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Introduction: Bioreporters are genetically engineered cells that produce 
detectable responses in the presence of specific analytes, providing a cheap, 
mass-producible, and accurate method of analyte detection. Most research 
focuses on the single cell-level, where all engineering is concentrated on the 
interactions within a single cell. However, intercellular communication is a well-
known natural phenomenon that has been associated with sensitive responses 
to certain chemical stimuli, yet incorporation of intercellular communication 
into bioreporter design is exceedingly rare and the effect of intercellular signaling 
on single-cellular and population level responses has not been explicitly 
characterized before.
Methods: In this work, a multicellular simulator implementing the Gillespie 
algorithm and compatible with Virtual Cell-designed networks is created and 
used to demonstrate nuances to multicellular stochastic simulations. The 
algorithm was used to simulate multiple cells in a reaction network in which 
a self-promoting and membrane permeable transcription factor also induces 
production of a cell-bound reporter protein. A proof-of-concept bioreporter 
that responded to an environmental analyte while leveraging intercellular 
interactions for signal production was also designed and simulated for 50 s 
of simulation time. Simulated systems with multiple cells were compared to 
single-cellular simulations.
Results: Simulations for 20 s of simulated time show that while final reporter 
protein count per cell decreased as cell count increased, aggregate final 
reporter protein number across all cells significantly increased. Interestingly, 50 s 
simulations show final reporter protein count per cell significantly increasing as 
the number of cells increases. Greater number of bioreporter cells resulted in 
significantly greater amounts of signal protein produced in response to the same 
amount of starting analyte both on the population level and on the individual 
cellular level.
Discussion: The results show significant differences between the results of 
multicellular and single cellular simulations, which demonstrates the importance 
of simulating multiple cells to obtain nuanced results. The amplification of 
signal protein produced by an increasing number of simulated bioreporter cells 
indicates great potential for multicellular bioreporter designs to amplify response 
magnitude and sensitivity on the individual cellular level. These results warrant
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further research into the application of different simulation algorithms and 
multicellular bioreporter design and modeling.

KEYWORDS

Gillespie algorithm, stochastic simulation, bioreporter, validation, multicellular, 
unicellular 

Introduction

Cellular simulation is mainly concerned with accurately 
modeling the rates at which intracellular processes, such as 
transcription and translation, occur. Accurate simulation of 
these reactions over time allows for accurate understanding 
of cell behavior without costly lab expenses, saving long term 
costs. These reactions that occur on subcellular scales cannot be 
accurately modeled by differential equations due to extremely 
low concentrations of reactants. Algorithms that incorporate the 
stochastic effects dominant at such low concentrations are required. 
Indeed, such stochastic effects explain behavior of transcriptional 

networks not captured by deterministic models (Hahl and Kremling, 
2016) and help elucidate biological design features to manage 
stochastic noise that would other not be appreciated (Boettiger, 
2013). In a comparative study by Johnson et al., in 2021, they found 
that in biochemical networks with feedback loops produced major 
differences in results when simulated with stochastic dynamics when 
compared to deterministic simulations (Johnson et al., 2021).

A common method of simulating these processes is using 
the Gillespie algorithm (Gillespie, 1977). In a system with many 
possible reactions, the Gillespie algorithm first computes the 
instantaneous reaction rates of every reaction. The algorithm then 
chooses a reaction to occur next based on its relative reaction 
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rate. Finally, the time it takes for that reaction to occur is drawn 
from an exponential distribution with λ equal to the sum of 
the instantaneous reaction rates of all reactions. The Gillespie 
algorithm is the most fundamental and exact method to predict 
the future evolution of a biochemical system while considering 
stochastic effects (Warne et al., 2019). The Gillespie algorithm, or 
an algorithm mathematically equivalent to it, is very commonly 
used in many stochastic simulation tools, most of which are 
designed for single-cell simulations. Examples include Virtual Cell 
(Resasco et al., 2011) and COPASI (Hoops et al., 2006). While 
these simulators can accurately describe single cell behavior, they 
are not equipped to simulate multicellular systems at scale. Their 
inability to model multicellular systems prevent possible effects 
of intercellular interactions from being understood. However, the 
effect of intercellular interactions in stochastic simulations has 
not been explicitly characterized before, so the knowledge lost 
from the inability to model multicellular systems is not well 
understood either. This project aims to fill this gap in knowledge 
by explicitly comparing the results of a single cellular simulation 
with the results of a multicellular simulation, both on the single 
cellular and population level response. The research question for 
this project is: do intercellular interactions significantly affect 
single cellular and population level responses? The hypothesis 
for this project is that if intercellular interactions are accounted 
for, then the results produced by multicellular simulations with 
intercellular interactions will be significantly different from the 
results produced by a unicellular simulation that does not account 
for intercellular signaling, both on the individual cellular level and 
on the population level. To achieve this, the results of multicellular 
simulations with intercellular interactions will be compared to the 
results of an unicellular simulation. The exact method of quantifying 
and comparing results of different simulations is described in the 
Methodology section.

A better understanding of the role of intercellular signaling 
will be valuable in multiple areas within biology. For example, 
construction of genetically engineered whole-cell biosensors, 
which are meant to produce detectable signals in response to 
the presence of certain environmental analytes, is a current 
area of active research (Saltepe et al., 2017). These biosensors 
are constructed with consideration only within a single cell 
and the processes within it. These biosensors can often be 
modeled in single-cellular cell simulators like Virtual Cell and 
validated for responses to their intended stimuli before being 
expressed in a lab, saving cost. However, a better understanding 
of intercellular interactions in cellular responses could allow for 
the construction and computational validation of biosensors that 
leverage intercellular signaling, expanding the possible areas for 
biosensor optimization. Intercellular signaling among bacteria has 
long been known and studied in nature, especially in the context of 
propagating responses to a stimulus to an entire colony of bacteria 
(Antunes and Ferreira, 2009). Adapting this natural process would 
likely yield better biosensor designs than designs that only focus 
on intracellular interactions due to the proven effectiveness of 
intercellular interactions in nature. Coordinated luminescence is 
already naturally achieved through quorum sensing (Li and Nair, 
2012). Biosensors are cheap, onsite detection methods for soil 
and water contaminants (Zeng et al., 2021), so the construction 
of more sensitive biosensor designs could further improve the 

usefulness of this detection method. Cheaper detection methods 
could allow for higher throughput and more frequent testing for 
dangerous contaminants, potentially saving lives by finding sources 
of contamination early before the effects of these contaminants 
manifest severely. By stochastic simulations to model intercellular 
communication, a secondary research hypothesis explored in 
this project is as follows: a bioreporter design incorporating 
intercellular signaling will produce a greater signal in response 
to a selected analyte.

One of the most popular cellular simulation tools is Virtual 
Cell, created by Resasco et al., in 2011. Virtual Cell has a graphical 
user interface for designing reaction networks and uses a modified 
but mathematically equivalent version of the Gillespie algorithm 
to model the evolution of all species present in the user-created 
reaction network according to the parameters set by the user. It 
also allows users to define different compartments with different 
volumes to separate interactions within a cell and those outside. 
The user-friendly interface and ease of use makes Virtual Cell 
very useful for simulating reactions occurring in a small number 
of compartments, such as the reactions in a single cell and an 
extracellular space. However, Virtual Cell does not have any built-in 
capability to extend simulations to multiple cells easily. It is possible 
to manually create multiple compartments with duplicated reaction 
rules to represent multiple cells, however the process is tedious 
and not feasible for simulating hundreds of cells, despite many 
real-life situations containing hundreds or thousands of cells. This 
project aims to extend simulation capabilities using the Gillespie 
algorithm to a large number of cells while also accounting for shared 
chemical species between cells to represent intercellular interactions, 
then comparing the changes in simulation results that result from 
multicellular simulations that would otherwise not occur in the 
single cellular simulations that Virtual Cell is most used for.

Previous research on simulating intercellular interactions have 
taken diverse approaches. Weber and Buceta in 2013 simulated a 
biological “switch” comprising 1000 cells and accounting for the 
production and effects of intercellular quorum sensing molecules 
produced by each of the cells. Each cell contains the genetic 
components for a positive feedback loop where extracellular quorum 
sensing molecules diffuse into cells and stimulate the production 
of a reporter protein and more quorum sensing molecules. These 
interactions are very similar to the ones that will be used in this 
project, as described in the Methodology section. Weber and Buceta 
individually plotted the concentrations of select chemical species 
in each cell simulated and observed that significant variations 
in reporter protein concentration between cells existed. Given 
enough time all cells plateaued in reporter protein production. 
They attributed their observations to the impact of intercellular 
signaling, however they did not explicitly compare the simulation 
results of the population of cells with a simulation of only a single 
cell. They also did not vary the amount of cells they simulated 
to observe the effect of the number of cells in a population on 
the behavior of the individual cells or the population of cells as a 
whole. Therefore, the actual impact of intercellular interactions on 
their simulation results is not clearly defined. This project seeks to 
explicitly compare the difference in results caused by accounting 
for intercellular signaling using a similar reaction network as the 
one used by Weber and Buceta to determine if the presence 
of multiple cells and their intercellular interactions contributed 
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significantly to the behavior they observed. This project also creates 
a general framework to simulate any multicellular system based off 
of one designed in the Virtual Cell graphic user interface. Finally, 
this project extends beyond the work of Weber and Buceta by 
analyzing generalized constructions of multicellular signaling and 
bioreporters for analytes.

Duso and Zechner in 2020 studied multicellular simulations 
from the perspective of a multi-compartmental system. Intercellular 
interactions were represented as cells directly acting on each 
other. The authors developed differential equations to accurately 
capture summary statistics of trajectories generated by stochastic 
simulation. While their work focuses solely on the time evolution 
of multicellular systems, this work compares multicellular systems 
with single cellular ones. Additionally, this work simulates the 
mechanism of intercellular communication, i.e., the diffusion 
of a signaling protein, instead of abstracting interactions as 
probabilistic events.

Instead of explicit simulation of multiple cells, Zhou et al., in 
2005 modeled intracellular and extracellular noise of a synthetic 
quorum sensing circuit from the perspective of a single cell using 
Langevin equations. In this work, we explicitly model multiple 
cells sharing the same environment to determine similarities and 
differences between their findings and ours. Additionally, we vary 
the cell population size to examine its effect on cellular responses.

Smith and Grima in 2018 use stochastic simulation to 
compare independent, insulated cells with tissue-bound cells able to 
communicate with each other. Their independent cells are analogous 
to a single cell simulation, and their tissue-bound cells are analogous 
to a multicellular system. However, they do not include a shared 
extracellular space, and this work includes an additional simulation 
of a bioreporter design.

This work focuses on the explicit comparison of a given 
biochemical reaction system between a single cellular system 
and a multicellular system to establish a significant difference. 
Then, the findings are extended to a proof-of-concept model of 
a bioreporter design that leverages multicellular interactions to 
increase signal strength. In the process, a general framework to 
simulate multicellular systems based off of Virtual Cell-designed 
single-cellular systems is created.

Methodology

Algorithm overview

In order to simulate multiple cells, a custom simulator first 
had to be created because none currently exist. A diagram 
of how multicellular simulations are constructed can be seen 
in Figure 1. The simulator implements the Gillespie Stochastic 
Simulation Algorithm, which probabilistically simulates individual 
reactions based on their relative rates as well as the time between 
reactions (Gillespie, 1977). The rate, or activity, of a given reaction is 
given by the elementary rate equation

aj = kj ∗ NReactant1 ∗ NReactant2 ∗ … NReactantn

where NReactant n is the number of molecules of Reactant n that are 
present in the system, and kj is the reaction rate corresponding to 

reaction j for 1 ≤ j ≤ m, where m is the total number of reactions 
defined for a system.

Simulation time is incremented by discrete time step τ 
seconds, which is sampled from the exponential distribution with 
a probability density function of

p(λ) = λe−λx andλ =
m

∑
j=1

aj

Before each time increment, a reaction is chosen to occur by 
the algorithm by finding a number k 1 ≤ k ≤ m that satisfies the 
inequality

k

∑
j=1

aj <∼ U(0,
m

∑
j=1

aj) <
k+1

∑
j=1

aj

Where ∼ U(a, b) represents a sample from the Uniform 
Distribution with a lower bound of a and an upper bound of b. 
This essentially selects a reaction at random, with each reaction 
weighted by its activity. The kth reaction is then simulated, and the 
number of molecules of reactants and products of the reaction are 
appropriately incremented or decremented. The process is repeated 
until simulation time exceeds the allotted amount of time.

The algorithm was implemented in the Python (3.11.8) 
programming language and uses the Numba (v0.59.0) and Numpy 
(v1.26.0) libraries for runtime optimization. All code was written in a 
Jupyter notebook and run locally on a Macbook M2. Multicellularity 
was achieved by duplicating the intracellular cellular environment 
so that they all shared the same species in the extracellular 
environment. Thus, we reproduce a homogenous cell population 
within a shared environment.

All code and supporting files used to generate the 
results in this work are hosted on GitHub and may be 
accessed in Supplementary Appendix A. 

Description of simulated cells and reaction 
networks

In this work we simulate an idealized, theoretical bacterial 
cell that is defined only by the biochemical reaction pathways 
of interest. As bioreporter pathways should be designed to be 
biologically orthogonal to native pathways, this simplification 
should be representative of real circumstances (Costello and Badran, 
2021). Similarly, the environment that the cells are placed in is 
also defined only with the species of interest that interact with the 
simulated biochemical pathway. In future works, more chemical 
species and interactions can easily be defined within cells and the 
shared environment.

Any reaction that can be characterized with a set of reactants and 
products can be modeled with this simulator. In this work we model 
protein-DNA reversible binding, translation and transcription, 
protein degradation, ligand-protein reactions, and diffusion through 
membranes. Given the generality of what can be simulated, more 
types of reactions can be defined and simulated, e.g., small molecule-
small molecule interactions, protein-protein interactions, RNA-
DNA interactions, and more.

The reaction network used in the project was then designed in 
Virtual Cell (v7.7.0.9) and can be viewed in Figure 2.
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FIGURE 1
Diagram of how unicellular simulations are converted into multicellular systems. “VCell” is the abbreviation for the Virtual Cell software. VCML is the file 
extension used by VCell to represent simulation environments.

FIGURE 2
Virtual Cell network representation of experimental reaction network. “TF” represents the reporter protein inside the cell and “TF_out” represents the 
protein in the extracellular space. Arrows can represent forward and reverse reactions, as is the case with TF_out diffusing into the cytoplasm of each 
cell and TF diffusing back out into extracellular space. null represents the products of degradation. Image produced by researcher.

In the reaction network, the expression of reporter protein “P” 
is increased by the concentration of a transcription factor “TF”, 
which also induces expression of itself. TF binds reversibly to cellular 
DNA to create a complex that creates mRNA for P and TF that are 
translated into the proteins. TF is produced within a cell and diffuses 
freely through the cell membrane, acting as the main mechanism of 
intercellular interaction. P is created in the cell but cannot diffuse 
out and is used as the quantification metric to test the hypothesis. 
This network is very similar to the one described by Weber and 
Buceta in 2013 and has very clear intercellular interactions, making 
it a good model for understanding the impact of intercellular 
interactions on cell responses. It assumes a well-mixed system and 
no changes in cell population for the duration of the simulation, 

which is consistent with the real-world use-case of bulk signal 
production by bioreporter cell populations. It is also consistent with 
the assumptions in related works (Weber and Buceta, 2013; Duso 
and Zechner, 2020).

Reaction stoichiometries, rate laws, rate constants, and starting 
concentrations were then defined. Rate constants were chosen as 
reasonable estimates rather than modeling an existing biological 
system. This choice was made to maintain a simple system, and 
because this work focuses solely on the relative differences between 
multicellular and unicellular dynamics, thus making the exact 
parameter values less critical to answering research questions. The 
rate at which TF diffuses out of the cell was purposefully set to be 100 
times faster than the rate at which TF diffuses into the cell. This ratio 
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TABLE 1  Summary statistics of average reporter protein count per cell 
after 20 s of simulation time.

Cells 1 10 25 50 75 100

Average 
number of 
reporter 
proteins per 
cell

180.9 174.5 154.7 139.4 124.2 114.0

Standard 
deviation

45.3 13.0 8.6 6.5 5.1 5.1

2-tailed t-test 
statistic 
compared to 
unicellular 
result

N/A 1.0 4.2 6.7 9.2 10.9

p-value N/A 0.3 <0.001 <0.001 <0.001 <0.001

Significant? N/A FALSE TRUE TRUE TRUE TRUE

is the result of a cell that has 1/100 of the volume of its environment. 
The starting amount of TF_out was set to be 3000 molecules and the 
amount of DNA was set to be 100 molecules. The starting amount of 
extracellular TF was estimated to be small enough so that cellular 
production of TF would be relatively significant compared to the 
amount of already existing TF, but large enough to have an impact 
on cellular response. The starting amounts of all other species were 
set to 0 molecules.

The simulator was then run with these conditions, simulating 
1, 10, 25, 50, 75, and 100 cells, with the number of cells 
acting as the independent variable and the results of the single 
cellular simulation being the control against which the multicellular 
simulations will be compared. For each number of cells, two 
simulations were run for 20 s and 50 s for 50 trials each. 20 s 
and 50 s were chosen as the simulation time limits primarily to 
expedite experimentation, as the values provided distinct results 
while allowing sufficient observation of the evolution of the
simulated systems.

The amount of reporter protein P was recorded for every cell 
after 20 s and 50 s of simulation time. To find the average amount 
of P present in a cell at 20 and 50 s for a given number of cells 
simulated, the amount of P in each cell was averaged across all 
cells and all trials before being recorded. The aggregate amount of 
P present in all cells at 20 and 50 s for a given number of cells 
simulated was similarly found by summing the amount of P present 
in each cell across the number of simulated cells and averaged across 
trials before being recorded. Both the average amount of reporter 
protein present in each cell and the total amount of reporter protein 
present across all cells were the dependent variables used to test
the hypothesis.

2-tailed t-tests were performed to determine if multicellular 
simulations resulted in levels of P protein that were significantly 
different from the results produced by the unicellular simulation 
using a significance level of 0.001. A parametric t-test was 
determined to be appropriate due to the high number of replicates 
per experimental condition. A threshold of 0.001 was chosen instead 

of 0.05 to be more stringent on significance given the inherently 
noisy data being analyzed. These data points will be analyzed in 
the Data and Results section as well as in the Discussion section. 
Simulation times have also been compiled and reported in the Data 
and Results section.

For a proof of concept, a more complex multicellular bioreporter 
network was designed and simulated with different numbers of cells 
for 50 s to discern if a system with multiple shared chemical species 
across cells would behave similarly to a system with only one shared 
species, as in the experimental reaction network. A shared “signal” 
molecule is produced by the cells which is induced by the “analyte” 
and in turn induces the production of a “reporter” molecule. The 
reporter molecule is used to determine the signal and response 
strength of the detector cells. The reaction network is displayed as 
a Virtual Cell network in Figure 2.

Data and Results

20-Second simulations

After 20 s of simulation time, the amount of reporter protein 
molecules present in each cell was averaged across trials and across 
all cells simulated. Those values are represented in this table. A 
2-tailed t-test was performed on the results of simulating more 
than 1 cell and the results of a unicellular simulation to establish 
a statistically significant difference in the results of multicellular 
simulations compared to unicellular simulations. Only the 10 cell 
simulation produced results with a p value greater than 0.001, 
with the 25, 50, 75, and 100 cell simulations producing results 
with a p value less than 0.001. This means the null hypothesis 
that multicellular simulations produce insignificantly different 
results than single cellular simulations can be rejected for all the 
multicellular simulations that simulate more than 25 cells that 
were tested. This strongly indicates that multicellular simulations 
produce statistically significantly different results than single cellular 
simulations at the single cell level, at least at 20 s of simulation time 
and for simulations with more than 25 cells. A scatter plot of the data 
in Table 1 is represented in Figure 3.

The data represented in the graph demonstrates a negative, 
nonlinear relationship between the number of cells simulated and 
the amount of reporter protein present at the end of simulation time. 
This trend could be rationalized by considering how additional cells 
will dilute the intercellular signal amongst more cells, leading to less 
signal present in each individual cell and therefore eliciting less of a 
response from each cell.

At 20 s into simulation time, the amount of reporter protein 
molecules present in each cell was summed across all cells simulated, 
then averaged across trials. Those values are represented in this 
Table 2 tailed t-tests were similarly performed to establish a 
statistically significant difference in the results of multicellular 
simulations compared to unicellular simulations. All t-tests resulted 
in p-values that were multiple orders of magnitude less than the 
required threshold for significance, p < 0.001, which means the null 
hypothesis that multicellular simulations produce insignificantly 
different results than single cellular simulations can be rejected 
for all multicellular simulations tested. This strongly indicates that 
multicellular simulations produce statistically significantly different 
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FIGURE 3
multicellular bioreporter design with two shared chemical species, “signal” and “analyte”. Simulations were run for 50 s of simulation time. Network and 
reaction rate constants can be found in the public Virtual Cell model called “Bioreporter-POC”. Image produced by researcher.

TABLE 2  Summary statistics of aggregate reporter protein produced 
across all simulated cells after 20 s of simulation time.

Cells 1 10 25 50 75 100

Aggregate 
reporter 
protein count

184.5 1743.7 3855.2 6920.8 9208.1 11208.5

Standard 
deviation

45.3 129.5 215.7 327.2 380.9 505.6

2-tailed t-test 
statistic 
compared to 
unicellular 
result

N/A 82.1 120.2 147.1 169.7 156.6

p-value N/A <0.001 <0.001 <0.001 <0.001 <0.001

Significant? N/A TRUE TRUE TRUE TRUE TRUE

results than single cellular simulations at the population level, at least 
at 20 s of simulation time. A scatter plot of the data in Table 2 is 
represented in Figure 4.

To show that the pattern shown in Figure 3 was robust to starting 
TF concentration, we re-ran the simulation outlined in Figure 3 with 
different starting extracellular concentrations of TF. We found the 
decreasing pattern held.

The data show a positive, nonlinear relationship between the 
number of cells simulated and the total number of reporter 
protein molecules produced across all cells. The positive trend 
appears to be a consequence of the fact that there are more 
cells present that can produce the reporter protein, and the 
nonlinearity could be attributed to the dilution effect that decreases 
individual cellular response shown in Figure 3. Further analysis can 
be found in Supplementary Appendix E. 

FIGURE 4
Scatterplot of average reporter protein count per cell at end of 
simulation time as a function of number of cells simulated, with 1 
SD error bars. Image produced by researcher.

50-Second simulations

After 50 s of simulation time, the amount of reporter protein 
molecules present in each cell was averaged across trials and across 
all cells simulated. Those values are represented in this table. 
The full plots of the number of reporter protein molecules as a 
function of time per cell can be seen in Supplementary Figures B1 
to B4. A 2-tailed t-test was performed on the results of simulating 
more than 1 cell and the results of a unicellular simulation to 
establish a statistically significant difference in the results of 
multicellular simulations compared to unicellular simulations. 
All t-tests produced p-values below the required threshold for 
significance, p < 0.01, which means the null hypothesis that 
multicellular simulations produce insignificantly different results 
than single cellular simulations can be rejected for all multicellular 
simulations tested. This strongly indicates that multicellular 
simulations produce statistically significantly different results than 
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TABLE 3  Summary statistics of average reporter protein count per cell 
after 50 s of simulation time.

Number 
of cells

1 10 25 50 75 100

Average 
number of 
reporter 
protein 
molecules per 
cell

657.0 791.2 881.7 926.7 937.2 936.0

Standard 
Deviation

110.9 35.6 30.5 18.5 15.5 15.3

2-tailed t-test 
statistic 
compared to 
unicellular 
result

N/A 8.14 13.8 17 17 17

p-value N/A <0.001 <0.001 <0.001 <0.001 <0.001

Significant? N/A TRUE TRUE TRUE TRUE TRUE

single cellular simulations at the single cell level, at least at 50 s 
of simulation time. However, the direction of difference between 
multicellular and single cellular simulations appears to be reversed 
for 50 s simulation results compared to 20 s simulation results, with 
the amount of reporter protein present in each cell increasing as the 
number of cells simulated increases. A scatter plot of the data in 
Table 3 is represented in Figure 5.

The data show a positive, nonlinear relationship between the 
number of cells and the number of reporter proteins present in 
each cell. The trend is initially increasing likely due to the increased 
cumulative production of the intercellular signal over time by more 
cells, counteracting the short run effects of dilution. The plateau 
could be caused by reaching the maximal production rate of the 
reporter protein, as production rate is limited by the amount of DNA 
in the cell that can transcribe mRNA to express both the intercellular 
signal and the reporter protein. The amount of intercellular signal 
produced by more cells may have completely saturated the available 
DNA in all cells.

After 50 s of simulation time, the total amount of reporter 
protein molecules present across all cells was averaged across 
trials. Those values are represented in this table. A 2-tailed t-test 
was performed on the results of simulating more than 1 cell and 
the results of a unicellular simulation to establish a statistically 
significant difference in the results of multicellular simulations 
compared to unicellular simulations. All t-tests produced p-values 
below the required threshold for significance, p < 0.001, which 
means the null hypothesis that multicellular simulations produce 
insignificantly different results than single cellular simulations 
can be rejected for all multicellular simulations tested. This 
strongly indicates that multicellular simulations produce statistically 
significantly different results than single cellular simulations at the 
population level, at least at 50 s of simulation time. A scatter plot of 
the data in Table 4 is represented in Figure 6.

Similarly, in the 50 s simulations the pattern of increasing 
reporter proteins was shown to be robust.

The data show a positive, mostly linear relationship between 
the number of cells and the total amount of reporter protein 
produced across all cells. The positive relationship is likely from 
the increased capacity to produce reporter protein amongst 
more cells, while the linearity is likely the result of individual 
cells reaching maximal protein production rate such that the 
only factor influencing aggregate protein production is the 
total amount of DNA in the entire population, which scales 
linearly with the number of cells simulated. Further analysis can 
be found in Supplementary Appendix E. 

Proof-of-concept bioreporter simulation

The results of a proof of concept bioreporter designed to 
leverage intercellular communication is summarized in Table 5 and 
Figures 7, 9. The design of the bioreporter is detailed in Figure 3. 
As shown, the amount of reporter protein increases as the number 
of detector bioreporter cells increases despite the starting analyte 
count remaining constant across experiments, demonstrating how a 
quorum of cells increases the signal strength of each individual cell 
and of the population as well, even in a more complex system with 
two shared chemical species across cells. 

Runtime analysis

The time required by each simulation has been compiled and 
presented in this section.

The runtimes for the simulations in the work scale approximately 
linearly with the number of cells simulated.

Discussion

The purpose of this project was to investigate the effect of 
intercellular interactions on the single-cellular and population 
level responses in kinetic simulations. Multicellular simulations, 
typically in the context of quorum sensing or morphogenesis, 
have been explored by various researchers. However, no one has 
explicitly compared the difference that considering intercellular 
interactions has on cell- and population-level outcomes compared 
to only simulating a single cell. There are numerous popular 
applications for stochastic simulation of unicellular chemical 
reactions--such as Virtual Cell (Resasco et al., 2011) and COPASI 
(Hoops et al., 2006)--and it is important to understand how 
much unicellular simulation results will differ from multicellular 
simulations. Importantly, cellular simulations can be used for the 
computational validation of bioreporters, which are genetically 
engineered cells that produce a detectable signal in response to an 
environmental contaminant (Zeng et al., 2021). These bioreporters 
offer a low-cost method for onsite soil and water testing, however 
most research has focused on the single cell construction of 
bioreporters. Understanding the role of intercellular interactions 
on modulating cellular behavior as well as being able to simulate 
those effects opens a new dimension for the development of 
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FIGURE 5
Reproducing Figure 3 with logarithmic scan of the number of starting extracellular TF.

TABLE 4  Aggregate number of reporter protein molecules produced 
across all cells after 50 s of simulation time.

Number 
of cells

1 10 25 50 75 100

Aggregate 
number of 
reporter 
protein 
molecules

657.0 7912.0 22041.6 46332.6 70289.0 93599.5

Standard 
Deviation

110.9 356.0 762.4 924.6 1159.6 1533.5

2-tailed 
t-test 
statistic 
compared 
to 
unicellular 
result

N/A 137.6 196.3 346.8 422.7 427.4

p-value N/A <0.001 <0.001 <0.001 <0.001 <0.001

Significant? N/A TRUE TRUE TRUE TRUE TRUE

multicellular bioreporters to potentially achieve more sensitive 
detectors, enabling earlier detection of hazardous contaminants.

The hypothesis was that intercellular interactions would produce 
significantly different results than if they were not accounted for, 
both on the single cell level and on the population level. To test 
this hypothesis, a stochastic simulator was implemented to use 
the Gillespie algorithm to simulate nanoscale chemical kinetics 

with quantized probabilistic reactions, which more accurately 
describe chemical kinetics on the scale of single cells than ordinary 
differential equations (Gillespie, 1977). The simulator was used to 
simulate a hypothetical reaction network where the expression 
of reporter protein “P” is increased by the concentration of a 
transcription factor “TF”, which is also positively regulated by 
itself. TF is produced within a cell and diffuses freely through 
the cell membrane, acting as the main mechanism of intercellular 
interaction. P is created in the cell but cannot diffuse out, making 
it a useful indicator of transcriptional modulation. Levels of the 
reporter protein were used as indicators of the effect of intercellular 
interactions. Using this network, populations of 1, 10, 25, 50, 75, and 
100 cells were simulated for 20 and 50 s and the amount of reporter 
protein present in each cell and in the entire population was recorded 
at the end of simulation time. The results of those simulations are 
discussed below.

In Figure 10, the amount of reporter protein produced in 
each cell decreases as more cells are simulated, with nearly 
all multicellular simulations producing statistically significantly 
different results from the unicellular simulation. This validates the 
hypothesis that multicellular simulations would produce statistically 
significantly different results from unicellular simulations at the 
single cellular level. The reason why reporter protein P production 
per cell would decrease could be explained by the faster rate 
of extracellular transcription factor TF depletion. The rate at 
which TF diffuses into a cell and thereby becoming unavailable to 
other cells increases as the number of cells increases, as they all 
share the same extracellular space. Therefore, there would be less 
intracellular concentrations of TF on average and less upregulation 
of P expression per cell due to lower TF concentrations. However, it 
may be possible that in the long run, more TF would be collectively 
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FIGURE 6
Scatterplot of aggregate number of reporter protein molecules present at 20 s into simulation time as a function of number of cells simulated. Image 
produced by researcher.

TABLE 5  Results of multicellular bioreporter proof of concept. 
Simulations were run for 50 s with a starting analyte count of 10000 
analyte molecules located in the extracellular environment for three 
replicates each.

Number of cells 1 cell 5 cells 10 cells

Average number of reporter 
molecules per bioreporter cell

34406 53841.93333 61537.06667

Standard deviation 2398.107379 477.6396271 180.5846154

  Significance compared to 1
  cell

p < 0.001 p < 0.001

Aggregate number of reporter 
molecules across all 
bioreporter cells

34406 269209.6667 615370.6667

Standard deviation 2398.107379 2388.198135 1805.846154

  Significance compared to 1
  cell

p < 0.001 p < 0.001

produced by the increased number of cells such that it counteracts 
the increased rate of extracellular TF depletion.

Figure 2 indicates that the total amount of reporter proteins 
present in all cells at the end of 20 s of simulation time increases 
as the number of cells being simulated increases, with each 
multicellular simulation yielding statistically significant results 
compared to the unicellular simulation. This validates the hypothesis 
that multicellular simulations would yield significantly different 
results than unicellular simulations at the population. This trend 
is a natural consequence of accounting for more reporter protein 
to the total amount counted by including more cells in the total 
amount counted, and the trend is similar to how real bacteria must 
coordinate with each other to produce a visible glow in certain 

bioluminescent organisms, as single bacteria produce much less 
light than a colony (Smith and Grima, 2018). This graph does 
demonstrate that the dilution effect amongst multiple cells does not 
outweigh the increased reporter protein production caused by the 
presence of more cells and therefore greater capacity for reporter 
protein production. The upward trend suggests multicellular 
bioreporters are a promising candidate for better bioreporter signal 
strength. However, the graph does not increase linearly with the 
number of cells added, as might be naively expected of increasing 
the capacity for reporter production. The nonlinearity shown in the 
graph demonstrates the importance of actually simulating multiple 
cells when considering multicellular systems instead of simulating 
a single cell and multiplying its results by the number of cells in 
the system that is supposed to be simulated. If that were done 
here, the graph of those results would be perfectly linear, and an 
overestimate of the real results obtained from realistically simulating 
multiple cells. It is worth noting, however, that simulation of multiple 
cells is much more computationally intensive than approximations 
like scaling up the results of a single celled simulation. Future 
work would include optimizations to the algorithm used in this 
project for less prohibitive runtimes and better scalability on 
parallel architectures. Future work would also include comparison 
of different methods of approximating multicellular simulations 
with less complexity. For example, an analysis of how the results 
and runtime of a scaled single cellular simulation differs from a 
true multicellular simulation under different conditions could be 
performed. Similar analysis could also be performed on a simulation 
approximating a multicellular system as one large cell with modified 
amounts of DNA and membrane diffusion rates. Future work could 
even include tuning these approximations to find the best balance 
between accuracy of results and brevity of runtime.

The amounts of reporter protein present in each cell and 
across all cells were also recorded and analyzed after 50 s of 
simulation time. In Figure 3, the amount of reporter protein in 
each cell after 50 s of simulation time is plotted against the number 
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FIGURE 7
Scatterplot of the average amount of reporter proteins present in each cell at the end of simulation time. Image produced by researcher.

FIGURE 8
Scatterplot of the aggregate amount of reporter proteins present in each cell at the end of simulation time. Image produced by researcher.

of cells simulated. 2-Tailed t-tests show that every multicellular 
simulation produced results that were statistically significantly 
different from the results produced by the single cellular simulation, 
again validating the hypothesis. Interestingly, the amount of reporter 
protein present in each cell actually increases as the number of cells 
simulated increases, a reversal of the trend after 20 s of simulation 
time. This could be explained by the long term manifestation of 
the increased capacity to produce the intercellular signal due to 
the presence of more cells. In fact, the maximal rate of reporter 
protein production and intercellular signal production appears to 
have been reached, as indicated by the leveling off of the amount 
of reporter protein present in each cell for multicellular simulations 
of more than 25 cells. Greater long term production of the signal 
TF leads to greater concentrations in the extracellular space, which 

in turn leads to greater amounts of TF in each cell that elicit a 
greater response, as is shown in the graph. The effect of multiple 
cells positively influencing the behavior of single cells in the same 
population is reminiscent of the results found by Weber and Buceta 
in their work in simulating a similar positive feedback loop in a 
colony of cells in which a membrane-crossing molecule produced 
by each cell induces its own production (2013). Although they did 
not vary the amount of cells they simulated, they observed that their 
population of simulated cells, under the influence of an intercellular 
signal that they each produced, all cells increased their production 
of that signal up to a maximal production rate. Like in their work, a 
maximal rate of production was also reached in this project.

Figure 5 represents the total amount of reporter protein present 
across all cells after 50 s of simulation time. 2-Tailed t tests 
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FIGURE 9
Reproducing Figure 5 with logarithmic scan of starting extracellular TF.

FIGURE 10
Reporter protein production per cell at the end of 50 s of simulation time graphed against number of detector cells. Image produced by researcher.

again showed every multicellular simulation produced statistically 
significant differences from the single cellular simulation, validating 
the hypothesis at the population level. The graph increases 
monotonically as the number of cells simulated increases. When 
more than 25 cells are simulated, the graph appears to increase 
a closely linear trend, likely a result of reaching the maximal 
protein production rate. As a result, the actual trend shape of 
how much protein is produced across all cells as a function 
of the number of cells in a population cannot be determined 
from these results. Future work that aims to further analyze 

the dynamics of aggregate protein production in a multicellular 
population need to consider methods to prevent complete 
saturation of protein production rate. The overall positive trend 
of the graph is not only similar to the previously discussed 
results by Weber and Buceta in 2013, but also the real life 
phenomenon of bacterial colonies using quorum sensing signals 
to coordinate luminescence (Li and Nair, 2012). Bacteria in colonies 
coordinate amongst the individual cells to fluoresce more brightly 
to take advantage of greater colony sizes, producing pulses of
visible color.

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1595363
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Lin and Martin 10.3389/fmolb.2025.1595363

FIGURE 11
Total Reporter protein production across all bioreporter cells at the end of 50 s of simulation time graphed against number of detector cells. Image 
produced by researcher.

FIGURE 12
Runtimes of the 20 s simulations.

Finally, the proof-of-concept multicellular bioreporter 
simulation did exhibit significant signal amplification on the 
population level and on the single cellular level with two shared 
chemical species: an analyte, and a cell produced signal protein that 
also acted as a communication medium. These results validate the 
secondary research hypothesis that a bioreporter using intercellular 
interactions would create a stronger signal in response to a given 
analyte. The proof of concept’s success in amplifying the response 
of each cell shows great promise for future research in multicellular 
bioreporter systems.

Figure 11 through 13 show how long each simulation took 
to complete. As diverse results were obtained with the current 
experimental parameters, no simulations with more cells or for 

longer periods of time were executed. However, future work could 
focus on expanding simulation times and/or cell population sizes. 
These larger systems would likely necessitate multiple days’ worth 
of compute-time without significant improvements to algorithmic 
efficiency or hardware available.

Intriguingly, all simulations resulted in a decreasing standard 
deviation in average reporter protein concentration per cell as 
the number of cells simulated increased, even despite increasing 
numbers of reporter proteins in each cell. This agrees with Smith 
and Grima’s simulation of a two-stage gene simulation network 
in independent cells compared to tissue-bound cells (Smith and 
Grima, 2018). However, the trend appears to contradict Smith 
and Grima’s simulation of a system in which expression products 
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FIGURE 13
Runtimes of the 50 s simulations.

FIGURE 14
Runtimes of the 50 s bioreporter simulations.

TABLE 6  Summary of limitations and avenues of future improvement.

Challenge Avenue of future 
improvement

Remaining directions for runtime 
optimization

Implement Gibson-Bruck algorithm, 
reducing time complexity of each step; 
parallel simulation of replicate trials

Only supports homogenous cell 
populations

Implementation of more complex 
rules for joining compartments in a 
single simulation for heterogenous 
cell populations

Simulated in purely theoretical cell 
environments to demonstrate patterns

Use of empirical rate laws to more 
accurately model real systems

Static cell population Implementation of cell population 
changes during simulations

Assumption of well-mixed system Implementation of spatiotemporal 
stochastic modeling

dimerize. This indicates the networks constructed in this work are 
more like the former system than the latter. Using the authors’ 
intuitive explanation, it can be inferred that the constructed 
networks exhibit substantially more intracellular variability than 
variability induced through intercellular fluctuation. Similarly, 

our results also agree with Zhou et al., who found extracellular 
noise in a quorum sensing circuit served to synchronize cell 
responses (Zhou et al., 2005). This intracellular response variability 
in environments of varying cell populations can be qualitatively 
observed in Supplementary Appendix B.

Overall, simulation data established a significant difference in 
the results of multicellular and unicellular stochastic simulations 
in systems where the number of shared species--such as TF 
in this experiment--is affected by the cell population, thereby 
strongly supporting the hypothesis established at the beginning of 
experimentation at both the single cellular and population level. 
Future work would include improving multicellular simulation 
software to determine the long-term effects of multicellular 
simulation compared to unicellular simulation. Future work 
would mainly be focused on the simulation, design, and 
computational validation of multicellular bioreporter designs. 
The preliminary results obtained from this project suggest that 
leveraging intercellular interactions in multicellular designs is 
a very promising direction for developing biosensors to emit 
stronger and potentially more sensitive signals in response to 
low concentrations of contaminants. The ability to model these 
interactions allow for the computational validation of novel 
multicellular bioreporter designs before wet lab work, saving 
lab expenses and time spent on faulty designs. Thus, future 
work involves implementing real protein cascade networks with 
experimentally or computationally determined rate constants 
for all associated reactions before simulating those networks to 
design novel multicellular bioreporter designs. Furthermore, given 
the demonstrated nuances of multicellular simulations, spatial 
stochastic simulations would likely uncover even more complex 
patterns in multicellular simulations, where the transient locations 
of chemical species and cells can influence the progression of a 
system of chemical reactions (Marquez-Lago and Burrage, 2007). 
The Smoldyn simulator (Andrews, 2016) is an existing program used 
by Virtual Cell to implement spatial stochastic modeling, and could 
be adapted for multicellular simulations much like how Virtual Cell 
capabilities were adapted for the stochastic simulations described 
in this work. Another direction of future work would include 
methods to tackle the “inverse problem” as described by Warne 
et al. where reaction parameters are obtained through experimental 
data (Warne et al., 2019). As demonstrated, multicellular systems 
produce distinct results on the cellular level, so solving the inverse 
problem will be more complex in systems where multiple cells are 
interacting. A summary table of challenges of this approach and 
avenues of future work is listed in Table 6.
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