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Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive
lung disease that worsens over time, culminating in respiratory failure. Emerging
evidence implicates dysregulated energy metabolism in driving fibroblast
activation and extracellular matrix remodeling during IPF pathogenesis.
To systematically investigate metabolic reprogramming mechanisms, we
performed integrated bioinformatics analyses focusing on energy metabolism-
related differentially expressed genes (EMRDEGs) and their regulatory networks
in fibrotic remodeling.

Methods: Differentially Expressed Genes (DEGs) were identified by accessing
datasets GSE242063 and GSE110147 from the GEO database. Energy
metabolism-related genes (EMRGs) were extracted from GeneCards, followed
by Venn diagram analysis to obtain EMRDEGs. Subsequent analyses included
functional enrichment (GO/KEGG), protein-protein interaction network, and
mRNA-miRNA, mRNA-transcription factor interaction networks. Immune
infiltration analyses, including the CIBERSORT algorithm, and single-sample
gene set enrichment analysis (ssGSEA), were subsequently conducted.

Results: We identified 12 EMRDEGs and eight hub genes (ACSL1, CEBPD, CFH,
HMGCS1, IL6, SOCS3, TLR2, and UCP2). Regulatory network analysis revealed
HMGCS1 as a novel IPF-associated gene interacting with PPARα signaling, while
SOCS3 coordinated multiple hub genes (IL6, CEBPD, UCP2, and CFH) through
FOXA1/2-mediated transcriptional regulation alongside JAK/STAT3 pathway
suppression. Immune profiling demonstrated significant hub gene-immune cell
correlations, particularly neutrophil-mediated differential gene expression and
microenvironment remodeling.

Conclusion: The core EMRDEGs (HMGCS1 and SOCS3) and prioritized pathways
(PPARα signaling, FOXA networks, JAK/STAT3 suppression) elucidate metabolic
reprogrammingmechanisms in fibrotic progression. Thesemolecular signatures
provide novel clinical biomarkers for IPF diagnosis.
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1 Introduction

IPF is a chronic and progressive fibrotic lung disease that
eventually leads to a decline in respiratory function and death
(Raghu et al., 2022). IPF is a common interstitial lung disease
affecting elderly patients over 65 years old, with survivors having
a median lifespan of 2–3 years. The incidence ranges from
three to nine cases per 100,000 per year (Kreuter et al., 2019;
Podolanczuk et al., 2023). Current studies on IPF suggest that it
is caused by repetitive damage to the lung epithelium, combined
with myofibroblast activation and immune responses, which
leads to dysregulated remodelling of lung tissue, culminating
in self-perpetuating fibrosis (Koudstaal and Wijsenbeek, 2023).
Despite recent advances in therapeutic strategies, treatment options
remain limited; only nintedanib and pirfenidone have been
approved for IPF treatment. Both drugs focus primarily on slowing
disease progression but are accompanied by numerous side effects
(Chianese et al., 2024; Kou et al., 2024). These unresolved challenges
highlight the imperative to define core molecular events in IPF
pathogenesis, with a focus on pathways that sustain fibrotic
progression, thereby guiding future investigations into disease-
modifying strategies.

While the pathogenesis of IPF remains unknown, studies
have indicated that dysregulation of energy metabolism plays
a critical role in the development and progression of fibrotic
diseases (Gibb et al., 2020; Yakupova et al., 2021). The pathological
characteristics are primarily marked by immune cell infiltration
within the lungs, extracellular matrix deposition, fibroproliferative
changes, and destruction of alveolar architecture (Heukels et al.,
2019; Lu et al., 2025). Energy metabolism pathways, including
glycolysis, lipid metabolism, and the tricarboxylic acid cycle,
have been identified as contributing factors to the development
of IPF. Metabolomics studies have revealed that free fatty
acids exhibit abnormal accumulation in the lung tissue of IPF
patients (Yan et al., 2017). The sphingolipid metabolic pathway
is downregulated, whereas the arginine metabolic pathway is
upregulated. Concurrently, glycolysis, mitochondrial β-oxidation,
and the tricarboxylic acid cycle are disrupted, and significant
alterations are observed in glutamate metabolism and other
related pathways (Kang et al., 2016; Zhao et al., 2017). Free
fatty acids can cooperate with transforming growth factor-β
(TGF-β) to induce the activation of pulmonary myofibroblasts
(Wygrecka et al., 2023). The levels of advanced glycation end
products (AGEs) are significantly elevated in the serum and lung
tissues of patients with IPF (Machahua et al., 2016; Yan et al., 2017).
These AGEs can induce the upregulation of cytokines, including
TGF-β1, tumor necrosis factor-α (TNF-α), and interleukin-8
(IL-8), thereby promoting the expression of type I and type
III collagen (Serban et al., 2016). Various studies have revealed
that there were changes in pathways of energy metabolism
during remodeling of lung structural and metabolic abnormalities
serve as key contributors to the activation of inflammatory
factors. Therefore, the application of bioinformatics technology
to identify key genes associated with energy metabolism in IPF
and to explore their correlation with immune infiltration may
facilitate a deeper understanding of the mechanisms underlying
abnormal energy metabolism in IPF.

In summary, IPF remains a fatal disease lacking timely
diagnosis and effective therapies. By integrating bioinformatics
analysis, our study identifies energy metabolism-related DEGs
(EMRDEGs) and hub genes as potential biomarkers, while exploring
their immune infiltration correlations. These findings establish a
molecular framework to dissect metabolic dysregulation in fibrotic
remodeling, aiming to advance mechanistic insights and prioritize
candidate targets for IPF.

2 Materials and methods

2.1 Data collection

The GEOquery package (Version 2.70.0) was utilized to
download two datasets: GSE24206 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE24206) and GSE110147 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110147) from
the Gene Expression Omnibus database (GEO) (Barrett et al., 2007;
Edgar, 2002). Both of them were from Homo sapiens (Davis and
Meltzer, 2007). GSE24206 was performed on the GPL570 platform
and contained 17 cases of IPF patients’ lung tissues and six cases
of healthy adults’ surgical biopsy lung tissues. GSE110147 was
performed on the GPL6244 platform and contained 22 cases of
fresh frozen lung samples from IPF patients, ten cases with non-
specific interstitial pneumonia (NSIP), 5 cases withmixed IPF-NSIP
undergoing lung transplantation, and 11 cases of normal lung
tissue samples obtained from tissue flanking lung cancer resections.
These datasets were selected for their well-annotated transcriptomic
profiles of IPF and control lung tissues, complemented by
heterogeneous technical platforms and sample sources to strengthen
analytical robustness and generalizability while controlling for
platform-specific biases. All samples in GSE24206 and GSE110147
were selected for subsequent analysis. The specific grouping of
datasets’ information is shown in Supplementary Table S1. The
bioinformatic workflow is presented in Supplementary Figure S1.

2.2 Identification of differentially expressed
genes related to energy metabolism

GeneCards (https://www.genecards.org/) (Safran et al., 2010)
provides comprehensive details about human genes. We used
‘Energy Metabolism’ as the input keywords and selected ‘Protein
Coding’ and a relevance score >1 as the selection criteria during the
search process. Consequently, a total of 1,089 EMRGswere obtained.
The details can be found in Supplementary Table S2.

To identify potential diagnostic and therapeutic targets and
pathways of differentially expressed genes (DEGs) in Idiopathic
Pulmonary Fibrosis (IPF), we utilized the limma package
(Version 3.58.1) (Ritchie et al., 2015) for the analysis of IPF datasets
(GSE24206 and GSE110147). This provided us with DEGs between
two groups (IPF/Control). DEGs that displayed |logFC| > 1 and P <
0.05 were then selected and a Venn diagram was designed to arrive
at the EMRDEGs. The results from this analysis were visualized
using a volcano plot and heatmap via the ggplot2 package (Version
3.4.4), alongside the pheatmap package (Version 1.0.12).
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2.3 Functional enrichment analysis of
energy metabolism-related differentially
expressed genes

The Gene Ontology (GO) enrichment analysis
(The Gene Ontology Consortium, 2015) iswidely used in the studies
of systems biology to characterize extensive sets of genes. These
include the biological process (BP), cellular component (CC),
and molecular function (MF). The Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis (Kanehisa
and Goto, 2000) serves as a knowledge database comprising
genomic information, biological pathways, diseases, and drugs.
Utilizing the clusterProfiler package (Version 4.10.0) (Yu et al.,
2012), we conducted GO and KEGG enrichment analysis
of EMRDEGs.

2.4 Gene set enrichment analysis (GSEA)

GSEA (Subramanian et al., 2005) is often executed to evaluate
changes in BP activity andpathways in the samples of datasets. In our
research, all DEGs in GSE24206 and GSE110147 were partitioned
into two groups based on their positive and negative logFC
values. Subsequently, the clusterProfiler package was implemented
to perform GSEA with 2022 as seeds and 1,000 as the calculation
number. Each gene set contained at least ten genes and a
maximumof 500 genes.We downloaded the gene set “c2.cp.v2022.1.
Hs.symbols. [All Canonical Pathways](3,050)” from the Molecular
Signatures Database (MSigDB v2022.1. Hs) (Liberzon et al., 2015).
The thresholds for significant enrichment were set at P < 0.05 and
FDR <0.05.

2.5 Protein-protein interaction (PPI)
network

The PPI network (Majeed and Mukhtar, 2023) comprises
individual proteins that interact with each other, participating
in biological signalling, gene expression regulation, and various
essential processes like energy metabolism. The STRING database
(https://string-db.org/) (Szklarczyk et al., 2023) captures PPI
in both physical interactions and functional contexts. This
study constructed a PPI network of EMRDEGs using the
STRING database and visualized the network with Cytoscape
(Version 3.9.1) (Shannon et al., 2003). All connected nodes
of EMRDEGs in the PPI network were selected as hub genes.
GeneMANIA (http://genemania.org) (Franz et al., 2018), a website
for analyzing gene functions in gene lists and prioritizing genes
for functional assays, was used to construct a PPI network of
the hub genes.

2.6 mRNA-miRNA and mRNA-transcription
factor interaction network

miRNA plays a crucial role in biological development processes
by regulating a wide range of target genes. However, it can also

be regulated by numerous other miRNAs. The miRDB database
(http://mirdb.org) (Chen and Wang, 2020), which predicts miRNA
target genes and their functional annotations, is used to predict
miRNAs and hub genes that interact with miRNA. The mRNA-
miRNA interaction network was constructed using data with a
Target Score greater than 90.

TF is the intersection point of multiple signalling pathways
in eukaryotic cells and controls mRNA expression (Papavassiliou
and Papavassiliou, 2016). Millions of transcription factor
binding sites (TFBSs) and TF-miRNA regulatory interactions are
available in the CHIPBase database (Version 3.0) (https://rnasysu.
com/chipbase3/index.php), which also includes high-throughput
sequencing ChIP-Seq data (Huang et al., 2023; Yang et al., 2013).The
hTFtarget database (https://guolab.wchscu.cn/hTFtarget/) (Zhang
Q. et al., 2020) offers a wealth of human TF targets and information
on epigenetic modifications, which we used to predict TF-target
regulations. We used the CHIPBase and hTFtarget databases
to identify TFs regulated by hub genes and to map mRNA-
TF interaction networks. The mRNA-miRNA and mRNA-TF
interaction networks were visualized by using Cytoscape.

2.7 Immune infiltration analysis

ssGSEA was utilized to categorize IPF patients from GSE24206
and GSE110147 into clusters with diverse immune cell infiltrations,
identifying each type of infiltrating immune cell, like CD8+ T cells,
macrophages, dendritic cells, and others. We conducted the ssGSEA
employing the GSVA package (Version 1.50.0) (Hänzelmann et al.,
2013) to thoroughly evaluate the immunologic attributes of
every sample included in the study. Boxplots were employed to
display the variance between different groups (IPF/Control) from
GSE24206 and GSE110147 in terms of immune cell infiltration.
The association between distinct immune cells in GSE24206 and
GSE110147 was determined using the Spearman algorithm, and
this was exhibited utilizing the ggplot2 package. We then combined
the gene expression matrix of GSE24206 and GSE110147 to
calculate the relationship between EMRDEGs and immune cells in
various groups (IPF/Control). The ggplot2 package was adopted to
produce dot plots.

CIBERSORT, a versatile computational approach, is utilized to
estimate cell fractions from the gene expression profile of bulk
tissues (GEPs) (Chen et al., 2018; Newman et al., 2015). This
technique allows the estimation of immune composition in solid
tissues. We applied the LM22 gene signature matrix to quantify
the fraction of immune cells using the CIBERSORT algorithm. We
selected data that had an immune cell enrichment score greater
than zero. Eventually, we compiled the immune cell infiltration
matrix, which was showcased using a group comparison graph. We
employed stacked column charts to depict the composition profiles
of differences in immune cell infiltration between distinct groups
(IPF/Control) in studies GSE24206 and GSE110147. The Spearman
algorithm was used to calculate the correlations of individual
immune cells in these studies, which was demonstrated by using
the ggplot2 package. We explored the relationship between immune
cells and EMRDEGs in the GSE24206 and GSE110147 studies,
creating dot plots with the help of the ggplot2 package.
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2.8 Statistical analysis

We processed and analyzed our study’s data using R software
(version 4.2.2). We compared variables between different groups
(IPF/Control) in the datasets, examining the statistical significance
of normally distributed data with Student’s t-test and non-normally
distributed data with the Mann-Whitney-Wilcoxon test. Unless
specifically annotated otherwise, we derived all findings from
Spearman correlation analysis, considering P < 0.05 as statistically
significant.

3 Results

3.1 Analysis of differentially expressed
genes associated with idiopathic
pulmonary fibrosis

First, we utilized the SVA package (Version 3.50.0) and
the limma package to eliminate batch effects and standardize
GSE24206 and GSE110147 (Supplementary Figure S2). GSE24206
incorporated 17 IPF samples and six healthy adult control samples.
GSE110147 encompassed 22 IPF patients and 11 control samples.
The results indicated that the batch effects of GSE24206 and
GSE110147 were essentially eliminated.

We then analyzed the differences in gene expression between
the IPF group and the control group, conducting differential gene
expression analysis in the GSE24206 and GSE110147 datasets using
the limma package. We identified 21,655 DEGs in GSE24206, of
which 412 DEGs (with |logFC| >1 and P < 0.05) were found,
consisting of 227 upregulated genes and 185 downregulated genes.
The GSE110147 dataset contained 21,408 DEGs, and we identified
3,237 DEGs (with |logFC| > 1 and P < 0.05).These consisted of 1,179
upregulated genes and 2,058 downregulated genes. We visualized
the expression of DEGs in GSE24206 and GSE110147 using a
volcano plot (Figures 1A,B). To obtain the energy metabolism-
related DEGs (EMRDEGs) in IPF, we intersected DEGs from both
datasets and the EMRGs. We subsequently obtained 12 EMRDEGs
(ACSL1, CEBPD, CFH, HMGCS1, HSD17B6, IL6, MS4A15, NTS,
PLA2G1B, SOCS3, TLR2, UCP2) and visualized them using a Venn
diagram (Figure 1C). Using the pheatmap package, we created
heatmaps to display the differential expression of EMRDEGs in
GSE24206 and GSE110147 (Figures 1D,E). The figures indicated
significant differences in EMRDEGsbetweenGSE24206 (Figure 1D)
and GSE110147 (Figure 1E).

3.2 Gene ontology and Kyoto Encyclopedia
of Genes and Genomes enrichment
analyses of energy metabolism-related
differentially expressed genes

We conducted GO and KEGG enrichment analyses
of EMRDEGs to assess BP, MF, CC, and pathways
(Supplementary Figure S3). Data with FDR <0.05, as well as P <
0.05, were considered statistically significant. In the BP category,
EMRDEGs were primarily enriched in “positive regulation of
interleukin-8 production”, “humoral immune response” and

“regulation of inflammatory response”. In the MF category,
EMRDEGs were primarily enriched in “glycosaminoglycan
binding”, “receptor ligand activity” and “signalling receptor activator
activity”. In the KEGG enrichment analysis, EMRDEGs were
primarily enriched in “Herpes simplex virus 1 infection”, “PPAR
signalling pathway” and “TNF signalling pathway”. The results of
the GO and KEGG enrichment analyses were displayed in the
form of bar graphs and ring network diagrams (Figures 2A–D).
Next, we utilized the |logFC| value from the previous GSE24206
enrichment analysis to calculate the corresponding Z-score for
each molecule, visualizing them in a bubble plot (Figure 2E).
According to Figure 2E, we deduced that EMRDEGs were primarily
enriched in the BP category.

To investigate the positioning of the EMRDEGs on human
chromosomes, this study further annotated the location of
the EMRDEGs utilizing the RCircos package (Version 1.2.2)
(Figure 2F). Based on Figure 2F, these EMRDEGs primarily resided
on chromosomes 1, 4, 8, 11, 12, and 17. Three of these were solely
distributed on chromosome 12, suggesting a close relationship at
the genome level.

3.3 Gene set enrichment analysis of
GSE24206 and GSE110147

To determine the effect of gene expression levels in
different groups (IPF/Control) in GSE24206 and GSE110147
on the pathological progression of IPF, GSEA was used
to assess the expression levels of all genes, including BP,
CC, and MF. The assessment was performed in different
groups (IPF/Control) of GSE24206 using the selection criteria
of P and FDR <0.05. The GSEA results for GSE24206,
presented in ridgeline plots (Figure 3A), showed significant
enrichment of genes in the IL-1 signalling pathway (Figure 3B),
interleukin-10 signalling (Figure 3C), oxidative stress response
(Figure 3D), apoptosis modulation signalling (Figure 3E), and
other pathways (Supplementary Table S4) between different groups
(IPF/Control).

Similarly, in GSE110147, genes between the different groups
(IPF/Control) were significantly enriched in interleukin-10
signalling (Figure 3G), asthma (), cytokines and inflammatory
response (Figure 3I), SARS-CoV infections (Figure 3J), and
other pathways (Supplementary Table S5). The GSEA results of
GSE110147 were also depicted in ridgeline plots (Figure 3F).

3.4 Protein-protein interaction network,
mRNA-miRNA and mRNA-TF interaction
network

The STRING database was utilized to examine EMRDEGs and
construct a PPI network (medium confidence: 0.400) (Figure 4A).
The eight connected nodes were identified as hub genes (ACSL1,
CEBPD,CFH,HMGCS1, IL6, SOCS3, TLR2,UCP2). Subsequently, a
functional analysis was conducted to explore the semantic similarity
among GO terms, GO term sets, gene products, and gene clusters
using the GOSemSim package (Version 2.28.0). This analysis was
visualized in boxplots (Figure 4B). As it turned out, among the hub
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FIGURE 1
Differential analysis of datasets GSE24206 and GSE110147. (A) Volcano plot of DEGs between IPF and Control in GSE24206. (B) Volcano plot of DEGs
between IPF and Control in GSE110147. (C) Venn diagram of DEGs and EMRGs of GSE24206 and GSE110147. (D) Heatmap of EMRDEGs in GSE24206.
(E) Heatmap of EMRDEGs in GSE110147. DEGs, differentially expressed genes; IPF, Idiopathic pulmonary fibrosis; Control, control group; EMRGs,
energy metabolism related genes; EMRDEGs, energy metabolism related differentially expressed genes.

genes, IL6 displayed the highest function similarity value compared
with the other hub genes.

We utilized the GeneMANIA database to examine the
correlation between hub genes and other genes (Figure 4C). Our
results indicated that there were primarily three shared aspects
(Co-expression, Pathway, and Physical Interactions) among the hub
genes and other genes. Data from the miRDB database concerning
mRNA-miRNA was employed to predict miRNA interactions with
hub genes; these were then visualized using Cytoscape software
(Figure 4D). Within our mRNA-miRNA interaction network,
there existed seven hub genes (ACSL1, CEBPD, HMGCS1, IL6,
SOCS3, TLR2, UCP2), 52 miRNA molecules, and a total of 52
mRNA-miRNAs interaction relationships. The sky-blue circular
blocks indicate mRNAs, whereas the yellow rhombus blocks
stand for miRNAs. The specific relationships between particular
mRNA-miRNAs are presented in Supplementary Table S6.

We searched for and downloaded TFs related to eight hub
genes using the CHIPBase and hTFtarget databases. Eventually, we
obtained interaction relationships between five hub genes (CEBPD,
CFH, IL6, SOCS3, UCP2) and 67 TFs, and visualized these using
Cytoscape software (Figure 4E). Within the mRNA-TF interactions
network, the blue circular blocks represented mRNA, while the
light green triangular blocks represented TFs. These mRNA - TF
interactions are presented in Supplementary Table S7.

3.5 Differential expression analysis of
EMRDEGs

To determine whether EMRDEGs were differentially expressed,
we utilized the signed-rank (Wilcoxon) test to analyze the expression
levels of EMRDEGs across different groups (IPF/Control) contained
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FIGURE 2
GO and KEGG enrichment analysis of EMRDEGs. (A) GO and KEGG enrichment analysis results of EMRDEGs are shown in bar graph. (B–C) Circular
network diagram of BP (B) and MF (C) of GO enrichment analysis of EMRDEGs. (D) Ring network diagram of KEGG enrichment analysis of EMRDEGs.
(E) Bubble plot of GO and KEGG enrichment analysis of EMRDEGs. (F) Chromosomal localization map of EMRDEGs. In bubble plot (A), the abscissa is
the GO terms and the ordinate represents the P values of GO terms. In the Ring network diagram (B–D), blue dots represent specific genes and orange
dots represent specific pathways. In bubble plot (E), blue dots represent BP, orange dots represent MF and cyan dots represent KEGG pathways. GO,
Gene ontology enrichment analysis; BP, biological process; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genome pathway
enrichment analysis; EMRDEGs: Energy metabolism related differentially expressed genes.

within GSE24206 and GSE110147 (Supplementary Figure S3A,B).
Our analysis revealed that all EMRDEGs exhibited highly
statistically significant differences in expression levels (P
< 0.01).

InGSE24206, the expression ofUCP2was upregulated in the IPF
group, while TLR2 expression was upregulated in the control group.
In GSE110147, TLR2 and UCP2 expressions were upregulated in
the IPF and control groups, respectively. Among them, SOCS3 was

highly differentially expressed in different groups of both GSE24206
and GSE110147, and this trend was consistent.

We determined the diagnostic value of 8 EMRDEGs using the
Receiver Operating Characteristic (ROC) curve (Supplementary
 Figure S3C–R). InGSE24206, SOCS3 demonstrated high diagnostic
accuracy, while PLA2G1B showed a degree of diagnostic accuracy.
In GSE110147, SOCS3 displayed high diagnostic accuracy, and IL6
presented some diagnostic precision.
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FIGURE 3
GSEA results of GSE24206 and GSE110147. (A) Main biological pathways of GSEA of GSE24206. (B–E) Genes in GSE24206 were significantly enriched in
WP_IL1_SIGNALING_PATHWAY (B), REACTOME_INTERLEUKIN_10_SIGNALING (C), WP_OXIDATIVE_STRESS_RESPONSE (D) and
WP_APOPTOSIS_MODULATION_AND_SIGNALING (E). (F) Four main biological pathways of GSEA analysis of GSE110147. (G–J) Genes in GSE110147
were significantly enriched in REACTOME_INTERLEUKIN_10_SIGNALING (G), KEGG_ASTHMA (H), WP_CYTOKINES_AND_INFLAMMATORY_RESPONSE
(I) and REACTOME_SARS_COV_INFECTIONS (J). IPF, Idiopathic pulmonary fibrosis. GSEA, Gene Set Enrichment Analysis.
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FIGURE 4
The PPI, mRNA-miRNA and mRNA-TF interaction network. (A) PPI network of EMRDEGs. (B) Functional analysis of hub genes. (C) The results of
GeneMANIA database analysis of hub genes. (D–E) mRNA-miRNAs interaction network of hub genes (D), mRNA-TF interaction network of hub genes
(E). EMRDEGs: Energy metabolism related differentially expressed genes; PPI network, Protein-protein interaction network; TF, Transcription factors.

3.6 Immune infiltration analysis

In examining differences between various groups (IPF/Control)
in GSE24206 regarding immune infiltration, we applied ssGSEA
to assess the abundance of immune infiltration by 28 diverse
kinds of immune cells in DED/Control samples from different

groups (IPF/Control) of GSE24206. Subsequently, for the analysis
of differences in the infiltration of these 28 varieties of immune
cells between the IPF and control groups, we used the Mann-
Whitney U test. The results were displayed in boxplots (Figure 5A).
According to these findings, the immune infiltration abundance of
eight specific types of immune cells showed significant differences
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(P < 0.05) in the different groups (IPF/Control) of GSE24206. These
include activated dendritic cells, CD56bright natural killer cells,
Eosinophils, Macrophages, Mast cells, Neutrophils, Plasmacytoid
dendritic cells, and Type 17 T helper cells.

Furthermore, we employed Spearman’s correlation to explore
the relationship between these eight immune cell types’ infiltration
abundance in GSE24206 (Figure 5B). Here, most of them
demonstrated positive correlations, exceptCD56bright natural killer
cells. Spearman’s correlation was also used to check the correlation
between these eight types of immune cells and EMRDEGs, and the
results, exhibited in dot plots (Figure 5C), indicated a significance
level of P < 0.05. The data indicated that, despite the presence of
negative correlation pairs between these eight immune cell types
and EMRDEGs in GSE24206, positive correlation pairs were more
prevalent.

Next, we utilized the CIBERSORT algorithm to analyze the
infiltration abundance of 22 types of immune cells acrossGSE24206s
different groups (IPF/Control). The results were displayed in
boxplots (Figure 5D). The findings revealed that the infiltration
abundance of these 22 immune cell types in GSE24206 was not
universally 0 and showed a considerable difference between different
groups (IPF/Control) (P < 0.05). We turned again to Spearman’s
correlation, this time assessing the relative infiltration abundance
of 12 types of immune cells and found a significant negative
association among these immune cells (Figure 5E). In addition, we
used Spearman’s correlation to inspect the relationship between
18 types of immune cells and EMRDEGs (Figure 5F). The results
showed that in GSE24206, the number of negative correlation pairs
exceeded the number of positive correlation pairs.

We utilized the same analysis procedure for GSE110147 as
we did for GSE24206. The results are presented in Figures 6A–F.
The level of immune infiltration of 20 types of immune cells
was significantly different (P < 0.05) for the distinct groups
(IPF/Control) within GSE110147. The involved immune cells were
activated CD4+ T cells, activated CD8+ T cells, CD56dim natural
killer cells, CD56bright natural killer cells, Effectormemory CD4+ T
cells, Eosinophils, Gamma-delta T cells, Immature dendritic cells,
Immature B cells, Mast cells, Myeloid-derived suppressor cells,
Memory B cells, Monocytes, Natural killer cells, Natural killer T
cells, Regulatory T cells (Tregs), Tfh, Type 1 T helper cells, Type
17 T helper cells, and Type 2 T helper cells. Subsequently, the
correlation of the level of immune infiltration of these 20 immune
cells in GSE110147 (Figure 6B) demonstrated positive correlations
amongst each other. The correlation between these 20 immune
cell types and EMRDEGs indicated while there were negative
correlation pairings involving eight types of immune cells and
EMRDEGs in GSE110147, there were more positive correlation
pairs (Figure 6C). The CIBERSORT algorithm results indicated that
the level of immune cell infiltration for eight types of immune
cells in GSE110147 was not all 0, and there were statistically
significant differences between groups (IPF/Control) (P < 0.05)
(Figure 6D). Spearman’s correlation was then applied to assess the
relative level of immune cell infiltration in these 8 types of immune
cells, and a significant negative association was found among these
immune cells (Figure 6E). Moreover, using Spearman’s correlation,
we analyzed the relationship between these 8 immune cell types
and EMRDEGs (Figure 6F).The results revealed that in GSE110147,

the number of negative correlation pairs exceeded the number of
positive correlation pairs.

4 Discussion

This study investigated the role of energy metabolism in
IPF. By integrating two independent datasets, GSE24206 and
GSE110147, and employing bioinformatics analysis, 12 EMRDEGs
were systematically identified. Notably, HMGCS1, MS4A15, and
PLA2G1B were newly discovered in the context of IPF. Among
these,HMGCS1 constitutes one of the eight core hub genes (ACSL1,
CEBPD, CFH, HMGCS1, IL6, SOCS3, TLR2, UCP2) warranting
further investigation.

HMGCS1 serves as a critical enzyme in cholesterol synthesis
(Chen et al., 2022), which is closely linked to pulmonary surfactant
function. In alveolar type II cells, LPS-induced overexpression
of HMGCS1 disrupts pulmonary surfactant homeostasis by
dysregulating lipid metabolism, establishing this rate-limiting
enzyme in cholesterol biosynthesis as a mechanistic contributor
to ARDS-associated pulmonary dysfunction (Chen et al., 2023).
The co-occurrence of HMGCS1 dysregulation, cholesterol
accumulation, and surfactant dysfunction in fibrotic lungs raises
the possibility that this enzyme contributes to disease progression
through lipid metabolic pathways. Recent study suggests that
dysregulated cholesterol metabolism mediates abnormal alveolar
remodeling and drives pulmonary fibrosis, with surfactant protein
C deficiency exacerbating this process by disrupting cholesterol
homeostasis (Ruwisch et al., 2020). Additionally, cholesterol-
lowering combination therapy alleviated pulmonary inflammation
and fibrosis in hypercholesterolemic models through serum
cholesterol reduction, directly linking lipid-lowering interventions
to suppressed oxidative stress and fibrotic remodeling in the
lung, thereby highlighting cholesterol dysregulation as a driver
of pulmonary pathology (Seenak et al., 2022). Abnormalities in
the pulmonary surfactant system and the formation of deposits
are associated with fibroproliferation induced by lung tissue
inflammation, primarily due to surfactant dysfunction that
promotes extracellular matrix deposition and alveolar space loss,
thereby driving fibrosis and honeycomb changes (Beike et al.,
2019). The accumulation of alveolar fibrin caused by abnormal
cholesterol metabolism and subsequent lung tissue inflammation
may represent an intrinsic mechanism by which the HMGCS1 gene
contributes to the pathological progression of IPF. HMGCS1 acts as
an upstream regulator of STAT3 and mediates the proliferation and
inflammatory response of psoriatic keratinocytes via the STAT3/IL-
23 axis (Chen et al., 2024). Similarly, in cervical cancer, STAT3-miR-
223 regulates HMGCS1 expression, influencing disease progression
(Zhang J. et al., 2020). Building on these findings, our study
reveals that, in addition to miR-223, miR-18a-5p also functions
as a regulatory factor for HMGCS1. This finding is supported
by prior reports that miR-18a-5p levels decrease in bleomycin-
treated alveolar macrophages, where it regulates the TGF-β-
Smad2/3 signaling pathway, impacting the epithelial-mesenchymal
transition (EMT) of pleural mesothelial cells (Zhang et al., 2017).
To further explore HMGCS1’s functional network, we utilized the
GeneMANIA database, we constructed a gene function network,
revealing a potential pathway relationship between HMGCS1 and
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FIGURE 5
Immune infiltration analysis of GSE24206 (A) The ssGSEA results between different groups (IPF/Control) of GSE24206. (B) Heatmap of the correlation
of the abundance of immune infiltration of 8 types of immune cells in GSE24206. (C) Dot plots of the correlation between 8 types of immune cells and
EMRDEGs. (D) Results of CIBERSORT algorithm of 22 types of immune cells in different groups (IPF/Control) of GSE24206. (E) Heatmap of immune cell
correlation analysis in GSE24206. (F) Dot plots of the association between 18 types of immune cells and EMRDEGs. The symbol ns represents P ≥ 0.05,
which means not statistically significant. The symbol ∗ represents P < 0.05, which means statistically significant; the symbol ∗∗ represents P < 0.01,
which means remarkable statistically significant; the symbol ∗∗∗ represents P < 0.001, which means highly statistically significant. IPF, Idiopathic
pulmonary fibrosis. EMRDEGs, Energy metabolism related differentially expressed genes; ssGSEA, single-sample gene set enrichment analysis
algorithm.
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FIGURE 6
Immune infiltration analysis of GSE110147. (A) The ssGSEA results between different groups (IPF/Control) of GSE110147. (B) Heatmap of the correlation
of the abundance of immune infiltration of 8 types of immune cells in GSE110147. (C) Dot plots of the correlation between 20 types of immune cells
and EMRDEGs. (D) Results of CIBERSORT algorithm of 22 types of immune cells in different groups (IPF/Control) of GSE110147. (E) Heatmap of
immune cell correlation analysis in GSE110147. (F) Dot plots of the association between 8 types of immune cells and EMRDEGs. The symbol ns
represents P ≥ 0.05, which means not statistically significant. The symbol ∗ represents P < 0.05, which means statistically significant; the
symbol ∗∗ represents P < 0.01, which means remarkable statistically significant; the symbol ∗∗∗ represents P < 0.001, which means highly statistically
significant. IPF, Idiopathic pulmonary fibrosis. EMRDEGs, Energy metabolism related differentially expressed genes; ssGSEA, single-sample gene set
enrichment analysis algorithm.
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PPARα (Kumar et al., 2020; Montaigne et al., 2021). It has been
established that PPARs regulate the expression of specific target
genes involved in energy and lipid metabolism, adipogenesis, and
inflammation (Beigoli et al., 2025). Activation of PPARα inhibits
NF-κB transcription and oxidative stress, reducing inflammatory
cytokine release (González-Mañán et al., 2017). Furthermore,
PPARα effectively suppresses TGF-β1 expression in human lung
fibroblasts (HLF) andRAW264.7 cells (Liu et al., 2017). Consistently,
mixed PPARα/γ agonists regulate inflammatory cytokines by
inhibiting TGF-β1, alleviating liver fibrosis (Yoon et al., 2015).
Based on these findings, we propose that the IPFmetabolism-related
gene HMGCS1, regulated by miR-18a-5p, may participate in the
pathological process of IPF through STAT3 and PPARα pathways,
but it requires further experimental validation.

Another metabolism-related hub gene of interest in the
context of IPF is SOCS3, which exhibits stable differential
expression and high diagnostic accuracy across both datasets,
suggesting its potential as a core biomarker for IPF. SOCS3, a
member of the suppressor of cytokine signaling family, primarily
regulates cytokine receptor signaling by inhibiting the JAK/STAT
pathway and modulating STAT3 activity. (Liu and Wang, 2022).
MiRNA-mediated mRNA degradation and translational inhibition
constitute the primary mechanisms regulating SOCS3 expression
(Al-Asadi et al., 2023; Boosani and Agrawal, 2015). Notably,
overexpression of miR-30 is observed in glioma stem cells;
downregulation of miR-30 reduces SOCS3 suppression, activating
the JAK/STAT3 signaling pathway, thus confirming the regulatory
role of the miR-30/SOCS3/JAK/STAT3 axis (Che et al., 2015). In
line with this, our mRNA-miRNA interaction network predicts
that all subtypes of miR-30 (miR-30a-5p, miR-30b-5p, miR-30c-5p,
miR-30d-5p, and miR-30e-5p) regulate SOCS3. Functionally, the
SOCS domain inhibits fibronectin and collagen matrix assembly,
reduces α-SMA levels, and mitigates matrix deposition in lung
fibroblasts and experimental pulmonary fibrosis (Magdaleno et al.,
2024). As a negative regulator, SOCS3 negatively regulates IL-6 via
JAK/STAT pathway inhibition (He and Tian, 2021; Qin et al., 2019).
Persistent upregulation of SOCS3 in IPF may reflect compensatory
mechanisms to counterbalance chronic immune dysregulation.
Our TF-mRNA interaction analysis further reveals that SOCS3
is associated with hub genes (IL6, CEBPD, and UCP2) through
FOXA1 and interacts with CFH/CEBPD via FOXA2. This positions
FOXA as a pivotal transcription factor, suggesting that targeting
FOXA could potentially regulate SOCS3 and multiple key genes
(IL6, CEBPD, UCP2, CFH). However, while SOCS3’s anti-fibrotic
roles are well-documented in hepatic, renal, and cardiac fibrosis, its
pulmonary-specific mechanisms remain underexplored. To address
this gap, studiestargeting the “FOXA-SOCS3-JAK/STAT” axis are
needed to delineate the diagnostic potential and pathogenic roles in
pulmonary fibrosis.

Notably, the diagnostic value of the key gene IL6 in
GSE11014701 aligns with its central position in the PPI network,
supporting its dual roles as a functional core and clinical biomarker.
Building on this, it is worth investigating whether existing therapies
targeting the IL6/JAK-STAT pathway (e.g., tocilizumab) influence
SOCS3 overexpression.

Beyond the central roles of HMGCS1, SOCS3, and IL6 in IPF
pathogenesis, our analysis identifies ACSL1, TLR2, UCP2, CFH,
and CEBPD as synergistic contributors of fibrotic progression

through interconnected metabolic-inflammatory crosstalk. ACSL1-
driven lipotoxicity (Barnhart et al., 2025) primes TLR2-dependent
inflammatory signaling (Lee et al., 2011), amplifying NF-κB
activation (Li et al., 2017; Lin et al., 2021). Concurrently,
UCP2 deficiency exacerbates mitochondrial oxidative stress
(Zhu et al., 2023), thereby activating the NLRP3 inflammasome and
perpetuating tissue injury (Huang et al., 2024). CFH is upregulated
in IPF tissues and functions as a core diagnostic biomarker linked
to immune dysregulation and extracellular matrix remodeling,
implicating complement-mediated fibrotic pathways (Liu et al.,
2024), and CEBPD-mediated transcriptional reprogramming
promotes TGF-β1 overproduction (Lourenço et al., 2020) and
lipid metabolic dysregulation (Lai et al., 2017). These interactions
coalesce into a self-amplifying cycle wherein lipid overload and
oxidative stress sustain inflammatory signaling, which further
disrupts metabolic homeostasis, collectively driving sustained
fibrotic remodeling. This integrated framework underscores the
critical role of metabolic-inflammatory crosstalk in IPF progression.

Building upon this evidence, we next delineated the specific
immune contexture shaped by these processes using complementary
computational approaches. We employed ssGSEA (single-sample
Gene Set Enrichment Analysis) to quantify the activity levels of
predefined metabolic and inflammatory gene signatures within
individual samples, and CIBERSORT to deconvolve bulk tissue
transcriptomes and estimate the relative proportions of infiltrating
immune cell subsets. This integrated approach leverages ssGSEA’s
capacity to detect coordinated pathway activity and CIBERSORT’s
resolution in immune microenvironment characterization, offering
a holistic perspective on metabolic-inflammatory dysregulation
shaping immune landscapes.

Integrated analysis revealed associations between EMRDEGs
and immune dysregulation in IPF. Key immune subsets (e.g.,
CD56bright NK cells, eosinophils, mast cells, and Th17 cells)
exhibited differential infiltration across datasets, linked to
inflammatory and fibrotic pathways. Notably, EMRDEGs showed
divergent correlations: positive with immune pathway activity
(ssGSEA) but negative with immune cell abundance (CIBERSORT).
This suggests metabolic reprogramming may perturb immune
homeostasis through activity-abundance decoupling, highlighting
the complexity of disease-associated immune regulation.

In the GSE24206 dataset, neutrophils were the only immune cell
subtype showing consistent positive correlations with EMRDEGs
in both ssGSEA (functional activity) and CIBERSORT (cell
abundance). This finding implies that neutrophils may orchestrate
disease progression through unique molecular pathways, serving
as a central hub connecting differential gene expression to immune
microenvironment modulation. Specifically, EMRDEGs correlate
with neutrophil recruitment and activation, potentially through
indirect regulation of chemokine signaling (e.g., modulating
upstream pathways of CXCL8) (Ham et al., 2022). Moreover,
through pro-inflammatory signaling pathways such as NF-
κB or STAT3 (An et al., 2019; Fu et al., 2021), EMRDEGs
may drive both neutrophil proliferation (increased abundance)
and functional hyperactivation (enhanced activity). Notably,
neutrophils can secrete immunosuppressive molecules like arginase
and reactive oxygen species (ROS), which may suppress T-cell
functionality (Bert et al., 2023).
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In stark contrast, analyses of the GSE110147 dataset revealed no
cell types with such dual positive correlations, and inconsistencies
in immune subpopulations identified by the two methods were
observed. This observation suggests that neutrophil activity may be
counterregulated by inhibitory signals from other immune cells (e.g.,
Tregs) (Liu et al., 2025; Tzeng et al., 2022) or microenvironmental
factors, thereby obscuring their direct association with EMRDEGs.
Collectively, these findings position neutrophils as a context-
dependent regulatory target of EMRDEGs, capable of driving
synchronized changes in functional activity and cellular abundance
in specific disease settings. However, their effects may be masked by
competing immune interactions or suppressive microenvironmental
cues in alternative contexts, underscoring the necessity for integrative
multi-dimensional analyses to unravel these mechanisms.

Future studies should investigate whether targeting EMRDEGs
themselves—or their downstream effectors in neutrophil-related
pathways—could attenuate fibrotic progression. For example,
inhibitors of metabolic enzymes encoded by EMRDEGs (e.g.,
HMGCS1) might disrupt neutrophil bioenergetics, reducing their
infiltration and activation.

5 Limitations

Our study encountered several limitations. First, the sample
size of our data sets was relatively small, which might account
for different results from other studies. Second, both data sets
lacked crucial information such as treatment details and prognostic
clinical parameters of patients. Third, due to limitations in our
circumstances, we were unable to verify these genes in vitro or in
vivo. We hope to conduct experimental validation of key genes,
focusing on in vitro manipulation of candidate genes (e.g., siRNA-
mediated knockdown or overexpression) to assess their direct
regulatory effects on immune cell recruitment and activation and
clarify their contributions to the pathological progression and
clinical outcomes of IPF.

6 Conclusions

Our analysis identified eight hub genes (ACSL1, CEBPD, CFH,
HMGCS1, IL6, SOCS3, TLR2, and UCP2) associated with IPF
progression. Key findings suggest that HMGCS1 may interact
with PPARα signaling to influence fibrotic remodeling, while
SOCS3 potentially coordinates transcriptional regulation ofmultiple
hub genes (IL6, CEBPD, UCP2, CFH) through FOXA1/2 and
JAK/STAT3 pathway modulation. Immune microenvironment
analysis further highlights neutrophils as a central mediator linking
hub gene expression to immune dysregulation in IPF.These findings
collectively implicate dysregulated energy metabolism and immune
microenvironment remodeling as interconnected features of IPF
pathogenesis. The prioritized genes (e.g., HMGCS1, and SOCS3)
and their associated pathways (PPARα signaling, FOXA networks,
and JAK/STAT3 modulation) represent candidate pathways for
mechanistic investigation. While these molecular signatures may
inform future biomarker studies, their functional roles and clinical

relevance require validation through experimental models. This
work provides a foundation for exploringmetabolic reprogramming
in IPF research.
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