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Introduction: Atherosclerosis (AS) and atrial fibrillation (AF) are clinically
intertwined cardiovascular disorders, yet their shared pathophysiological
mechanisms remain poorly understood. Mitochondrial dysfunction and immune
dysregulation have been implicated separately in both diseases, but their
potential crosstalk in driving comorbidity is unexplored. This study aims
to uncover common molecular pathways linking AS and AF, focusing on
mitochondrial metabolism and immune response, and to identify diagnostic
biomarkers using integrative bioinformatics approaches.

Methods: Transcriptomic datasets of AS and AF were analyzed through GO and
KEGG enrichment to identify shared biological themes. WWGCNA prioritized
35 mitochondrial genes associated with both diseases. Three machine learning
algorithms (LASSO, SVM, and random forest) were applied to screen hub
genes, followed by validation in independent datasets. Immune infiltration
and single-cell transcriptomic analyses were conducted to assess immune-
microenvironment interactions and gene expression at cellular resolution.

Results: GO/KEGG analyses revealed dominant enrichment in mitochondrial
oxidative phosphorylation and immune-inflammatory pathways for AS and
AF. WGCNA identified 35 mitochondrial hub genes, with MRPS23 and CASP8
emerging as key candidates via machine learning. MRPS23 showed significant
downregulation in AS tissues and cellular heterogeneity in scRNA-seq (single-
cell RNA sequencing), while both genes exhibited strong correlations with
immune cell subsets in both diseases.

Conclusion: This study establishes MRPS23 as a novel biomarker bridging
mitochondrial dysfunction and immune dysregulation in AS and AF comorbidity.
Its decline in AS suggests a potential role in mitochondrial ribosomal
integrity loss driving metabolic stress, while immune-microenvironment
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interactions highlight its pleiotropic impacts on inflammatory cascades. These
findings advance the “mitochondria-immune axis” paradigm for cardiovascular
comorbidity, offering MRPS23 as a dual-disease therapeutic target. Further
validation in preclinical models and clinical cohorts is needed to translate these
insights into diagnostic or therapeutic applications.

KEYWORDS

atherosclerosis, atrial fibrillation, bioinformatics analysis, mitochondria metabolism,
immune inflammation, machine learning

1 Introduction

Atherosclerosis (AS) is a chronic, progressive, inflammatory
vascular disease that mainly affects the medium and large arteries
of the body, such as the coronary, carotid and femoral arteries. The
condition is characterized by the gradual accumulation of lipids,
inflammatory cells, calcification and other substances within thewalls
of the arteries to form plaques, which can gradually increase in size
and harden, leading to thickening of the artery walls and narrowing
of the blood flow lumen, thereby reducing or blocking blood flow
to organs and tissues (Ross, 1999). Atrial fibrillation (AF) is the
most prevalent clinical arrhythmia, and its prevalence is on the rise
due to the aging of the population (Lippi et al., 2021). On the one
hand, AF is associated with an increased risk of stroke, cardiovascular
morbidity, and mortality (Sagris et al., 2021). On the other hand, AS,
which is frequently situated within the tunica intima of numerous
medium-sized and large arteries, represents a significant contributor
to cardiovascular disease, encompassing conditions such as stroke,
heart failure, and others (Frostegård, 2013).

Atherosclerosis and atrial fibrillation are two diseases that are
closely linked. It has been demonstrated that individuals with
carotid plaque formation, atherosclerosis, and even stenosis in
AF exhibit a markedly elevated risk of adverse cardiovascular
and cerebrovascular outcomes (Wang et al., 2019). In addition,
patients with carotid atherosclerosis had nearly twice the rate
of ischemic stroke (IS) recurrence compared with nonsignificant
carotid stenosis, and concomitant atherosclerosis in patients with
atrial fibrillation was also an independent risk factor for long-
term stroke recurrence and 30-day mortality (Lehtola et al., 2017).
The association between carotid atherosclerosis and the risk of
ischemic stroke (IS) and transient ischemic attack (TIA) in patients
with AF was also confirmed in a study that utilized available data
(Noubiap et al., 2021). A study from Korea suggests that carotid
atherosclerosis is an established risk factor for stroke in patients
with AF, and that it may improve stroke risk prediction in patients
with AF (Cho et al., 2021). Of notes, evidences from meta-analysis
suggest that the use of statins, the most common clinical anti-
atherosclerotic agents, reduces mortality in patients with AF, which
may indicate that atherosclerosis has a detrimental effect on IS in
patients with AF (Eun et al., 2020). In summary, the co-occurrence
of AF and AS in clinical practice is associated with an increased risk
of mortality. Therefore, it is of clinical importance to investigate the
underlying commonmechanisms to AS and AF comorbidities at the
genetic level and to explore promising therapeutic targets.

The rapid development of high-throughput sequencing
technologies has led to an exponential growth in the amount of data
in the biomedical field. The inherent complexity of biological data

has encouraged the increasing use of machine learning in biology
to analyze information and predictive models of the underlying
biological processes of disease (Auslander et al., 2021; Greener et al.,
2022). This study integrated AS and AF transcriptional data
from public databases and obtained common genes significantly
associatedwith the diseases byweighted gene co-expression network
analysis (WGCNA). Furthermore, a protein-protein interaction
(PPI) network was constructed, and enrichment scores of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were calculated in order to reveal the
common biological mechanisms underlying the comorbidity of
AS and AF. Three machine learning methods, named Random
Forest (RF), Support Vector Machine (SVM) and Extreme Gradient
Boosting (XGBoost), were employed to identify key mitochondrial
genes, with the objective of further analyzing disease-related
mitochondrial dysfunction mechanisms. The expression levels
of the mitochondrial genes identified by the machine learning
approaches were then validated using other GEO datasets. ROC
curves were plotted in the GEO dataset to assess their predictive
value. Additionally, the infiltration of immune cells in the AS and
AF dataset was examined. Figure 1 depicts the study’s flow chart.

2 Materials and methods

2.1 Data sources

Our data were obtained from the Gene Expression Omnibus
(GEO) database (Barrett et al., 2013) (http://www.ncbi.nlm.nih.
gov/geo/), and we filtered for suitable gene expression data
by defining the keywords: “atherosclerosis” or “AS” and “atrial
fibrillation” or “AF” with the filter criteria “Homo sapiens”. Finally,
five datasets were selected. In the AS group, bulk transcriptome
data GSE100927 and GSE28829 and single cell transcriptome data
GSE253903 were selected, and in the AF group, bulk transcriptome
data GSE79768 and GSE41177. The specific sample composition
information is shown in Supplementary Table 2. GSE100927 and
GSE79768 are used as the training set andGSE28829, GSE41177 and
GSE253903 as the external validation set.

2.2 Weighted gene co-expression network
analysis

WCGNA analysis was performed on GSE100927 and GSE79768
to identify modules associated with AS and AF using the
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FIGURE 1
Research Flowchart. GSE, gene expression omnibus series; AS, atherosclerosis; AF, atrial fibrillation; WGCNA, weighted gene co-expression network
analysis; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; RF, random forest; SVM, support vector machine; XGBoost, extreme
gradient boosting; GLM, generalized linear model.
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“WGCNA” package (Langfelder and Horvath, 2008) in R,
respectively. Genes were ranked based on the standard deviation of
their expression, and the top 20% of genes with the greatest variation
were selected for inclusion in the following WCGNA analyses.
Samples were clustered using hierarchical clustering to identify
abnormally outlying samples, and outlying samples were excluded.
An automated network and detection module was constructed,
and the first soft threshold of 0.9 was selected for the scale-free
topological fit index. Next, the gene co-expression network was
constructed to measure the degree of co-expression between gene
pairs by calculating the correlation between genes using Pearson
correlation. Again, hierarchical clustering identified gene co-
expression modules, with genes within each module closely related.
Finally, module eigenvalues and correlations between calculated
module eigenvalues and clinical features were calculated. Module
genes closely related to diseases were obtained according to the
criteria of correlation coefficient greater than 0.5 and p-value less
than 0.05 for subsequent analyses.

2.3 Identification of overlapping genes and
functional enrichment analysis

The genes in the gene modules with strong disease associations
identified by WGCNA analysis in GSE100927 and GSE79768 were
taken to intersect in order to identify the overlapping genes
associated with disease in both AS and AF. The overlapping
genes were visualized using Wayne diagrams. To identify common
biological processes and functions in the two diseases, Gene
ontology (GO) analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed
on these genes using the “clusterProfiler” R package (Yu et al.,
2012). The GO enrichment analysis included three main functions:
biological process (BP), molecular function (MF), and cellular
component (CC) (2021). Items or pathways with p value <0.05 were
considered significantly enriched and the results were visualized
using the “ggplot2″ R package. In parallel, Gene Set Enrichment
Analysis (GSEA) was conducted on the GSE100927 and GSE79768
datasets, utilizing the reference dataset “c2. cp.kegg_legacy.v2023.2.
Hs.symbols.gmt” from the MSigDB database (Subramanian et al.,
2005). With the objective of comprehensively analyzing the key
pathways associated with the development of atherosclerosis and
key pathways associated with the development of atrial fibrillation.
Significantly enriched pathways were identified using screening
criteria of P < 0.05 and FDR <0.25, and visualized using the
“enrichplot” R package.

2.4 Identification of hub genes and
construction of protein interaction
networks

In order to construct a protein-protein interaction (PPI)
network, the overlapping genes identified in the preceding analysis
were uploaded to the STRING database (Szklarczyk et al., 2021)
(https://cn.string-db.org/), with a minimum required interaction
score set to medium confidence (0.4). The species was restricted to
human, and the results were visualized using Cytoscape software

(Shannon et al., 2003). The hub genes were identified by four
algorithms of the CytoHubba plugin (Chin et al., 2014). The
following metrics were considered: MMC(Maximum Matching
Coefficient), MNC(Maximum Neighbourhood Component),
degree, and EPC(Edge Percolated Component). Furthermore, the
GeneMANIA database (Franz et al., 2018) (https://genemania.org/)
was utilized to analyze gene network of the hub genes.

2.5 Identification of mitochondrial related
hub genes based on machine learning

A collection of mitochondrial genes was obtained from
the mitochondrial protein database MitoCarta 3.0 (Rath et al.,
2021) (https://www.broadinstitute.org/mitocarta). The intersection
of these mitochondrial genes with common genes associated with
the two diseases was analyzed using a Wayne diagram. In order
to identify key mitochondrial genes associated with AF and AS,
three machine learning algorithms, including random forest (RF),
support vector machine (SVM), and extreme gradient boosting
(XGBoost), were employed to further screen mitochondrial genes
associated with the two diseases. These three machine learning
methods are commonly used to screen genes for features. The
training set was divided using the “caTools” R package. In the AS
training set, 70% of the samples were utilized to construct the
model, with 30% of the samples employed to validate the model.
In the AF training set, 60% of the samples were used to construct
the model, with 40% of the samples used to validate the model.
Three machine learning models were constructed using the “caret”
R package with the presence or absence of disease as the dependent
variable and common mitochondria-related genes as the input
independent variables (Jiang et al., 2022). The remaining samples
were employed to assess the performance of the constructedmodels.
Due to the opaque nature of machine learning algorithms, the
constructed models must be interpreted in order to facilitate their
wider comprehension. The “DALEX” R package is designed for the
interpretation and analysis of complex predictive models (Biecek,
2018). This package was employed to elucidate the relationships
between the input variables and the output results of the constructed
RF, SVM, and XGBoost models. The diagnostic results of the
models are calculated and visualized by calculating and visualizing
the residuals of the models. The smaller the residuals, the better
the diagnostic performance of the model. The significance of the
variables was evaluated by calculating the Root Mean Square Error
(RMSE) (the extent to which the absence of a characteristic variable
affects the predicted value of the response variable), with a larger
root mean square error indicating a more crucial variable. The
accuracy of the model predictions was validated through the use of
the predict function. The performance of the model under different
thresholds was visualized by the receiver operating characteristic
(ROC) curve (Grau et al., 2015). Additionally, the model was
evaluated by the area under the curve (AUC), with an AUC value
closer to 1 indicating that the model has a higher true positive rate
and a lower one, i.e., the better the model performance. The closer
the AUC value is to 1, the higher the true-positive rate and the lower
the false-positive rate of themodel, indicating a higher level ofmodel
performance. Conversely, an AUC value of 0.5 indicates that the
model performance is equivalent to random guessing.
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2.6 Validation of key mitochondria-related
genes and assessment of their diagnostic
value

The identified key mitochondrial genes were validated in
external validation sets of AS and AF, respectively. The key
mitochondrial genes were subjected to a Wilcoxon test to ascertain
whether there were any significant differences between the normal
and disease groups. The results were then plotted in the form of box
plots. P-values of less than 0.05were deemed to indicate a statistically
significant difference between the two groups. Subsequently, the
ROC curves of the diagnostic value of key mitochondrial genes in
the training and validation sets were plotted using the “pROC” R
package, and the AUC was calculated to assess the accuracy of the
prediction of key mitochondrial genes (Grau et al., 2015).

2.7 Immune cell infiltration analysis

CIBERSORT is capable of calculating the proportion of distinct
immune cells present in a gene expression profile through the
utilization of a deconvolution algorithm (Chen et al., 2018). The AS
gene expression matrix (GSE100927) was subjected to analysis for
the purpose of determining the extent of immune cell infiltration
utilizing theCIBERSORTalgorithm.Histogramsandviolinplotswere
employed to illustrate the relative proportions anddiscrepancies in the
expression profiles of immune cell types between the control and AS
groups, with a p-value of less than 0.05 deemed to be significantly
different. Subsequently, Spearman correlation analysis was conducted
to assess the interrelationship among the 22 immune cells. Finally,
the correlations between common central genes and the degree of
immune cell infiltration, and common mitochondrial key genes and
the degree of immune cell infiltrationwere analyzed using Spearman’s
algorithm and visualized by heatmaps and scatter plots, respectively,
using a p-value of <0.05 as a screening criterion.

2.8 Single-cell RNA sequencing data
analysis

The GSE253903 atherosclerosis single-cell transcriptome
data, comprising barcode data, gene characterisation data and a
gene count matrix, were downloaded from the Gene Expression
Omnibus database by Cellranger (10X Genomics) preprocessing.
The preprocessing and subsequent analysis will be conducted
using the “Seurat” R package within the RStudio environment
(Gribov et al., 2010). For subsequent analysis, the data were
normalised and the top 3,000 highly variable genes were identified
using the SCTransform function and eliminate the effects of
the cell cycle. After which PCA, cluster analysis, and Uniform
Mobility Approximation and Projection (UMAP) dimensionality
reduction were conducted using the RunPCA, FindClusters,
and RunUMAP functions, respectively. The batch effect is then
corrected using the “harmony” package (KORSUNSKY et al.,
2019). The resolution of the dimensionality reduction clustering
was confirmed by the “clustree” package to achieve more optimal
cluster clustering (Li et al., 2023). Subsequently, the cell clusters
were visualised using UMAP plots, generated by the DimPlot

function. Furthermore, the R package “SingleR” (Aran et al.,
2019) was employed for the automatic annotation of cell types,
in conjunction with the cellMarker2.0 database (Zhang et al., 2019)
for manual validastion and supplementary annotations. Following
the aforementioned procedures to ascertain the expression levels
of pivotal mitochondrial genes in diverse cell types of AS and to
determine whether there are discrepancies in the expression of
pivotal mitochondrial genes across distinct subgroups, the “ggplot2”
R package was utilized for visualization.

2.9 Molecular docking

Small molecule drugs were obtained based on the IC50 values
of drugs interacting with MRPS23 and CASP8 using the Drug
Sensitivity database GDSC (Genomics of Drug Sensitivity in
Cancer). Search for the corresponding protein ids of MRPS23 and
CASP8 in the uiniprot database. Download the corresponding 3D
structures of the proteins from the PDB database based on these
ids, import the structures into pymol, and select the top 4 small
molecules corresponding to each gene using the small molecules
obtained from the above drug sensitivity analysis. Molecular
docking was performed using autodock 4.2, and the results were
analyzed using pymol to demonstrate the interlinking of H bonds
between receptor-ligands.

2.10 Validation of selected DEGs’
transcription in fresh normal,
atherosclerosis and atrial fibrillation
patients blood sample using quantitative
real-time PCR

We analyzed samples from normal, Atherosclerosis
and Atrial Fibrillation patients Blood sample. The detailed
clinicopathological information for all the enrolled patients
was available (Supplementary Table 4). Every specimen was
anonymously handled based on ethical standards. All patients
provided written informed consent and our study was approved
by the hospital’s Ethical Review Committee.

The total RNA was extracted using Trizol reagent and reverse-
transcribed into complementary DNA (cDNA) for quantitative
real-time polymerase chain reaction (qRT-PCR) following the
manufacturer’s instructions. GAPDH gene served as an endogenous
control. The primer sequences of selected genes (MRPS23, CASP8)
used in the experiment are illustrated in Supplementary Table 3.
Each sample was tested in triplicates, and each sample underwent
a melting curve analysis to check for the specificity of amplification.
The relative expression level was determined as a ratio between the
hub genes and the internal control GAPDH in the same mRNA
sample, and calculated by the comparative CTmethod. Levels of hub
genes’ expression were analyzed by the 2−ΔΔCT method.

2.11 Statistical analysis

Statistical analysis was performed using the bioinformatics tools
mentioned above, R Studio software V4.2.1 and GraphPad Prism
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6.0. Wilcoxon rank sum test as utilized to assess the statistical
significance between the two groups when the data conformed to a
normal distribution. Results were considered statistically significant
at ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001.

3 Results

3.1 Construction of co-expressed gene
modules

Modules highly associated with AS and AF and their overlapping
genes were identified using WCGNA analysis, respectively. In the
AS and AF groups, we determined the proximity matrix weight
parameter power values to be 9 and 6, respectively, with the intention
of network construction that were more closely aligned with scale-
free networks (Figures 2A,D). A TOM matrix gene clustering was
constructed based on the weighted correlation coefficients of selected
powervaluepairs (Figures 2B,E).A total of sixmoduleswere identified
in the AS group (Figure 2C). Among the identified modules, the light
blue module (correlation coefficient = 0.72, p-value = 2 × 10−17)
and the blue module (correlation coefficient = 0.58, p-value = 1 ×
10−10) exhibited the most significant and positive correlation with
AS, containing a total of 4,674 genes. Similarly, in the AF group, six
moduleswere identified. Among the identifiedmodules, the light blue
module exhibited the highest correlation coefficient (0.82) and the
lowest p-value (5 × 10−6) with AS (Figure 2F). This module was also
significantly positively associated with AF, containing 2,104 genes.
The specific gene information obtained from theWCGNA analysis is
presented in Supplementary Tables 1-S1.

3.2 Identification of overlapping genes

A comparison of the two sets of genes associated with AF
and AS revealed 540 genes that were common to both diseases
(Figure 3A). Four methods, namely, MMC, MNC, degree, and
EPC in CytoHubba, were employed to identify 35 common hub
genes in AS and AF (Figure 3B). Subsequently, PPI networks were
constructed based on the 540 genes, with the exclusion of those
that did not interact. The 35 hub genes were represented according
to their degree, with a redder color indicating a greater degree
of the node (Figure 3C). This suggests that the gene node may play
a more prominent role in the network.

3.3 Functional enrichment analysis

To identify common biological processes and functions in the
two diseases, Gene ontology (GO) analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis were
performed on these genes using the “clusterProfiler” R package. The
GO enrichment analysis results indicate significant enrichment
of biological processes, including muscle cell differentiation,
myeloid cell differentiation, regulation of intracellular transport,
extracellular matrix organization, and extracellular structure
organization. With regard to cellular components, enrichment is
observed in collagen-containing extracellular matrix, endoplasmic

FIGURE 2
Identification of AS and AF module genes via WGCNA. (A) The
scale-free fit index for soft-thresholding powers and mean
connectivity (GSE100927). (B) Hierarchical clustering of genes in AS
groups. (C) Module-trait relationships heatmap (GSE100927). The
colors indicate the strength of the correlation, while the values in
parentheses indicate the p-values. (D) The scale-free fit index for
soft-thresholding powers and mean connectivity (GSE79768). (E)
Hierarchical clustering of genes in AF groups. (F) Module-trait
relationships heatmap (GSE79768). The colors indicate the strength of
the correlation, while the values in parentheses indicate the p-values.

reticulum lumen, cell-substrate junction, myofibril, and contractile
fiber. Moreover, in terms of molecular functions, enrichment
is observed in actin binding, extracellular matrix structural
constituent, GTP binding, guanyl nucleotide binding, and
glycosaminoglycan binding. The findings indicate a potential
relationship between the two diseases and cellular metabolism,
signaling pathways, immunity, and processes related to the
extracellular matrix (Figure 3D; Supplementary Tables 1-S2).
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FIGURE 3
Construction of the core overlapping gene PPI network and enrichment analysis. (A) Venn diagram of AS and AF-related module genes. (B) Four
methods of screening core overlapping genes: MMC, MNC, degree, EPC. (C) PPI network of core overlapping genes. (D) GO enrichment analysis. The
size of the origin represents the number of genes that are enriched in the corresponding pathway. (E) KEGG enrichment analysis. The size of the origin
represents the number of genes that are enriched in the corresponding pathway. (F) GSEA enrichment analysis of upregulated genes in the AS dataset.
(G) GSEA enrichment analysis of upregulated genes in the AF dataset.

The KEGG enrichment analysis results indicate that a significant
number of genes are enriched in several pathways, including
Cytoskeleton in muscle cells, Proteoglycans in cancer, Cytokine-
cytokine receptor interaction, Drugmetabolism - cytochrome P450,

and Protein digestion and absorption (Figure 3E; Supplementary
Tables 1-S3). The results indicate that both diseases may be
associated with significant biological processes, including muscle
cell morphology maintenance and motor function, immune
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regulation, inflammatory response, and drug metabolism and
clearance. GSEA enrichment analysis revealed that the genes that
were upregulated in AS were predominantly enriched in biological
pathways, including cytokine-cytokine receptor interaction, B-
cell receptor signaling pathway, T-cell receptor signaling pathway,
natural killer cell-mediated cytotoxicity, and Toll-like receptor
signaling pathway (Figure 3F; Supplementary Tables 1-S4). The
genes that were upregulated in AF were primarily enriched in the B-
cell receptor signaling pathway, N-glycosylation, spliceosome, RNA
degradation, and RNA degradation (Figure 3G; Supplementary
Tables 1-S5).

3.4 Identification of key mitochondrial
genes in AS and AF based on machine
learning algorithms

In order to illustrate the relationship between mitochondrial
function and AS and AF, we obtained 1,136 mitochondria-related
genes from the database and took the intersection with the
540 overlapping genes obtained above to get 25 mitochondrial
genes related to AS and AF (Figure 4A). Detailed information
on overlapping mitochondrial genes is listed in Supplementary
Tables 1-S6.The 25 mitochondrial genes and their interactions were
predicted, analyzed and visualized through using the GeneMANIA
database (Figure 4C). This analysis revealed that the functions of
these genes were related to the metabolism process like cellular
modified amino acid metabolic process and amino-acid betaine
metabolic process. The processes included folic acid-containing
compound metabolic process, pteridine-containing compound
metabolic process, dicarboxylic acid metabolic process, fatty
acid metabolic process, and dicarboxylic acid metabolic process.
Additionally, the processes of fatty acid transmembrane transport
and mitochondrial transmembrane transport were identified as
related. Subsequently, the three machine learning methods, namely,
RF, SVM, and XGBoost, were employed to identify the common
key mitochondrial genes associated with AF and AS. The training
set was divided into a 7:3 ratio for modelling and validation
purposes. The performance of the models was evaluated based on
the RMSE and ROC curves.The RMSE and ROC curves of the three
machine learning models are presented in the form of box plots
(Figures 4D–G), with RMSE values around 0.3 andAUCvalues close
to 1. It is evident that these machine learning models, RF, SVM,
and XGBoost, all performs excellently. Consequently, in these two
datasets, the gene importance scores are evaluated based on RMSE,
with the top 15 genes in terms of importance ranking being selected.
Finally, we identified 12 key mitochondrial genes in GSE100927
and 13 key mitochondrial genes in GSE79768. After intersecting
the two gene sets, we obtained eight crossover genes, including
CASP8, CHPT1, CMPK2, CPT1A, MRPS23, NGRN, SLC25A20,
and SLC25A3 (Figure 4B; Supplementary Tables 1-S7).

3.5 Assessment of predictive value of key
mitochondrial genes

The expression differences and trends of the eight key
mitochondrial genes were analyzed in the training set (GSE79768,

GSE100927) and the test set (GSE41177, GSE28829). The results
were presented in boxplots (Figures 5A–D). Finally, CASP8 and
MRPS23 were identified as exhibiting significant differences
between diseased and normal samples. CASP8 was found to
be significantly increased in AS and AF samples. MRPS23 also
exhibited a pronounced difference, although not reaching statistical
significance in GSE41177. Furthermore, MRPS23 was significantly
decreased in AS and AF samples in other datasets. The ROC curves
for two genes are shown in Figures 5E–H. In all datasets, the AUC
values for CASP8 were greater than 0.7, and those for MRPS23
were greater than 0.7. The differential expression of both genes was
validated in the external validation set, and thus these three genes
were identified as hub mitochondrial genes that may be associated
with AS and AF.This suggests that they may be effective in detecting
the combination of AS with AF.

3.6 Immune cell infiltration analysis

By examining the results of functional enrichment analysis, we
discovered that there was a significant enrichment in the process of
immune cell production. Additionally, it has been demonstrated that
the activation of the immune system and inflammatory response
play a significant role in the pathophysiological mechanisms
underlying the development of atherosclerosis and atrial fibrillation
(Libby et al., 2009; Hu et al., 2015). The “CIBERSORT” algorithm is
capable of estimating the proportions of distinct immune cell types
present in a gene expression profile by employing a deconvolution
algorithm. Consequently, we utilized the “CIBERSORT” algorithm
to analyze the gene expression profiles of AS and AF samples,
focusing on immune cell infiltration. The detailed results are
presented in the Supplementary Tables 1-S8, S9. The proportions
of immune cells in the AS and AF groups and their intended
counterparts in the control group are shown in Figures 6A,B,
respectively. On the one hand, in comparison to the control group,
the AS group exhibited elevated levels of B cells memory, T cells
gammadelta,macrophagesM0, andmast cells activated. Conversely,
the AS group exhibited reduced levels of T cells CD8, T cells CD4
memory resting, NK cells activated, monocytes, macrophages M2,
mast cells resting, and eosinophils (Figure 6C). On the other hand,
the AF group demonstrated elevated levels of mast cells in a resting
state, as well as reduced levels of mast cells in an activated state,
in comparison to the control group (Figure 6D). The differential
expression of immune cell types indicates that each condition may
involve unique immune mechanisms and pathways, which could
be critical for understanding disease progression and developing
targeted therapeutic strategies.

The correlation betweenMRPS23 andCASP8with immune cells
in the AS and AF groups was analysed (Supplementary Tables 1-
S8). In GSE100927, MRPS23 expression was found to be associated
with three immune cell types that exhibited statistically significant
differences between the group and its controls (Figure 7A). MRPS23
expression was observed to promote monocyte infiltration (p <
0.001) and NK cell activation (p < 0.05), while simultaneously
inhibiting eosinophils (p < 0.05). Concurrently, CASP8 expression
was found to correlate with 10 distinct immune cell types
(Figure 7B). Notably, a significant positive correlation was observed
with M0 macrophages (p < 0.001), T-cell gamma delta (p < 0.001),
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FIGURE 4
Building and evaluating machine learning models for AS and AF. (A) Venn diagram of AS and AF model prediction genes. (B) Venn diagram of key
mitochondrial genes in AS and AF. (C) Co-expression networks of overlapping mitochondrial genes. (D) Boxplots of AS residuals. Red dots represent
the root mean square of the residuals. (E) ROC curve of model prediction accuracy in the AS dataset. (F) Boxplots of AF residuals. (G) ROC curve of
model prediction accuracy in the AF dataset.

memory B cells (p < 0.01) and activated mast cells (p < 0.01). The
negative correlation between CASP8 expression and the following
immune cells was statistically significant: CD4 resting memory
T cells (p < 0.001), activated NK cells (p < 0.001), macrophage

M2 (p < 0.001), resting mast cells (p < 0.001), monocytes (p <
0.001) and CD8 T cells (p < 0.05). In GSE79768, expression of
MRPS23was found to inhibit restingmast cells (Figure 7C), whereas
CASP8 expression correlated with both immune cell types that
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FIGURE 5
Validation of hub mitochondrial genes and assessment of predictive value. (A–D) Validation of the expression levels of six mitochondrial genes in the
AS training set (GSE100927), AS validation set (GSE28829), AF training set (GSE79768), and AF validation set (GSE41177). (E–H) ROC curves for two key
mitochondrial genes (CASP8 and MRPS23) in the AS training set (GSE100927), the AS validation set (GSE28829), the AF training set (GSE79768), and the
AF validation set (GSE41177).

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1595048
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Dai et al. 10.3389/fmolb.2025.1595048

FIGURE 6
Immune cell infiltration analysis of GSE100927 and GSE79768. (A) The proportion of immune cells in different samples of GSE100927. (B) The
proportion of immune cells in different samples of GSE79768. (C) Comparison of immune cell ratios in the AS and control groups. (D) Comparison of
immune cell ratios in the AF and control groups.

were statistically different between AF and controls, i.e., CASP8
expression inhibited mast cell activation (Figure 7D). In the context
of AS and AF, the expression levels of the MRPS23 and CASP8
genes showed different patterns, and the patterns of immune

cell infiltration differed between AS and AF. Correlation analyses
between the two genes and immune cell infiltration suggest that the
MRPS23 and CASP8 genes may have potential roles in the different
immune cell infiltration and regulation.
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FIGURE 7
Analysis of key mitochondrial genes and immune cell correlations. (A) Lollipop plot of the correlation between MRPS23 gene expression and 22
immune cells in the AS group. (B) Lollipop plot of the correlation between CASP8 gene expression and 22 immune cells in the AS group. (C) Lollipop
plot of the correlation between MRPS23 gene expression and 22 immune cells in the AF group. (D) Lollipop plot of the correlation between CASP8
gene expression and 22 immune cells in the AF group.

3.7 Validation of MRPS23 and CASP8 genes
expression in scRNA-seq data

Single-cell RNA-seq data were obtained from GSE253903,
comprising six atherosclerotic samples and six control samples. To
guarantee the quality of the data, the following criteria were applied
for quality control: filtering of cells with gene counts exceeding
200 and 6,000, mitochondrial gene content exceeding 30%, total
UMIs (unique molecular identifiers) exceeding 40,000 and less than
200, erythrocyte content of less than 1%, and gene expression
of genes in fewer than three cells (Supplementary Figure S1). In

total, the number of cells in the disease and control groups
was 22,938 and 29,777, respectively (Figure 8A). Subsequently,
batch effects were eliminated by Harmony on the gene expression
matrix. The performance of 15 different resolutions was evaluated
using the clustree package to identify the optimal resolution
for unsupervised clustering (Figure 8B). A resolution of 0.4 was
ultimately selected, and the presence of 19 distinct cell clusters
was demonstrated using UMAP. Each cluster was delineated with
a distinct colour (Figure 8C). Based on the expression pattern
of the marker genes and other recognised marker genes. The
following genes were used to identify specific cell types: NKG7,
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FIGURE 8
Single cell RNA-seq data preprocessing and cell type annotation. (A) UMAP visualisation of cell distribution in AS and control samples. (B) Clustree plot
for determining resolution (15 resolutions) with principal components (PCs). (C) Unified manifold approximation and projection clustering into 18
clusters. (D) Cells were annotated using CellMarker and singleR to obtain 13 cell subpopulations.

KLRB1 (NK cells), TPSAB1, TPSB2 (mast cells), MS4A1, CD79B,
CD79A, CD19 (B lymphocyte cells), CD3G, CD3D, CD3E, CD8A
(T lymphocyte cells), VWF, ESAM, PECAM1 (endothelial cells),
FGF7, COL1A2, DCN (fibromyocyte cells), CD14, CD163, C1QB,
C1QA, CD68 (monocyte/macrophage cells), and CNN1, ACTA2,
TAGLN, MYL9 (vascular smooth muscle cells). The expression
of these marker genes in different cell clusters is shown in
Supplementary Figure S2. The results of the clustering obtained
by UMAP were further refined and annotated by SingleR and
CellMarker2.0 (Figure 8D; Supplementary Tables 1-S11).

3.8 Expression patterns of MPRS23 and
CASP8 in single cell data

The expression patterns of two key mitochondrial genes were
described in the intima-media UMAP of atherosclerotic and control
samples (Figures 9A,B). MPRS23 expression was found to be
relatively downupregulated in the disease group, while CASP8
expression did not differ significantly between the 2 cell clusters. Dot
plot analysis revealed that MRPS23 exhibited differential expression
between distinct cell clusters in the disease and control groups
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FIGURE 9
Single-cell analysis of hub mitochondria genes expression profiles. (A) FeaturePlots showing the expression pattern of CASP8 in AS and control groups.
(B) FeaturePlots showing the expression pattern of MRPS23 in AS and control groups. (C) Expression dot plots of central mitochondrial genes in the AS
and control groups in each cell cluster. (D) Violin plots show the differential expression of MRPS23 in each cell population.

(Figure 9C). As illustrated in the violin plots, the quantitative
analysis of MRPS23 revealed a reduction in various immune and
stromal cell types in comparison to the control group, such as
T cells, monocytes/macrophages (Mo/Mf), fibroblasts, vascular

smooth muscle cells (VSML), natural killer (NK) cells, plasma cells,
mast cells, and plasmacytoid dendritic cells (pDC) in comparison
to the control group (Figure 9D). This decrease may indicate an
immunosuppressive effect of MRPS23, suggesting its potential
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FIGURE 10
MRPS23 and CASP8 as atherosclerosis drug targets. (A) Results of drug sensitivity analysis. (B) Molecular docking of MRPS23 with A-1331852. (C)
Molecular docking of CASP8 with AMONAFIDE.

role in modulating immune responses or its involvement in AS
microenvironments. These findings highlight the need for further
investigation into the mechanisms underlying these changes and
their implications for disease progression and treatment strategies.

3.9 Drug sensitivity analysis and molecular
docking

Based on the results of the drug sensitivity analysis
(Figure 10A), in this study, we analyzed the correlations between
CASP8 and MRPS23 and A-1331852 as well as AMONAFIDE.
Through molecular docking, we found that CASP8 and
MRPS23 both showed strong affinity with A-1331852 and
AMONAFIDE. The Vina docking score of CASP8 with A-
1331852 was −9.71, and the Vina docking score of MRPS23 with
AMONAFIDE was −6.49 (Figures 10B,C).

3.10 Validation of gene expression

Expression of overlapping genes and FRGs (MRPS23, CASP8)
were verified using qRT-PCR in normal, Atherosclerosis and Atrial
Fibrillation patients. The qRT-PCR results showed that the levels of
CASP8 in the AS group were significantly increased but MRPS23
decreased when compared with the normal group (Figures 11A,B).
The trend was similar between the AF group and the normal
group (Figures 11C,D). We collected the blood of patients with
comorbidities of the two diseases and found that CASP8 expression
in the AS + AF group was not significantly different from that
in the control group (Figure 11E), but MRPS23 was significantly
upregulated in the comorbidities group (Figure 11F), indicating that
MRPS23 may be the most potential predictor of comorbidities.

4 Discussion

Epidemiological studies have shown that there is a causal
association betweenAS andAF:On one hand, AS andmicrovascular
damage may lead to atrial hypoperfusion and ischemia, which in
turn leads to fibrosis and AF. On the other hand, aging of the
vasculature, increased pulse and blood pressure, and aortic and
peripheral atherosclerosis increase the afterload of the heart during
systole and lead to aortic stiffening, a process that in turn results
in persistent ventricular and atrial remodeling, ultimately leading to
AF (Willeit andKiechl, 2014; Kristensen et al., 2020; Bekwelem et al.,
2018).There are several inflammatory biomarkers identified that are
associated with both AS and AF, thus supporting the hypothesis of
mutual influence between AS and AF. (Yao et al., 2022; Hu et al.,
2015; da Silva, 2017; Abolbashari, 2022).

Mitochondria play multiple roles in the pathogenesis of
cardiovascular diseases, from metabolism to signal transduction,
to maintaining cellular structure and function. It has been
reported that mitochondria contribute to 15% of ATP generation
in endothelial cells. Same study found that mitochondrial
function plays an important role in AS and AF. Modifications in
phospholipids, glucose, and pivotal proteins on the mitochondria-
associated endoplasmic reticulum membrane (MAM) have been
linked to the advancement of AS (Glanz et al., 2020). And the
accumulation of low-density lipoprotein (LDL) in the arterial
wall is regarded as a pivotal factor in the pathogenesis of AS and
its subsequent progression (Ference et al., 2017). The expression
of proteins encoded by the mitochondrial genome is markedly
tissue-specific, with the heart displaying a distinctive pattern of
mitochondrial metabolic states in comparison to other tissues
(Zheng et al., 2017). It seems plausible to suggest that some
mitochondrial genes may be associated with the development of
cardiovascular disease (Gopisetty andThangarajan, 2016).
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FIGURE 11
qRT-PCR analysis of hub mitochondria genes expressi in AS and AF patients. (A) The expression of CASP8 in AS and control groups. (B) The expression
of MRPS23 in AS and control groups. (C) The expression of CASP8 in AF and control groups. (D) The expression of MRPS23 in AF and control groups.
(E) The expression of CASP8 in AS + AF and control groups. (F) The expression of MRPS23 in AS + AF and control groups. (n = 3).

In this study, the 540 genes identified by WGCNA as being
co-expressed play a pivotal role in a number of biological
processes, including cellular differentiation, immune response
and intracellular regulation. In particular, they are involved in
muscle cell and myeloid cell differentiation, intracellular transport
and GTP binding. The results of the GSEA enrichment analysis
also indicate a close link between the two diseases and immune
system-related pathways or functions. This is consistent with
previous results (Saigusa et al., 2020; Tousoulis et al., 2016;
Sage et al., 2019). Therefore we proposed that mitochondrial

dysfunction associated with cellular metabolism, immune
regulation and inflammatory response may represent a key
mechanism in both diseases, as confirmed by the findings of
Dumont et al. in AS (Dumont et al., 2021).

Meanwhile, the analysis of immune cell infiltration in the
context of AF suggests that mast cells play an important role in
the pathogenesis of AF. Mast cells may be significantly increased
in number and activity in patients with AF (Hu et al., 2015;
Liao et al., 2010). They may play an important role in the onset,
maintenance, and recurrence of AF through the promotion of a
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local inflammatory response, as well as through their effects on atrial
electrophysiology and structure. In contrast, AS has been linked to
a range of immune cells, including M0 macrophages, mast cells, B
cells and T cells. Our results are consistent with the findings from
Tay’s research (Tay et al., 2019).

Based on the above results, we performed machine learning
methods to screen eight key mitochondrial genes (CASP8, CHPT1,
CMPK2, CPT1A, MRPS23, NGRN, SLC25A20 and SLC25A32),
in which CASP8 expressed upregulated significantly and MRPS23
expressed downregulated significantly comparedwith normal group
in all datasets. CASP8, as the initiator caspase in the death-
receptor pathway, was closely related to AS and AF:upregulated
CASP8 could increase the recurrence risk of atrial fibrillation, and
activating CASP8 gene in smooth muscle cell in apoptosis processes
could influence the progression of AS (Charitakis et al., 2019;
Xue et al., 2024; Li et al., 2002; Carlotti et al., 2005). MRPS23
is a component of the small subunit of mitochondrial ribosomes,
which are involved in mitochondrial protein synthesis and energy
metabolism. Research suggests that MRPS23may play an important
role in the development of cardiovascular disease (Huang et al., 2020;
Ittiwut et al., 2023; Zheng et al., 2017).

We analyzed the immune infiltration correlations of MRPS23
and CASP8 genes in both AS and AF contexts, uncovering
distinct immune regulatory roles for each gene. Specifically,
MRPS23 downregulation in AS and AF was associated with
increased infiltration of monocytes and NK cell activation while
inhibiting eosinophils, suggesting a targetedmodulation of immune
cell types that may promote inflammation and immune cell
migration. In contrast, CASP8 upregulation correlated with a
broader spectrum of immune cells, including a positive association
with pro-inflammatory cells such as M0 macrophages, gamma
delta T cells, and memory B cells, which are key in chronic
inflammatory responses. CASP8 also demonstrated significant
negative correlations with immune cells linked to adaptive
immunity, such as resting memory CD4 T cells, activated NK
cells, and CD8 T cells, suggesting a dual regulatory role that
balances immune activation and suppression to prevent excessive
inflammation and tissue damage. In the AF-specific context,
MRPS23 inhibited resting mast cells, while CASP8 restricted mast
cell activation, indicating that both genes might play protective roles
against excessive fibrosis and structural remodeling in atrial tissue.

A single-cell transcriptomic dataset for atherosclerosis
was subjected to analysis, with a view to identifying pivotal
mitochondrial gene expression profiles. Comprehensive
intercellular communication network analysis identified
myofibroblasts, endothelial cells, M0/Mfmacrophages, and vascular
smooth muscle cells as key signaling hubs, exhibiting pronounced
crosstalk with multiple cellular subsets (Supplementary Figure S3).
The results revealed that only MRPS23 was significantly
downregulated in the AS group, which is consistent with
the trend observed in the bulk transcriptomic analysis. The
quantitative analysis of MRPS23 demonstrated a notable reduction
in several immune and stromal cell types, including T cells,
monocytes/macrophages, fibroblasts, vascular smooth muscle cells,
natural killer cells, plasma cells, mast cells, and plasmacytoid
dendritic cells, when compared to the control group. These findings
suggest a potential immunosuppressive role of MRPS23 within
the atherosclerotic environment, which could contribute to the

progression of the disease by impairing normal immune responses
and promoting inflammation.

Mitochondrial-immune cross-interference has also been
reported in myocardial injuries such as diabetic cardiomyopathy
(DCM). In DCM, the most significant metabolic disorders in
myocardial tissue are decreased glucose utilization and increased
fatty acid oxidation. This study uniquely identified that MRPS23-
driven mitochondrial ribosomal dysfunction is the common
mechanism connecting the immune dysregulation of complications
such as and AF., The following are the potential clinical validation
and transformation approaches based on current bioinformatics
discoveries: 1) Constructing an MRPS23 conditional knockout
animal model to simulate the comorbbiosis phenotype of AS/AF
and evaluate the reversibility of its metabolic-immunophenotype; 2)
Conduct amulticenter cohort study to verify the correlation between
the expression dynamics of MRPS23 and disease progression; 3)
Explore the possibility of epigenetic regulation of MRPS23 (such as
methylation modification) as a non-invasive biomarker.

5 Conclusion

By applying machine learning algorithms for screening and
validation across multiple datasets, the MRPS23 gene was identified
as a potential biomarker for AS binding to AF. In addition, MRPS23
was found to be significantly associated with a variety of immune
cells. This provides new insights into the underlying biological
mechanisms of AS with AF, which will help to discover and obtain
new therapeutic targets.
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