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Maternal plasma microRNA
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syndrome and normal
monochorionic twin pregnancies

Steven T. Papastefan’?, Morgan M. Langereis’,

Catherine R. Redden?, Daniel R. Liesman*?,

Cassandra B. Huerta’, Lucas E. Turner?, Hee Kap Kang?’,
Bethany T. Stetson?®, Katherine C. Ott*?, William S. Marriott?,
Joyceline A. S. Ito?, Aimen F. Shaaban'? and Amir M. Alhajjat"**

!Department of Surgery, The Chicago Institute for Fetal Health, Ann and Robert H. Lurie Children’s
Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,
2Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United
States, *Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Northwestern
University Feinberg School of Medicine, Chicago, IL, United States

Introduction: Ultrasound-based staging systems for twin-twin transfusion
syndrome (TTTS) are limited by radiologic expertise, fetal positioning, and timing
of the exam, and may benefit from incorporation of objective biochemical
measures for diagnosis and prognostication. microRNA expression is altered in
amniotic fluid of TTTS patients, however the invasive nature of amniocentesis
has precluded practical incorporation of these biomarkers into current staging
systems. Therefore, we sought to assess whether non-invasive maternal
plasma microRNAs can distinguish between TTTS and normal monochorionic
diamniotic (MCDA) twin pregnancies.

Methods: Maternal blood samples were collected for patients with normal
MCDA twin pregnancies (n = 11) or prior to selective fetoscopic laser
photocoagulation (SFLP) for patients with TTTS (n = 36). Extracted microRNA
from a panel of 24 microRNAs was compared between groups.

Results: miR-26a-5p (P = 0.004), miR-222-3p (P = 0.007), and miR-145-5p
(P = 0.047) were downregulated and miR-320a-3p (P = 0.005) was upregulated
in the maternal plasma of TTTS patients compared to controls. miR-26a-
5p, miR-320a-3p, and miR-222-3p in combination were strong predictors of
TTTS on random forest modeling (area under curve = 0.905). After SFLP,
all significantly dysregulated microRNAs in TTTS trended toward levels of
expression observed in control MCDA twin pregnancies.

Conclusion: Several microRNAs are differentially expressed in maternal plasma
and demonstrate strong predictive capacity for identifying twin-twin transfusion
syndrome. These plasma microRNAs could provide minimally invasive means
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to enhance currently established ultrasound diagnostic criteria for twin-twin
transfusion syndrome.
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microRNA, twin-twin transfusion syndrome, circulating biomarker, monochorionic
diamniotic pregnancy, pregnancy

Introduction

Twin-twin transfusion syndrome (TTTS) complicates up to fifteen
percent of monochorionic twin pregnancies and carries a high
mortality rate when untreated (WAPM consensus group on Twin-to-
twin transfusion syndrome et al, 2011). Imbalances in intertwin
blood flow from placental arteriovenous anastomoses result in
hypoperfusion of the donor twin and hyperperfusion of the recipient
twin, with the latter manifesting polyhydramnios, cardiomegaly, and
hydrops fetalis (Wohlmuth et al., 2016). Selective fetoscopic laser
photocoagulation (SFLP) of the vascular anastomoses aims to modify
the natural course of the disease prior to the onset of irreversible
damage, however, early detection of twins that will benefit from SFLP
remains a significant challenge (Manning and Archer, 2016; Behrendt
and Galan, 2016; Crombleholme et al., 2007). Current staging systems
of TTTS, including the Quintero, Cincinnati, and Children’s Hospital
of Philadelphia systems, rely on fetal ultrasound and echocardiography
(ECHO) measurements as the primary metrics signifying disease
progression and informing the decision to proceed with SFLP
(Quinteroetal., 1999; Harkness and Crombleholme, 2005; Rychiketal.,
2007). Shortcomings of the current staging systems include complete
dependence on ultrasound which is operator dependent and can be
affected by fetal positioning, maternal habitus or timing of exam. These
factors lead to an inherit limitation to the staging system reflected
in the heterogenous outcomes after SFLP (Stirnemann et al., 2010;
Espinozaetal.,2021; Hessami et al., 2021; Rossi and D'Addario, 2009).

The incorporation of objective biochemical and genetic tests
has revolutionized the diagnosis of fetal genetic and anatomic
anomalies (Kim et al., 2023; Allyse et al., 2015) and may serve to
complement existing ultrasound-based staging systems for TTTS
by introducing operator and time independent mechanisms to
evaluate TTTS. Prior studies have identified differences in the
amniotic fluid biochemical milieu of patients with TTTS, however,
the invasive nature of amniocentesis has precluded their use
in clinical practice (Coleman et al, 2015; Dunn et al, 2016;
Hoffman et al.,, 2020; Takano et al., 2001; Van Mieghem et al,
2010). Non-invasive biomarkers for TTTS, such as those obtained
via maternal venipuncture, are comparatively rare, with prior
studies only demonstrating differences in angiogenic biomarkers in
maternal plasma of TTTS patients (Fox et al., 2010; Yinon et al,
2014). The paucity of identified maternal plasma biomarkers
for TTTS stems conceivably from the wide range of maternal
factors that influence plasma-level expression and differences
in transplacental trafficking of certain types of biomolecules
(Manokhina et al., 2017).

microRNAs (miRNAs) are short, 20-22 nucleotide non-
coding ribonucleic acids (RNA) involved in posttranscriptional
messenger RNA regulation. They have been demonstrated
to transfer from the placenta to maternal plasma in both
physiologic and pathophysiologic states, suggesting their potential
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role as non-invasive biomarkers for placental diseases such
as TTTS (Luo et al, 2009; Higashijima et al., 2013). Though
differences in miRNA expression exist within the amniotic
fluid of TTTS patients (Schuchardt et al., 2022; Willner et al.,
2021), no differences in miRNA expression were observed
in maternal plasma in a recent, albeit underpowered, study
(Mackie et al., 2019).

In this study, we aimed to compare the expression of a targeted
panel of miRNAs in the maternal plasma of patients with TTTS
and normal monochorionic diamniotic (MCDA) twin pregnancies.
Given prior evidence for transplacental transfer of miRNAs and
established differences present in amniotic fluid, we hypothesized
that expression of maternal plasma miRNAs would differ between
TTTS and normal MCDA twin pregnancies and could serve in
a predictive capacity for the identification of TTTS via non-
invasive sampling.

Methods
Study design

Patients with MCDA pregnancies referred to the Chicago
Institute of Fetal Health at Ann and Robert H. Lurie Children’s
Hospital between March 2020 and December 2023 were approached
prospectively, and those consenting to collection of biological
samples were enrolled. The Institutional Review Board of Ann
and Robert H. Lurie Children’s Hospital approved this study
(IRB #2020-3,250), and all subjects provided voluntary, written
informed consent. All research was performed in accordance with
relevant local guidelines/regulations as well as in accordance with
the Declaration of Helsinki. TTTS was defined as monochorionic
pregnancy with polyhydramnios in one sac (>8 cm maximum
vertical pocket) and oligohydramnios in the other sac (<2 cm
maximum vertical pocket) and no other apparent causes of amniotic
fluid or growth discrepancy. Patients with a primary diagnosis of
selective intrauterine growth restriction (sSIUGR) with secondary
evolution of TTTS were excluded due to inherent differences in
miRNA expression that may be unrelated to TTTS (Kim et al., 2020).
Furthermore, patients with twin anemia-polycythemia sequence,
twin reversed arterial perfusion, or discordant fetal anomaly were
excluded. Additional imaging parameters included recipient twin
LV MPI, donor bladder visualization, absent or reversed UA end-
diastolic flow, and reversed DV flow (Van Mieghem et al., 2009).
Patients were staged according to Quintero and Cincinnati systems,
and the presence of recipient twin cardiomyopathy was determined
based on established Cincinnati criteria (Villa et al., 2014). For
MCDA controls, the twin with the higher LV MPI was used for
comparison. Additionally, GA at time of initial ultrasound/ECHO,
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SFLP, postoperative ultrasound/ECHO, and at delivery or fetal
demise (if present) were collected.

Sample collection

For TTTS pregnancies, blood was collected within 24 h prior to
SFLP and amniotic fluid samples were collected at the time of SFLP.
Additionally, post-procedure blood collection was performed for
TTTS patients who returned for post-procedure follow-up within
5-7 days of SFLP. For uncomplicated MCDA pregnancies, blood was
collected at the time of evaluation. Maternal blood was collected
in ethylenediaminetetraacetic acid vacutainers (BD, Franklin Lakes,
NJ), transferred on ice, and centrifuged at 1500 g for 10 min at
4°C. Amniotic fluid was collected in 60 mL syringes, transferred on
ice, and centrifuged at 530 g for 10 min at 4°C. Supernatant from
maternal plasma and amniotic fluid were aliquoted, snap frozen, and
stored at —80°C.

miRNA extraction and microarray

miRNA was purified from 200 uL of supernatants using
miRNeasy kits and stored at —80°C prior to processing (Qiagen,
Hilden, Germany). miRNA concentration and quality were assessed
using the BioTek Epoch-2 Microplate Reader (Agilent, Santa Clara,
CA). ¢cDNA was synthesized from 30 ng miRNA with a custom
Tagman 24-microRNA reverse transcriptase primer pool using the
ProFlex polymerase chain reaction (PCR) system (Thermo Fisher,
Waltham, MA). Pre-amplification of cDNA was performed using
a custom Tagman microRNA pre-amplification primer pool and
Fast Advanced Master Mix, and samples stored at —20°C. On day
of analysis, pre-amplified cDNA products were thawed on ice and
loaded into custom Tagman microarray cards in duplicate, and
real-time PCR performed using Thermo Fisher QuantStudio 7 Flex
Real-Time PCR System.

Assembly of a custom 24 miRNATTTS
panel

A discovery panel of 380 miRNAs was assessed in amniotic
fluid of seven patients with TTTS (four with cardiomyopathy, three
without cardiomyopathy with stage I to III) undergoing SFLP to
inform the composition of the custom miRNA panel. 114 miRNAs
(30.0%) were expressed in total, and ten miRNAs were differentially
expressed in TTTS with cardiomyopathy compared to without
cardiomyopathy (Supplementary Figure S1A,B). A custom panel of
24 miRNAs was created using differentially expressed miRNAs
from the discovery group. 15 additional miRNAs were considered
to be biologically-plausible mediators of TTTS pathophysiology
based on literature review, and U6 snRNA as an intended
endogenous control (Supplementary Figure S1C) (Schuchardt et al.,
2022; Willner et al., 2021; Mackie et al., 2019; Larrabee et al., 2005;
Hromadnikova et al., 2015; Xu et al., 2021; Alvarado-Flores et al.,
2022; Pelosi et al., 2020; Han et al., 2017).
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Statistical analysis

Descriptive statistics for clinical variables were performed
using SPSS v30.0 (IBM, Armonk, NY). Continuous variables
were compared via independent samples T-test for parametric

data or Wilcoxon Rank-Sum test for nonparametric
data. Categorical variables were compared via Fisher’s
exact test.

Microarray data was exported from Expression Suite v1.3
(Thermo Fisher, Waltham, MA) to SPSS and R for statistical
analysis. Duplicate cycle threshold (CT) values were averaged and
miRNAs excluded from analysis if not expressed at CT < 35 or
in 275% of samples. Global miRNA normalization was performed
as the intended control U6-snRNA was not present in any sample
and other endogenous controls for this patient population are
not established (Faraldi et al., 2019; Xiang et al, 2014). Delta-
delta CT (ddCT) values were compared via Wilcoxon rank-
sum test, and relative quantification (RQ) of miRNA expression
between groups calculated via log, transformations of ddCT values.
Benjamini-Hochberg (B-H) false discovery rate (FDR) correction
was performed, and both uncorrected and corrected P-values
reported (threshold P < 0.05) (Benjamini and Hochberg, 1995).
For comparisons of TTTS versus controls, a general linear model
was used to control for gestational age (GA) at the time of sample
collection.

Random forest regression was performed in R (www.R-project.
org) to determine miRNAs with the highest predictive capacity
for TTTS. The machine-learning model was used to generate
and learn 500 potential decision trees, selecting the tree with the
highest predictive capacity based on learning (n = 37) and test
(n = 10) groups. Variable importance plots identified the top 3
predictive miRNAs for TTTS, and receiver operating characteristic
(ROC) curves and hierarchical clustering trees were created for
the combined top 3 miRNAs. Heat maps were generated in
Expression Suite.

Network and gene ontogeny pathway
analysis

Putative targets of miRNAs were identified for the top
5 differentially expressed miRNAs (miR-26a-5p, miR-320-3p,
miR-222-3p, miR-328-3p, miR-145-5p) using gene/miRNA
enrichment via ClueGO/CluePedia plugins for Cytoscape
(v3.10.1) (Ali et al., 2021; Bindea et al., 2013; Bindea et al,
2009). Gene targets of miRNAs were identified using miRanda
(miRanda-miRNAs-v5-2012-07-19.txt.hz), and Kappa score 0.6
(miRanda score v5) used as a threshold for genes included in
the network.

The genes identified via gene/miRNA enrichment were then
subjected to gene ontogeny pathway enrichment analysis to analyze
the relationships between miRNAs, target genes, and potential Gene
Ontogeny (GO) pathways. A two-sided hypergeometric test was
performed to identify pathways that were significantly enriched in
the gene set (threshold B-H adjusted P < 0.05), and chord plots were
created in SRplot (Tang et al., 2023).
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Results
Patient characteristics

A total of 234 patients with MCDA pregnancies were evaluated
during the study period, with 91 patients meeting inclusion criteria
and 47 (51.6%) consenting for sample collection. Of these, 36
patients of these patients had TTTS and 11 patients were found
to have uncomplicated MCDA twin pregnancies. Maternal and
prenatal characteristics are displayed in Table I and individual
patient characteristics in Supplementary Table S1. There was no
significant difference in gestational age (GA) at initial ultrasound
(20.5 + 2.9 vs 20.1 £ 3.0, P = 0.789) or at sample collection between
TTTS and controls (21.0 + 2.7 vs 20.5 + 3.3, P = 0.757). As
expected, right ventricular (RV) and left ventricular (LV) myocardial
performance index (MPI) were higher in TTTS compared to MCDA
controls. Furthermore, umbilical artery (UA) and ductus venosus
(DV) waveform abnormalities and non-visualization of the donor
twin bladder were observed only in TTTS patients. There was a trend
toward significance for overall fetal survival (70.8% vs 90.9%, P =
0.087) between TTTS patients and controls (for whom SFLP was
not indicated). The sole fatality in the control group had a normal
ultrasound but developed preterm premature rupture of membranes
of unknown etiology at 17+ weeks.

Maternal plasma miRNAs are differentially
expressed in TTTS compared to MCDA
controls

After FDR correction, miR-26a-5p, miR-222-3p, and miR-
145-5p were significantly downregulated and miR-320a-3p was
significantly upregulated in TTTS maternal plasma compared
to controls (Figure 1a). Though miR-328-3p was significantly
upregulated in TTTS patients, this difference did not persist after
FDR correction. Similarly, after controlling for GA at collection, the
differences in miR-26a (P < 0.001), miR-320a (P = 0.015), miR-
222 (P = 0.006), and miR-145 (P = 0.035) remained significant.
Comprehensive comparison of analyzed miRNAs between TTTS
and controls is displayed in Table 2 and depicted in the heat map
(Figure 1b). On random forest prediction modeling, miRNAs were
ranked according to their variable importance in predicting the
occurrence of TTTS (Figure 2a). The predictive capacity of the top
three discriminating miRNAs in the model (miR-26a-5p, miR-320a-
3p and miR-222-3p) is demonstrated by the ROC curve (Figure 2b).
Hierarchical clustering demonstrated segregation of 23 of 36 TTTS
patients into a discrete cluster and 13 TTTS patients clustering
with controls (Figure 2c).

SFLP for TTTS returns miRNA expression to
the direction of control MCDA pregnancies

Serial assessments of miRNA expression from multiple blood
draws were available for a cohort of TTTS patients (n = 17) which
allowed comparison of miRNA expression before and after SFLP
for treatment of TTTS (Figure 3a). All 17 patients demonstrated
improvement of the TTTS physiology. Relative expression of
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the top 5 differentially expressed miRNAs in TTTS before and
after SFLP (Figures 3b,c) demonstrated trends in expression that
brought pre-SFLP values in the direction of controls for miR-
26a-5p, miR-320a-3p, miR-222-3p, and miR-145-5p, but not
for miR-328-3p.

No differences in miRNA expression were
present with respect to cardiomyopathy
and fetal demise

To evaluate the potential of plasma miRNAs to predict TTTS
disease severity, we performed subgroup analysis of TTTS patients
by Quintero and Cincinnati stage, the presence of cardiomyopathy,
and fetal demise, respectively. After correction, there were no
differences observed in miRNA expression between those with
recipient twin cardiomyopathy (n = 28) versus those without
cardiomyopathy (n =4) (Supplementary Table S2). Furthermore, no
differences in miRNA expression were observed when comparing
TTTS patients with donor or recipient demise (n = 15) to
patients with dual survivorship (n = 22) (Supplementary Table S3).
Finally, no differences were observed comparing Quintero stages or
Cincinnati stage (all P > 0.05).

Gene set enrichment analysis reveals
putative pathways regulated by candidate
miRNAs

Gene-miRNA network analysis was performed to assess the
relationship between the top 5 differentially expressed miRNAs
in TTTS. 71 unique genes were identified as putative targets of
these miRNAs, with 18 genes regulated by two miRNAs and
three genes (FKBP3, KRT81 NIN) regulated by three miRNAs,
respectively (Figure 4a). Gene set enrichment analysis of the
above target genes demonstrated overrepresentation in pathways
including progesterone secretion, female gonad development,
protein tyrosine kinase activity, specific granule and vesicle lumen
activity, aminoglycan and carbohydrate catabolism (Figure 4b).

Discussion

In this study, we performed an exploration of potential non-
invasive biomarkers for twin-twin transfusion syndrome, given
the heterogeneity of ultrasound-based staging syndromes for
prognostication. The findings of this study suggest that differential
expression of circulating miRNA is present in the maternal plasma
of patients with TTTS compared to uncomplicated MCDA twin
pregnancies, and furthermore, that specific miRNAs in combination
demonstrate strong predictive capacity to distinguish TTTS from
uncomplicated MCDA twin pregnancies. Compared to amniotic
fluid, the identification of circulating biomarkers for TTTS has
been extremely limited, with prior studies only showing differences
in circulating angiogenic factors in TTTS patients (Fox et al,
2010; Yinon et al, 2014). A prior discovery study examining
circulating miRNA profiles in TTTS did not identify any differences
(Mackie et al., 2019). However, the precedent for circulating
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TABLE 1 Clinical characteristics of the cohort.
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Characteristic Control (n = 11) TTTS (n = 36) P-value?
Maternal age at initial ultrasound (years) 328+6.5 31.1+53 0.576
GA at initial ultrasound (weeks) 20.1+£3.0 205+29 0.789
GA at blood sample collection (weeks) 20.5+3.3 21.0+2.7 0.757
GA at SFLP (weeks) - 21.1+28 -
GA at delivery (weeks) 332+59 30.8 4.5 0.018
Recipient Twin LV MPI 0.36 +0.06 0.48 £0.11 <0.001
Recipient Twin RV MPI® 0.32 £0.07 0.53 +£0.22 <0.001
Recipient Twin Cardiomyopathy? 0 28 (55.6%) <0.001
UA or DV waveform abnormality 0 18 (50.0%) 0.003
Absent or small donor bladder 0 28 (78.8%) <0.001
Quintero Stage

Stage 1 - 9 (25.0%) -

Stage 2 - 7 (19.4%) -

Stage 3 - 20 (55.6%) -
Cincinnati Stage®

Stage 3A - 7 (19.4%) -

Stage 3B - 10 (27.8%) -

Stage 3C - 11 (30.6%) -
Demise of Both Twins (of total pregnancies) 1/11 (9.1%) 6/36 (16.7%) 1.000
Demise of One Twin (of total pregnancies) 0 9/36 (25.0%) 0.092
Overall Fetal Survival (of total twins) 20/22 (90.9%) 51/72 (70.8%) 0.087

“Wilcoxon rank-sum test for continuous variables, Fisher’s exact test for categorical variables.
® Available for 33 of 36 TTTS, pregnancies and 11 of 11 controls.

€Available for 32 of 36 TTTS, pregnancies and 11 of 11 controls.

4 Available for 32 of 36 TTTS, pregnancies.

€For patients with recipient twin cardiomyopathy.

Data presented as mean + SD, or n (%).

miRNAs to serve as biomarkers for TTTS has remained given their
established relevance for other diseases of the fetus and placenta,
suggesting the potential for transplacental transfer of miRNAs into
maternal circulation (Higashijima et al., 2013; Mackie et al., 2019;
Subramanian et al., 2023; Gu et al, 2019). In the present study,
we identified four miRNAs, miR-26a-5p, miR-320a-3p, miR-222-3p,
and miR-145-5p, that are differentially expressed in patients with
TTTS compared to MCDA controls.

The of
differentiating TTTS from controls is significant and reveals a

identification of circulating miRNAs capable

potential biomarker source with translational relevance. In addition,
we found the top differentially expressed miRNAs, miR-26a-5p,
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miR-320a-3p, and miR-222-3p, are highly predictive of the presence
of TTTS in combination. While the clinical utility of biomarkers in
TTTS would be enhanced by their ability to discriminate based
on disease severity, we did not find differences in expression
according to several metrics of severity: cardiomyopathy, fetal
demise, Quintero stage or Cincinnati stage. However, it is likely
that this study was underpowered to detect true differences between
subgroups as smaller patient subsets were assessed. An interesting
future study would be evaluation of plasma miRNA expression in
those patients with initially normal or equivocal ultrasound-based
signs who progressed to TTTS on subsequent ultrasounds. First-
trimester ultrasound screening to predict future development of
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Differential expression of miRNAs in controls versus TTTS. (a) Bar graphs depicting relative miRNA expression of the top 5 differentially expressed
miRNAs between controls (n = 11) and TTTS (n = 36). Individual patients represented as dots, and bars represent mean + standard deviation. Asterisk
denotes Benjamini—-Hochberg adjusted P-value <0.05. (b) Heat map reflecting relative ddCT of respective miRNA in controls versus TTTS patients.
Green boxes represent higher ddCT and red boxes represents lower ddCT, and therefore lower and higher relative expression compared to the globally

normalized reference, respectively.

TTTS utilizing features such as fetal nuchal translucency thickness
and crown rump length discordance had significant false positive
and false negative rates in prior studies (Mackie et al, 2017;
Kagan et al, 2007; ElKateb et al., 2007; Sebire et al, 2000).
Therefore, these patients could benefit from the identification of
biochemical differences early in gestation that may predict TTTS
development, aiding in risk stratification and/or earlier treatment.
Importantly, we evaluated whether miRNA expression changes in
response to treatment, and in paired patient samples of maternal
plasma prior to and after SFLP, the expression of miR-26a-5p,
miR-320a-3p, miR-222-3p and miR-145-5p corrected to levels
closer to that of controls after treatment. Though outside of the
scope of the present study, it is of considerable interest to assess
whether plasma miRNA normalization after SFLP may predict

Frontiers in Molecular Biosciences

post-procedure prognosis, as this study suggests that treatment
of TTTS physiology may induce changes at the level of miRNA
expression.

The miRNAs included in the panel were selected due to their
relevance in other fetal and placental disease states. All four miRNAs
that were significantly dysregulated are known to be dysregulated
in other gestational diseases including preeclampsia; specifically,
miR-320a-3p and miR-222-3p are dysregulated in trophoblast
cells of patients with preeclampsia (Han et al., 2017; Xie et al,
2019; Yang et al, 2022). miR-26a-5p, which regulates uterine
epithelial remodeling and immune signaling during implantation,
is also dysregulated in pregnancy complications such as placenta
previa and IUGR, and modulates inflammation and oxidative
stress via NF-kB and cytokine pathways in other disease contexts,
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TABLE 2 Differential expression of miRNAs between patients with TTTS and control MCDA twin pregnancies.

Mean ACT Mean ACT AACT (TTTS — Fold change P-value B-H Adij.
TTTS (SD) control (SD) Control) (TTTS/Control) P-value
hsa-miR-26a-5p 4.63 (0.89) 3.48 (0.50) 115 0.52 <0.001 0.004
hsa-miR-320a-3p -0.15 (0.52) 0.38 (0.34) -0.53 1.51 <0.001 0.005
hsa-miR-222-3p ~0.71 (0.45) ~1.19(0.31) 0.48 0.74 0.001 0.007
hsa-miR-145-5p 4.60 (1.13) 3.72(0.69) 0.88 0.68 0.009 0.047
hsa-miR-328-3p ~1.08 (1.50) ~1.89 (0.48) 0.80 0.80 0.048 0.162
hsa-miR-192-5p 6.50 (1.15) 7.15 (0.66) -0.65 2.12 0.051 0.162
hsa-miR-221-3p ~0.26 (1.14) ~0.94 (0.49) 0.68 0.73 0.054 0.162
hsa-miR-let-7b-5p -0.55 (0.89) -0.97 (0.46) 0.42 0.86 0.081 0.213
hsa-miR-17-5p ~1.61(0.76) ~1.24(0.29) -0.37 1.47 0.190 0.443
hsa-miR-92a-5p ~4.96 (1.65) -5.60 (0.91) 0.64 1.02 0.227 0.451
hsa-miR-106a-5p ~1.26 (0.68) -0.95(0.21) -0.32 1.38 0.236 0451
hsa-miR-342-3p ~0.01 (0.84) ~0.17 (0.46) 0.16 1.03 0314 0.550
hsa-miR-200c-3p 7.59 (1.21) 7.05 (1.59) 0.54 0.37 0415 0.651
hsa-miR-539-5p 5.85 (1.18) 5.65 (1.59) 0.20 0.78 0.434 0.651
hsa-miR-191-5p 1.04 (0.76) 1.03 (0.22) 0.02 1.13 0.594 0.832
hsa-miR-20a-5p 2.12(0.78) 2.07 (0.61) 0.05 1.04 0.665 0.873
hsa-miR-19b-3p 0.06 (0.76) 0.16 (0.31) -0.10 1.25 0.738 0.883
hsa-miR-484 -3.61 (0.06) ~3.54(0.38) -0.08 L11 0.757 0.883
hsa-miR-146a-5p 0.07 (0.64) 0.05 (0.40) 0.02 1.05 0.951 0.990
hsa-miR-24-3p 0.78 (0.67) 0.87 (0.37) -0.09 116 0.951 0.990
hsa-miR-16-5p ~1.99 (1.01) ~1.92 (0.40) -0.07 1.30 0.990 0.990

supporting its potential role as a pregnancy-relevant immune
regulator (Hromadnikova et al., 2015; Myszczynski et al., 2025;
Hromadnikova et al., 2024; Bian et al., 2024). The source of the
circulating miRNAs is not known, and the differential expression
could represent changes at the fetal, placental, or maternal level given
that bidirectional miRNA trafficking occurs at the maternal-fetal
interface (Xu et al., 2021; Morales-Prieto et al., 2020; Chang et al.,
2017). In this study, we aimed to understand the potential
interrelatedness of these differentially expressed miRNAs that could
guide further research of downstream mediators of disease. To this
aim, gene-miRNA network analysis revealed 18 genes that were
simultaneously regulated by two miRNAs and three genes regulated
by three miRNAs. Each of these three genes, KRT8, NIN, and
FKBP3 are expressed in the human placenta, though their potential
relevance to TTTS pathophysiology has not yet been elucidated
(Gerli et al., 2024). Interestingly, a meta-analysis of single-cell RNA
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sequencing studies within placental samples identified KRT8 as
the sole gene that is universally expressed within all trophoblast
cell subtypes (Derisoud et al., 2024). Furthermore, KRT8 knockout
mouse models produced embryonic lethality due to impairment
in trophoblast giant cell layer formation (Jaquemar et al., 2003).
The present study raises new questions of whether differences in
miRNA expression could affect regulation of structural genes such as
KRT8 implicated in placental development, an interesting avenue for
further study. Additionally, it raises the question of whether in utero
miRNA delivery could be a potential future treatment strategy aimed
at placental modulation, as has been demonstrated in other fetal
pathologies such as congenital diaphragmatic hernia (Ullrich et al.,
2023; Khoshgoo et al., 2019). Interestingly, gene set enrichment
analysis revealed the overexpression of target genes within several
pathways of established and potential significance in TTTS
pathophysiology including progesterone regulation, carbohydrate
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FIGURE 2
Random forest analysis of the predictive capacity of miRNAs for TTTS. (a) Mean decrease in accuracy and mean decrease in Gini coefficients reflect the

respective predictive capacity of each miRNA for identifying TTTS. The top three miRNAs in both models, hsa-miR-320a-3p, hsa-miR-26a-5p and
hsa-miR-222-3p were utilized in the random forest model for their combined predictive capacity for TTTS. (b) ROC curve for the top three miRNAs in
the random forest model depicting strong predictive capacity for TTTS as indicated by an area under the curve (AUC) of 0.905. (c) Hierarchical
clustering of patients using the model demonstrates two clusters composed entirely of patients with TTTS, and one cluster containing both TTTS and
control patients.

catabolism, and non-membrane spanning protein tyrosine kinase
activity (Dunn et al., 2016; Hoffman et al., 2020; Parchem et al.,
2023; Kajiwara et al., 2022). The mechanisms governing differences

in steroid hormone expression and carbohydrate metabolism in
TTTS are incompletely understood, and it is interesting to speculate
whether miRNAs could be implicated in regulation of these critical
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FIGURE 3

Comparison of miRNA expression at multiple time points with respect to SFLP response. (a) Characteristics of the patient cohort. At initial presentation,
patients referred to the fetal treatment center were either confirmed to have TTTS requiring SFLP (n = 30) or had an MCDA pregnancy without TTTS or
with TTTS wherein SFLP was not indicated (n = 17). All patients in the latter group returned for repeat examination and were found to either have
evolving TTTS (n = 6) or no further evidence of TTTS (n = 11). A total of 36 patients with TTTS underwent SFLP, and 17 patients underwent maternal
blood sample collection on post-SFLP follow-up. (b) Relative miRNA expression of the top 5 differentially expressed miRNAs before and after SFLP for
the 17 patients who provided both pre- and post-SFLP blood samples, with controls depicted as a reference. Bars represent mean + standard deviation
Single asterisk denotes P < 0.05, double asterisk denotes P < 0.001, n.s. denotes P > 0.05. (c) Matched patient samples for patients with TTTS pre- and
post-SFLP demonstrating changes in relative miRNA expression for each patient.
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FIGURE 4

Network of genes regulated by the top 5 differentially expressed miRNAs in TTTS and putative gene ontogeny pathways. (a). Network analysis depicts
the top 5 differentially expressed miRNAs in TTTS (green) and respective genes regulated by three (red), two (yellow), or one (blue) miRNAs. (b). Chord
diagram depicting gene ontogeny (GO) pathways enriched in gene:miRNA sets.
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fetal and placental developmental pathways (Dunn et al., 2016;
Hoffman et al., 2020).

The strengths of this study include the use of a non-invasive
biomarker source as most biomarker research for TTTS has been
performed in amniotic fluid samples. Further strengths were the
selection of uncomplicated MCDA twins as controls, multiple
testing correction, and collection of samples before and after SFLP.
However, this study has several limitations. First, though this
study aimed to understand whether miRNAs could predict the
presence of TTTS via random forest modeling, the study was
retrospective and limited by sample size. Therefore, conclusions
cannot be drawn on whether these miRNAs could prospectively
predict disease development. Further, it is not known whether the
changes in miRNA expression are unique to TTTS or could be
present in other gestational twin pathologies. Several miRNAs of
potential relevance to TTTS were not included in the panel due to
limitations of the size of custom microarray cards, and therefore
this study is not a comprehensive evaluation of all miRNAs that
may be differentially expressed in maternal plasma. Assessment of
a more comprehensive miRNA profile with additional validation
experiments in well-powered patient cohorts is a goal of future study.
Additionally, lack of an endogenous control is a limitation of the
study as the intended endogenous control was not present in the
samples. Although endogenous controls have not been established
for this population, we hypothesize that this is due to a technical
error in manufacturing of the custom plate. Finally, this study was
limited in its ability to compare miRNA expression according to
TTTS stage. The ability of maternal plasma miRNAs to complement
existing staging systems requires prospective investigation.

We conclude that differential expression of miRNAs is present
in maternal plasma of patients with TTTS compared to MCDA
controls. miR-26a-5p, miR-320a-3p, miR-222-3p and miR-145-5p
are significantly dysregulated in patients with TTTS. miR-26a-
5p, miR-320a-3p, and miR-222-3p demonstrate strong predictive
capacity for TTTS in a random forest model.
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