A).

Tumor cells were identified using SDC1 as a marker,
while immune cells were characterized using PTPRC. T/NK
cells were distinguished by the marker CD3D, B cells were
identified using CD79A, and plasma cells were labeled with
IGHG1. Myeloid cells were defined by the expression of
CD68. Stromal cells were categorized into endothelial cells and
fibroblasts using the markers PECAM1 and ACTA2, respectively
(Figures 1B,C).

Characterization of myeloid cell subsets

Myeloid cells were re-clustered into six distinct populations
(Figure 2A). Cluster C0_TAM was characterized by high
expression of FOLR2 and MRC1 (c0_TAM_FOLR2)
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FIGURE 1
Identification and characterization of cell types in hepatocellular carcinoma (HCC) via single-cell RNA sequencing. (A) t-SNE clustering of 71,799
high-quality single cells from three public HCC datasets (GSE151530, GSE125449, and GSE149614). Cells are categorized into six major types: T cells
(forestgreen), B and plasma cells (firebrick2), myeloid cells (goldenrod), endothelial cells (darkorange), fibroblasts (dodgerblue), and tumor cells
(mediumpurple). (B) Violin plots showing the normalized gene expression of marker genes in different cell types. PECAM1 and ACTA2 are specific
markers for endothelial cells and fibroblasts, respectively, while SDC1 is a tumor cell marker, and PTPRC is a general immune cell marker. Other
markers such as CD3D, CD79A, and IGHG1 distinguish T/NK cells, B cells, and plasma cells, respectively. (C) t-SNE plots showing the expression of
specific genes across different cell types. The color scale represents normalized gene expression levels, with darker colors indicating higher expression
levels. The color scheme used in this figure is consistent with (A,B). t-SNE, t-distributed Stochastic Neighbor Embedding.

(Supplementary Figure S1A). Cluster C1 exhibited high expression
of FCN1 and S100A8, and was identified as monocytic
cells (c1_monocyte) (Supplementary Figure S1B). Cluster C2_
TAM showed high expression of SPP1 and FN1 (c2_TAM_
SPP1) (Supplementary Figure S1C). Cluster C3, characterized
by high expression of MKI67 and TOP2A, was identified
as a proliferation-associated macrophage population (c3_
Proliferation) (Supplementary Figure S1D). Cluster C4 displayed
high expression of XCR1 and CLEC9A, and was identified as
dendritic cells (DCs) (c4_cDC1) (Supplementary Figure S1E).
Finally, Cluster C5 showed high expression of TPSB2 and
TPSAB1, which were identified as mast cells (c5_mast)
(Supplementary Figure S1F).

Differentiation and trajectory analysis of
tumor-associated macrophages in
hepatocellular carcinoma

To investigate the differentiation of TAMs, four macrophage-
related subpopulations-C0_TAM_FOLR2, C1_monocyte, C2_
TAM_SPP1, and C3_Proliferation-were extracted and re-clustered
for dimensionality reduction (Figure 2B). Both Monocle3 and
Slingshot were employed to explore the differentiation trajectories
of macrophages (Figures 2C,D). Interestingly, in both Monocle3
and Slingshot, C1_monocyte was identified as the starting point of
macrophage differentiation. In Monocle3, some cells in C0_TAM_
FOLR2 were considered to represent a later stage of differentiation
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FIGURE 2
Differentiation and trajectory analysis of tumor-associated macrophages (TAMs) in hepatocellular carcinoma (HCC). (A) UMAP clustering of myeloid
cells re-clustered into six distinct populations: C0_TAM_FOLR2 (dark blue), C1_monocyte (orange), C2_TAM_SPP1 (green), C3_Proliferation (light
green), C4_cDC1 (purple), and C5_mast (pink). (B) UMAP visualization of the differentiation trajectories for the TAM-related subpopulations
C0_TAM_FOLR2, C1_monocyte, C2_TAM_SPP1, and C3_Proliferation, with distinct clusters identified in the analysis. (C) Trajectory analysis using the
Monocle3 method, highlighting the differentiation path of macrophages from C1_monocyte, with a transition to C0_TAM_FOLR2 and
C3_Proliferation. (D) Slingshot-based trajectory analysis showing two differentiation trajectories, with one path linking C1_monocyte to
C0_TAM_FOLR2 and the other leading to C3_Proliferation. The color gradient in (C,D) represents pseudotime, with warmer colors indicating later
stages of differentiation. UMAP, Uniform Manifold Approximation and Projection.

(Figure 2C). In Slingshot, two distinct differentiation trajectories
were observed for macrophages: one starting from C1_monocyte
and ultimately differentiating into C0_TAM_FOLR2, and another
connecting to C3_Proliferation (Figure 2D).

Functional characterization and
comparison of TAM subpopulations in the
tumor microenvironment

To examine the functional differences between the C0_
TAM_FOLR2 and C2_TAM_SPP1 subpopulations, we utilized
AUCell to calculate their scores based on various functional
gene sets, including angiogenesis (Figure 3A), antigen processing

and presentation (Figure 3B), phagocytosis (Figure 3C), M1
polarization (Figure 3D), and M2 polarization (Figure 3E). The
results showed that C2_TAM_SPP1 exhibited higher activity in
angiogenesis, indicating a stronger involvement in this process
compared to C0_TAM_FOLR2. In contrast, C0_TAM_FOLR2
demonstrated higher antigen processing and presentation capacity,
along with a more prominent role in M1 polarization, suggesting
its involvement in pro-inflammatory responses. Although the
difference in M2 polarization scores was small, C0_TAM_
FOLR2 showed slightly higher scores than C2_TAM_SPP1.
Furthermore, while both subpopulations exhibited similar levels
of phagocytic activity, C0_TAM_FOLR2 showed a marginally
stronger phagocytic ability, suggesting a more pronounced role in
pathogen clearance.
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FIGURE 3
Functional characterization and comparison of C0_TAM_FOLR2 and C2_TAM_SPP1 subpopulations in the tumor microenvironment. (A) Violin plot
showing the activity of angiogenesis pathways in the C0_TAM_FOLR2 and C2_TAM_SPP1 subpopulations. C2_TAM_SPP1 exhibited significantly higher
angiogenesis activity. (B) Violin plot depicting antigen processing and presentation (KEGG) scores, with C0_TAM_FOLR2 showing higher activity
compared to C2_TAM_SPP1, suggesting a stronger role in antigen processing. (C) Violin plot of phagocytosis scores, indicating no significant
difference between the two subpopulations, though C0_TAM_FOLR2 showed slightly stronger phagocytic activity. (D) Violin plot showing M1
polarization scores, with C0_TAM_FOLR2 displaying higher activity in M1 polarization, reflecting its involvement in pro-inflammatory responses. (E)
Violin plot for M2 polarization scores, showing a marginally higher score in C0_TAM_FOLR2 compared to C2_TAM_SPP1, although the difference was
small. The statistical significance (p-values) for all comparisons is shown above each plot.

Causal associations between SPP1+

TAM-Related genes and HCC risk

Through a two-sample MR analysis of 832 SPP1+ TAM-
related genes (Supplementary Table S1), we identified 31 genetically
predicted gene expressions showing significant positive associations
with HCC risk (IVW method: β > 0, p < 0.05). These included
FCGR2B (β = 0.167, OR = 1.181, 95% CI: 1.070–1.305; p = 0.001),
SRI (β = 0.795, OR = 2.214, 95% CI: 1.230–3.986; p = 0.008), and
NDUFA8 (β = 0.674, OR = 1.963, 95% CI: 1.1.163–3.313; p = 0.012),
among others (complete list in Figure 4).

Assessment of heterogeneity using the IVW Cochran’s
Q test revealed no statistically significant heterogeneity
(Figure 4). The MR-Egger intercept analysis further demonstrated
the absence of horizontal pleiotropy in these genetic
associations (Figure 4). Collectively, these methodological
validation analyses confirm the robustness and reliability
of our MR findings.

Construction of STRS for HCC patients

In the training set, the 31 genes selected through MR were
used for LASSO regression to identify the most predictive genes
as OS-related indicators (Supplementary Figure S2). Ultimately,
16 SPP1+TAM-related genes associated with OS were identified
(FCGR2B, CAPNS1, C11orf58, NDUFA8, CD37, SRI, KYNU,
UBE2I, TFPT, PSMC6, CALM3, DDT, NME1, RABAC1, GTF2H5,
CDC42) (Supplementary Table S2). In the analysis of risk scores,
patients were divided into high- and low-STRS groups based on the
median risk score in each cohort: training set, internal validation
set, and external validation set (Figure 5A). For each cohort, a
clear separation in survival time was observed between the high-
and low-STRS groups. Specifically, patients in the high-STRS group
exhibited significantly worse survival outcomes compared to those
in the low-STRS group (Figure 5A). Kaplan-Meier survival analysis
further demonstrated a marked difference in OS between high-
and low-STRS patients in all three cohorts. In the training set,
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FIGURE 4
Forest plot of Mendelian randomization analysis identifying SPP1+ TAM-related genes associated with overall survival (OS). This plot presents the results
of the MR analysis for 31 genes associated with SPP1+ TAMs and their impact on OS in HCC. The plot displays the odds ratios (OR) with 95% confidence
intervals (CI) for each gene, indicating their respective effects on OS. Red dots represent the point estimate, while the horizontal lines show the 95% CI.

the survival probabilities were significantly lower in the high-STRS
group (p = 3.176e-04), and similar trends were observed in both the
internal validation set (p = 4.723e-03) and the external validation
set (p = 3.748e-05), indicating that the risk score is a robust
prognostic factor across different datasets (Figure 5B). Receiver
operating characteristic (ROC) curve analysis was performed to
assess the predictive performance of the risk score for 1-year, 2-year,
and 3-yearOS.TheAUCvalues for the training set were 0.685, 0.717,
and 0.738 for 1-, 2-, and 3-year OS, respectively, demonstrating a
strong predictive ability. For the internal validation set, AUC values
were 0.748, 0.725, and 0.719, and for the external validation set,
AUC values were 0.714, 0.739, and 0.730 for 1-, 2-, and 3-year OS,
respectively (Figure 5C).

Drug sensitivity analysis revealed a significant difference
in drug sensitivity between the high- and low-STRS groups.
The high-STRS group exhibited higher IC50 values for
multiple drugs (Figure 6). These findings indicate that the risk
score model has high accuracy in predicting patient survival

across multiple cohorts. Furthermore, the model is also able to
effectively predict drug sensitivity, providing strong support for
personalized treatment.

Oncogenic role of the prognostic marker
gene UBE2I in HCC

To gain further insight into the underlying mechanisms of
the STRS, we investigated the genes associated with this model,
particularly focusing on UBE2I, which has been less extensively
studied. Kaplan-Meier survival analysis of UBE2I expression
was conducted in the training set, internal validation set, and
external validation set. The training set (p = 3.837e-02) showed
significant associations between higher UBE2I expression and
poorer survival, while the internal validation set (p = 8.287e-02)
and external validation set (p = 4.675e-01) did not reach statistical
significance (Supplementary Figure S3A). We then explored the
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FIGURE 5
Prognostic performance of the risk score model in HCC patients across multiple cohorts. (A) Risk score distribution and survival status of patients in the
training set, internal validation set, and external validation set. Patients were divided into high- and low-STRS groups based on the median risk score in
each cohort. Survival time is shown for each patient, with blue representing alive patients and red representing deceased patients. (B) Kaplan-Meier
survival curves for OS in the high- and low-STRS groups in the training set, internal validation set, and external validation set. (C) Receiver operating
characteristic (ROC) curve analysis for 1-year, 2-year, and 3-year OS in the training set, internal validation set, and external validation set.

function of UBE2I in the progression of HCC. Using shRNA,
we knocked down UBE2I expression in the HCC cell line Huh7
(Figure 7A; Supplementary Figure S3B). Our results showed that
the knockdown of UBE2I inhibited cell growth in the Huh7

cell line (Figure 7B) and significantly impaired cell migration
and invasion abilities (Figures 7C,D; Supplementary Figure S3C).
Additionally, UBE2I knockdownnotably induced apoptosis inHuh7
cells (Figures 7E,F; Supplementary Figure S3D).
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FIGURE 6
Drug sensitivity analysis. Comparative analysis of Foretinib (A), Selumetinib (B), Rapamycin (C), Olaparib (D), Mitoxantrone (E), Palbociclib (F),
Teniposide (G), Fludarabine (H), and Trametinib (I) efficacy in high- versus low-STRS groups.

Discussion

Our study provides significant contributions to the
understanding ofHCCby identifying distinct TAMs subpopulations
and their functional roles within the tumor microenvironment.
Through a combination of single-cell transcriptomics and MR
analysis, we identified key genes associated with HCC progression,
enabling the construction of a robust prognostic model. The model,
based on 16 SPP1+ TAMs-related genes, offers a novel and powerful
tool for stratifyingHCCpatients, whichmay improve individualized
treatment strategies. By bridging the gap between single-cell analysis
and causal genetic findings, our study paves the way for future
clinical applications aimed at improving patient outcomes and
guiding therapeutic decisions in HCC.

Similar to previous studies, we further classified macrophages,
with TAMs being subdivided into four categories. Interestingly,
different pseudotime analyses exhibited similar trends. Both
Monocle3 and Slingshot regarded C1_monocyte as the starting

point of macrophage differentiation, suggesting that the
differentiation frommonocytes to TAMs is a crucial immunological
process within the tumor microenvironment. In addition to
the differentiation trajectory from monocle to mature TAMs,
Slingshot analysis identified another distinct trajectory, in
which cells differentiate from monocle to mature TAMs and
subsequently transition into proliferation-associated macrophages.
This phenomenon may be closely related to the self-renewal
capacity of macrophages. Recent studies have demonstrated that
mature macrophages are capable of self-renewal through local
proliferation, a process that is particularly important during
inflammatory responses, as it enables a rapid expansion of
macrophage populations independent of continuous input from
circulating monocytes (Sieweke and Allen, 2013).

The C0_TAM_FOLR2 subset showed high expression of FOLR2
and MRC1. Multiple studies have demonstrated that FOLR2+

TAMs play a key role in tumor initiation and progression,
especially in regulating immune responses. A study in breast

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1594610
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Lei et al. 10.3389/fmolb.2025.1594610

FIGURE 7
UBE2I depletion impairs the proliferation, migration and survival of HCC cells. (A) Western blot confirmation of UBE2I depletion using two independent
short hairpin RNA (shRNA) constructs in Huh7 cells. Left panels show representative images, while the right panels present quantification data. (B) Cell
viability assessment via the Cell Counting Kit-8 (CCK-8) assay in UBE2I-depleted and control Huh7 cells. (C,D) Transwell migration and invasion assays
comparing UBE2I-depleted and control Huh7 cells. Left panels show representative images, while the right panels present quantification data. (E,F)
Annexin V/PI flow cytometry analysis of UBE2I-depleted and control Huh7 cells. Left panels display representative images, and the right panels show
quantification data. Data are presented as mean ± SD. ∗, p < 0.05, ∗∗; p < 0.01∗∗∗, p < 0.001 (one-way ANOVA; Student’s t-test). shNC, negative control
shRNA. All in vitro experiments were repeated biologically three times.

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1594610
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Lei et al. 10.3389/fmolb.2025.1594610

cancer found that FOLR2+ TAMs localized around the blood
vessels in the tumor stroma, where they interact with CD8+ T
cells. Further in vitro experiments confirmed that FOLR2+ TAMs
could effectively activate effector CD8+ T cells (Nalio et al., 2022).
In contrast, in HCC, FOLR2+ macrophages exhibited a fetal-
like reprogramming that enhanced the immune-suppressive state
in tumor tissues, similar to the immune characteristics observed
during liver development (Sharma et al., 2020). In our study,
however, FOLR2+ TAMs exhibited stronger antigen-presenting and
phagocytic abilities. These differences highlight the complexity of
the functional roles of FOLR2+ macrophages in different tumor
microenvironments. Further research is crucial for elucidating
their mechanistic roles in various types of tumors and their
potential clinical significance. The identification of C2_TAM_
SPP1 is consistent with recent studies, which have all indicated
its negative impact on patient prognosis. Zhang et al. (2020)
reported that TAM-SPP1+ is associated with angiogenesis in
colorectal cancer, while in our functional analysis, C2_TAM_SPP1
showed a higher angiogenesis score. Tumor angiogenesis remains
another critical aspect of HCC progression. A recent study using
single-cell spatial transcriptomics emphasized the importance of
angiogenesis in HCC treatment (Ye et al., 2024). The importance
of immune modulation in HCC progression is equally critical.
Recent studies have shown that SPP1+ TAMs play a critical role
in immune modulation within the TME (Wang B. et al., 2024). A
study in HCC demonstrated that the interaction between SPP1+

macrophages and POSTN+ cancer-associated fibroblasts (CAFs)
increased SPP1 expression through the IL-6/STAT3 signaling
pathway, forming an immune-suppressive microenvironment and
limiting the effectiveness of immunotherapy (Wang H. et al., 2024).
Another study demonstrated that the tumor immune barrier (TIB),
formed by the interaction between SPP1+ TAMs and CAFs, restricts
immune cell infiltration into the tumor core, thereby reducing the
efficacy of immunotherapy. The study showed that blocking SPP1
or deleting Spp1 specifically in macrophages disrupted this immune
barrier, enhancing T-cell infiltration and improving the response
to anti-PD-1 treatment. This suggests that targeting SPP1+ TAMs
could be an effective strategy to enhance immunotherapy efficacy
in HCC (Liu et al., 2023). Another study identified the key role of
SPP1+ TAMs in AFP-positive hepatocellular carcinoma (APHC),
which is associated with a suppressive tumor microenvironment.
The study found that SPP1+ TAMs was enriched in APHC,
along with elevated CD44 expression on both T cells and tumor
cells. Targeting the SPP1-CD44 axis restored T cell function and
reduced tumor burden in mouse models, suggesting that this
axis could be a promising therapeutic target to enhance immune
responses in APHC (He et al., 2023). Furthermore, we found
that the traditional “classically activated” (M1) and “alternatively
activated” (M2) classification cannot effectively represent the
functions of different macrophage subsets at the single-cell level,
a finding consistent with previous studies (Zhang et al., 2020;
Azizi et al., 2018).

In this study, we were the first to investigate the causal
relationship between SPP1+ TAM-related genes and cancer using
MR. With the advancement of genomics, increasing evidence has
revealed the significant role of genetics in the etiology of diseases.
MR, as a powerful causal inference method, utilizes genetic variants
that are closely associated with disease exposure and are not affected

by confounding factors, enabling an effective identification of causal
relationships between gene expression and disease (Brennan et al.,
2011). Our findings show that the expression of 31 genetically
predicted genes is significantly positively correlated with HCC risk,
further validating the potential role of these genes in hepatocellular
carcinoma. For instance, the FCGR2B gene, which encodes the
FcγRIIB receptor, was identified as one of the genes significantly
associated with HCC risk in our study (β = 0.167, OR = 1.181, p
= 0.001). This finding is consistent with previous studies, which
have indicated that FCGR2B plays an important role in the tumor
immune microenvironment, particularly in regulating immune cell
activity and influencing tumor immune evasion (Ku et al., 2024).
Our MR analysis further confirmed the potential pathogenic role
of FCGR2B in liver cancer, revealing its possible mechanism as an
immune regulatory factor in the pathogenesis of hepatocellular
carcinoma. Furthermore, our MR analysis did not reveal
significant heterogeneity, nor did we find evidence of horizontal
pleiotropy, which further confirms the robustness and reliability
of these genetic associations. These results not only expand
our understanding of the relationship between SPP1+ TAMs-
related genes and HCC but also provide theoretical support for
the potential clinical application of these genes as biomarkers
in the future.

In our study, we successfully developed a prognostic signature
comprising 16 SPP1+ TAMs-related genes (FCGR2B, CAPNS1,
C11orf58, NDUFA8, CD37, SRI, KYNU, UBE2I, TFPT, PSMC6,
CALM3, DDT, NME1, RABAC1, GTF2H5, CDC42), which
demonstrated the potential to predict OS in patients with HCC.
The robustness of this risk score model was confirmed through its
ability to stratify patients into high- and low-STRS groups, with
significantly different survival outcomes across multiple cohorts,
including the training set, internal validation set, and external
validation set. These results highlight the reliability and strong
predictive performance of the identified gene signature.

To deepen the understanding of STRS, among the 16
genes identified in our signature, UBE2I was selected for
further experimental investigation. UBE2I, a small ubiquitin-like
modifier E2 enzyme, has been shown to be highly expressed in
various tumors. Consistent with previous studies, our functional
validation results demonstrated that the knockdown of UBE2I
significantly inhibited the growth, migration, and invasion
abilities of HCC tumor cell lines, while simultaneously inducing
apoptosis (Wang et al., 2020). These findings highlight the critical
role of UBE2I in HCC progression and its potential as a therapeutic
target, further supported by its high expression in tumors and strong
association with poor prognosis. Similarly, CDC42, a member of the
Rho GTPase family, has been reported to facilitate invadopodia
formation, promoting metastasis in HCC. It is important to
recognize that the remaining 14 genes in the signature also warrant
further investigation. Each of these genesmay play a complementary
role in shaping the tumormicroenvironment and influencing overall
survival in HCC patients. Therefore, our findings highlight the
potential of the 16-gene signature as a comprehensive prognostic
tool, offering valuable insights into the molecular landscape of HCC
and paving the way for more personalized treatment approaches.

Additionally, drug sensitivity analysis revealed a significant
difference in drug sensitivity between the two patient groups. The
IC50 of Docetaxel and Epirubicin in the low-STRS group was
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significantly lower than that in the high-STRS group, suggesting
that for patients who are inoperable, low-STRS patients with STRS
may benefit more from transcatheter arterial chemoembolization
(TACE). Foretinib is an oral multi-kinase inhibitor targeting MET,
ROS, RON, AXL, TIE-2, and VEGFR (Choueiri et al., 2013), which
has demonstrated good anti-tumor activity and tolerability in a
phase I/II single-arm study (Yau et al., 2017). It is obvious that the
STRS helps to identify potential drug-sensitive and drug-resistant
patients. This further underscores the importance of incorporating
drug sensitivity profiling into the clinical management of HCC,
potentially guiding more personalized and effective treatment
strategies. Combining this with the prognostic model, our findings
could lead to better patient stratification, ensuring that patients
receive treatments tailored to their specific tumor profiles and drug
sensitivities.

While our study provides valuable insights into the functional
differences between TAM subpopulations in HCC, there are certain
limitations that need to be addressed. The data used in this analysis
were derived from publicly available single-cell transcriptome
datasets, which may not fully capture the complexity of tumor-
immune interactions across diverse HCC patient populations.
Additionally, although we identified key genes through Mendelian
randomization, the functional validation of these genes in vivo
remains an important next step.

TheSTRSmodel,basedon16SPP1+TAMs-relatedgenes,provides
a powerful tool for stratifying patients with HCC and could guide
individualized treatment strategies. Clinically, themodel may be used
to identify high-risk patients who require more aggressive treatment
and low-risk patients who could benefit from less intensive therapies,
thus improving patient outcomes. However, the STRS model does
have some limitations. It relies on gene expression profiles, which
may vary across different patient populations and tumor subtypes.
Moreover, the model does not incorporate clinical factors, such as
comorbidities, that could influence patient outcomes. To further
improve its clinical applicability, future studies should validate the
STRS model in larger, independent cohorts and explore how it
interacts with clinical factors to refine risk stratification. In the future,
incorporating spatial transcriptomics couldprovidemore insights into
the spatial interactions of TAMswithin the tumormicroenvironment,
potentially enhancing the precision of the STRS model. This would
allow for a better understanding of TAM function, tumor progression,
and therapy resistance, further supporting the potential of STRS in
clinical practice.
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SUPPLEMENTARY FIGURE S1
Expression of marker genes across different myeloid cell subsets in HCC. (A)
UMAP plots showing the expression of FOLR2 and MRC1 for cluster
C0_TAM_FOLR2, characterized by tumor-associated macrophages (TAMs) with
these markers. (B) FCN1 and S100A8 expression in cluster C1_monocyte,
identified as monocytic cells. (C) SPP1 and FN1 expression in cluster
C2_TAM_SPP1, identified as SPP1+ TAMs. (D) MKI67 and TOP2A expression in
cluster C3_Proliferation, associated with proliferation-driven macrophage
populations. (E) XCR1 and CLEC9A expression in cluster C4_cDC1, identifying
dendritic cells (DCs). (F) TPSB2 and TPSAB1 expression in cluster C5_mast,
identified as mast cells. The density plots show gene expression levels, with darker
blue indicating higher expression in each subset.

SUPPLEMENTARY FIGURE S2
LASSO regression for identifying predictive genes associated with overall survival
(OS) in the training set. (A) The partial likelihood deviance plot for the LASSO
regression model. The red dotted line indicates the optimal value of the
regularization parameter (λ), which is selected based on the minimum deviance.
(B) Coefficient profiles for each gene in the LASSO regression model. The
coefficients are plotted against the log-transformed values of the regularization

parameter (λ). The different colored lines represent individual genes, and the
shrinking of coefficients with increasing λ is observed.

SUPPLEMENTARY FIGURE S3
Additional supporting data for UBE2I depletion effects in Huh7 cells. (A)
Kaplan-Meier survival analysis of UBE2I expression in the training set (left), internal
validation set (middle), and external validation set (right). The analysis shows the
association between UBE2I expression and overall survival across all three
cohorts, supporting the prognostic value of UBE2I. (B) Full-length Western blot
images corresponding to Figure 7A, showing all detected bands for UBE2I and
loading controls (β-actin). (C) Representative images of remaining replicates from
Transwell migration and invasion assays (related to Figures 7C,D). (D) Complete
flow cytometry scatter plots of Annexin V/PI staining for apoptosis analysis
(supporting Figures 7E,F).

SUPPLEMENTARY TABLE S1
List of genes related to SPP1+ TAMs.

SUPPLEMENTARY TABLE S2
LASSO-selected 16 SPP1+ TAM-related genes and their corresponding
coefficients.
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