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A glutamine metabolism gene
signature with prognostic and
predictive value for colorectal
cancer survival and
immunotherapy response

Yinmeng Zhang, He Zhu, Jiawei Fan, Jiahui Zhao, Yan Xia,
Nan Zhang and Hong Xu*

Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China

Background: Colorectal cancer (CRC) remains a major cause of cancer
mortality, and dysregulated glutamine metabolism has emerged as a potential
therapeutic target. However, the precise role of glutamine in CRC progression
and treatment response remains debated.

Methods: The authors collected transcriptome and microbiome information,
frommultiple sources to construct theGLMscore, a prognostic signature in CRC.
To comprehensively characterize the biological features of GLMscore groups,
the integration of transcriptomic profiling, KEGG pathway enrichment analysis,
immune infiltration analysis, tumor immunemicroenvironment characterization,
microbiome analysis, and tissue imaging were applied. Furthermore, CRC
patients were stratified into GLMscore high and GLMscore low groups. The
robustness of GLMscore was validated in both training and validation cohorts,
and the predictive value for immunotherapy response was assessed. Finally,
single-cell RNA sequencing (scRNA-seq) analysis was conducted to delineate
the differences between GLMscore high and GLMscore low groups.

Results: High GLMscore was associated with elevated expression of
pathways related to tumorigenesis, epithelial-mesenchymal transition (EMT),
and angiogenesis. Furthermore, high GLMscore patients exhibited an
immunosuppressive TME characterized by increased infiltration of M0 and M2
macrophages, reduced overall immune infiltration (supported by ESTIMATE and
TIDE scores), and increased expression of immune exclusion and suppression
pathways. Analysis of pathological whole-slide images (WSIs) revealed a lack
of intratumoral tertiary lymphoid structures (TLSs) in high GLMscore patients.
The GLMscore also predicted resistance to common chemotherapeutic agents
(using GDSC data) and, importantly, predicted poor response to immunotherapy
in the IMvigor210 cohort. Analysis of 16S rRNA gene sequencing data revealed
an enrichment of potentially oncogenic microbiota, including Hungatella and
Selenomonas, in high GLMscore group. Single-cell analysis further confirmed
the immunosuppressive TME and identified increased cell-cell communication
between inflammatory macrophages and tumor cells in high GLMscore group.

Conclusion: The authors innovatively constructed GLMscore, a robust
scoring system in quantifying CRC patients, exploring the distinct biological
features, tumor immune microenvironment and microbiome ecology,
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exhibiting high validity in predicting survival prognosis and clinical
treatment efficacy.

KEYWORDS

colorectal cancer, glutamine metabolism, microbiome, tumor microenvironment,
prognosis

1 Introduction

Colorectal cancer (CRC) is one of the most common
gastrointestinal malignancies and ranks as the second leading
cause of cancer-related mortality worldwide (Siegel et al., 2024).
Over the past few decades, advancements in surgical techniques
and adjuvant chemotherapy have significantly improved the 5-
year overall survival (OS) rates for CRC patients. Nevertheless,
despite appropriate surgical resection and adjuvant therapy,
nearly 30% of patients experience recurrence (Cheng et al.,
2022). Current treatment strategies for CRC often involve a
combination ofmodalities, including immune checkpoint inhibitors
(ICIs) combined with chemotherapy (André et al., 2020), anti-
angiogenic therapy in conjunction with ICIs (Tian et al., 2023),
and other experimental therapies and treatment optimization
approaches. However, it is crucial to note that the vast
majority of CRC patients do not benefit from targeted therapies
(Han et al., 2024).

Reprogrammed energy metabolism is an emerging hallmark of
cancer (Hao et al., 2016). To meet the energetic and biosynthetic
demands of proliferation, growth, and metastasis, cancer cells
undergo significant metabolic alterations, a key feature of which
is an increased dependence on glutamine (Hao et al., 2016).
Glutamine not only fuels cancer cells, but its metabolite, α-
ketoglutarate (α-KG), supportingmitochondrial metabolism (Dang,
2010). These metabolites and biosynthetic precursors are essential
for rapid tumor cell proliferation. In colorectal cancer (CRC), active
glutamine metabolism has emerged as a promising therapeutic
target. However, clinical studies investigating the significance of
glutamine levels in CRC patients are currently limited.

Tran et al. reveal that, glutamine restriction in the colorectal
cancer (CRC)microenvironment enhancesWnt signaling anddrives
tumorigenesis by decreasing intracellular α-ketoglutarate (α-KG)
levels (Tran et al., 2020). Several studies have shown that decreased
serum glutamine levels are associated with increased systemic
inflammation and poor prognosis in CRC patients, suggesting
serum glutamine as an independent prognostic biomarker for
CRC progression (Li et al., 2019). Mechanistically, glutamine
deprivation promotes CRC cell migration and invasion by inducing
the epithelial-mesenchymal transition (EMT) process (Sun et al.,
2022), while enhanced glycolysis and glutamine metabolism are
linked to CRC cell proliferation, metastasis, and resistance to 5-
fluorouracil (5-FU) (Duan et al., 2024). Nevertheless, a study based
on the UK Biobank cohort reported an inverse association between
glutamine levels and colorectal cancer risk (Rothwell et al., 2023).

In this study, we integrated transcriptomic, microbiome, and
single-cell sequencing data from over 2400 CRC patients across
multiple centers to construct a glutaminemetabolism-based scoring
model, the GLMscore. We characterized the distinct biological
features and microbiome composition of patients with high and

low GLMscores. Furthermore, by integrating pathological whole-
slide images (WSIs), we investigated the unique immune infiltration
patterns within the tumor microenvironment. These analyses were
further extended to the single-cell level. The resulting GLMscore
serves as an accurate prognostic biomarker for survival and a
predictive model for therapeutic response, enabling precise patient
stratification and providing guidance for personalized clinical
treatment strategies.

2 Methods

2.1 Data collection and preprocessing

We obtained a curated set of 76 genes associated with glutamine
metabolism from the Molecular Signatures Database, GO Biological
Process gene set “GOBP_GLUTAMINE_FAMILY_AMINO_
ACID_METABOLIC_PROCESS” (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb). Transcriptomic data and corresponding
clinicopathological information were extracted from multiple
colorectal cancer (CRC) cohorts. The Cancer Genome Atlas CRC
cohort (TCGA-CRC) served as the training dataset. Gene expression
profiles and clinical follow-up data from seven independent Gene
Expression Omnibus (GEO) CRC cohorts (GSE39582, GSE28722,
GSE143985, GSE75316, GSE39084, GSE38832, and GSE41258)
were used for external validation. Additionally, single-cell RNA
sequencing (scRNA-seq) data and clinical follow-up information
from 20 CRC patients were incorporated to predict immunotherapy
response and characterize the immune microenvironment.

RNA sequencing data for the TCGA-CRC cohort were
downloaded from the UCSC Xena database (Goldman et al.,
2020), and clinicopathological data were obtained from the
Supplementary Material of Liu et al. (2018). Transcriptomic data
(transcripts per million, TPM), intratumoral microbiome data, and
clinical follow-up data for the AC-ICAM cohort were acquired
from Roelands et al. (2023). Data from the seven GEO cohorts
were downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/) and preprocessed using the “GEOquery” R package.
Single-cell sequencing data and accompanying clinical data for
the 20 CRC patients were obtained from Zhang et al. (Chen et al.,
2024). Immunohistochemistry (IHC) images were acquired from
The Human Protein Atlas (https://www.proteinatlas.org).

2.2 Construction of GLMscore

To identify glutamine metabolism-related genes (GLMGs)
significantly associated with prognosis, we performed univariate
Cox proportional hazards regression analysis on each gene using
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disease-free survival (DFS) as the outcome variable, combined
with a 1000-times resampling procedure (each time randomly
selecting 80% of the samples). For each iteration, p-values from Cox
regression were recorded for all candidate genes. We then calculated
the frequency with which each gene achieved statistical significance
(p < 0.05) across the 1,000 iterations. Genes that were significant
in over 800 out of 1,000 iterations were considered robustly
associated with DFS and were retained for further analysis. This
strategy increases robustness over single-run analysis by reducing
sample-dependent variability. This analysis was conducted on a
training dataset. To mitigate the risk of overfitting inherent in
high-dimensional data, we employed the Least Absolute Shrinkage
and Selection Operator (LASSO) regression to select a subset of
genes with the strongest prognostic value (“glmnet” R package,
version 4.1–8). The resulting gene signature was used to construct
a glutamine metabolism-based risk score (GLMscore), calculated
as follows: GLMscore = ∑i = 1 Coefficient (GLMGi)∗Expression
(GLMGi). Patients were stratified into low- and high-GLMscore
groups based on an optimal cutoff value determined by the
Youden index.

2.3 Assessment of biological
characteristics, immune microenvironment
and microbiome ecology

To characterize the tumor microenvironment (TME) and
immune infiltration, we calculated a series of gene signature
scores using single-sample Gene Set Enrichment Analysis
(ssGSEA) implemented in the GSVA R package. These scores were
derived from the HALLMARK gene sets (h.all.v2023.1.Hs.entrez)
obtained from the MSigDB (https://www.gsea-msigdb.
org/gsea/msigdb/human/genesets.jsp?collection=H). Additionally,
we utilized gene sets representing various TME-infiltrating immune
cell types, as defined by Charoentong et al. (2017). The ESTIMATE
algorithm was employed to provide an independent validation of
the ssGSEA results (Yoshihara et al., 2013).

To further investigate tumor-immune interactions and assess
potential immunotherapy responsiveness, we analyzed key
molecules and pathways using the “IOBR” R package (Zeng et al.,
2021a). This analysis included immune checkpoint genes, immune
suppression signatures, immune exclusion signatures, and immune
exhaustion signatures. We also evaluated established predictors
of immunotherapy response, including the Tumor Immune
Dysfunction and Exclusion (TIDE) score (Jiang et al., 2018)
and the TMEscore (Zeng et al., 2021b). Immune cell infiltration
levels were quantified using the CIBERSORT deconvolution
algorithm (Newman et al., 2015). Finally, differences in the
intratumoral microbiome niche between molecular subtypes
were assessed using 16S rRNA gene sequencing data from the
AC-ICAM cohort (Roelands et al., 2023).

2.4 Pathological assessment and IHC
visualization

Tertiary lymphoid structures (TLSs) are ectopic lymphoid
aggregates that form in non-lymphoid tissues, often in

response to chronic inflammation or cancer. They are
characterized by a dense, unencapsulated cluster of B
cells (CD20+) at the periphery, an adjacent T cell zone
(CD3+), and surrounding dendritic cells (DCs; CD11c+) (
Teillaud et al., 2024).

To investigate the prognostic significance of TLSs in colorectal
cancer (CRC), 598 whole-slide images (WSIs) from TCGA-
CRC samples were meticulously annotated by board-certified
pathologists who were blinded to the clinical outcomes. Based on
their location relative to the tumor invasive margin, TLSs were
classified into two subgroups, peritumoral TLSs (peri-TLSs) and
intratumoral TLSs (intra-TLSs).

2.5 Immunotherapy response and drug
sensitivity

Drug sensitivity to common chemotherapeutic agents was
predicted using theGenomics of Drug Sensitivity in Cancer (GDSC)
database (Yang et al., 2013). To assess potential immunotherapy
response, we analyzed immune checkpoint-related genes obtained
from Qin et al. (Qin et al., 2019). Furthermore, we utilized
two independent immunotherapy cohorts as supplementary
datasets. The IMvigor210 cohort (Mariathasan et al., 2018),
comprising samples from patients with metastatic urothelial
cancer treated with an anti-PD-L1 agent, was accessed via the
“IMvigor210CoreBiologies” R package.

2.6 Microbiome analysis and single-cell
analysis

The16s rRNAmicrobiome data used in this study were obtained
from intratumoral microbiome samples collected from patients
in the AC-ICAM cohort (Roelands et al., 2023). To investigate
the relationship between microbial composition and GLMscore,
we compared the relative abundance of microbial species between
the GLMscore-high and GLMscore-low groups. This analysis was
performed at the genus level, focusing on bacterial taxa that were
differentially enriched in these groups. Single-cell RNA sequencing
(scRNA-seq) data analysis was performed using the Seurat R
package (version 5.2.1). Expression data for the scRNA-seq cohort
were obtained from Zhang et al. (Chen et al., 2024). To ensure
reproducibility, we adhered to the original analytical parameters
described in Zhang et al.’s literature. Cell-cell communication and
intercellular ligand-receptor interactions were inferred using the
“CellChat” R package.

2.7 Statistical analysis

All data processing and statistical analyses were conducted
using R software (version 4.1.0). Comparisons between two groups
were performed using the Wilcoxon rank-sum test, whereas the
Kruskal–Wallis test was used for comparisons involving more
than two groups. Kaplan-Meier survival curves were generated,
and survival differences were assessed using the log-rank test,
implemented in the “survminer” R package. Correlation analyses
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were performed using Spearman’s rank correlation coefficient.
Statistical significance was defined as a p-value <0.05.

3 Results

3.1 Development and validation of
GLMscore

The comprehensive workflow is illustrated in Figure 1. A total
of 76 glutamine metabolism related genes were harvested from
the MsigDB, finally 35 genes were utilized in the construction
of GLMscore after the resampling process. A four gene signature
was developed, and the GLMscore formula is as follows:
(−0.0391∗ASRGL1) + (0.0426∗MECP2) + (−0.0391∗NOS2) +
(0.0326∗NOS3) (Figures 2a,b). According to the optimal cut-off
value, patients were classified into two GLMscore group. Samples
with higher GLMscore trended to significantly shorter DFS in
both training cohort and validation cohorts (Figures 2c–e). Taking
into consideration GLMscore group cases and other clinical or
pathological parameters significant in univariate Cox regression,
the results of multivariate Cox regression showed that GLMscore
was an independent prognostic factor for DFS prediction in both
training cohort and validation cohorts.

3.2 Biological characteristics of GLMscore
groups

Hallmark pathway enrichment analysis revealed distinct
biological features between the two GLMscore groups. GLMscore
low group was associated with pathways enriched in Myc-targets,
E2F-targets, and G2M-checkpoint, while GLMscore high group
showed enrichment in pathways related to carcinogenesis, EMT,
angiogenesis, inflammation and hypoxia (Figure 3a). GLMscore
high group displayed significantly elevated mutation levels in
the HIPPO, NOTCH, RTK RAS, and WNT pathways, which are
closely associated with cell proliferation, tumor invasion, and
metastasis (Figures 3b,c).

3.3 Immune infiltration between GLMscore
groups

In the low GLMscore group, more immune cell infiltration
was observed (Figure 4a). The high GLMscore group exhibited
a higher stromal score, while the immune score displayed an
opposite trend (Figures 4b,c). Additionally, the high GLMscore
group was correlated with significantly more macrophages M0 and
M2 infiltration in the tumor microenvironment using CIBERSORT
deconvolutionmethod (Figure 4d). According to the results of IOBR
algorithm, the high GLMscore group showed a higher immune
exclusion, suppression state, while the expression of immune
checkpoint genes and immune exhaustion were higher in the low
GLMscore group (Figures 5a–d). The TME score was higher in the
low GLMscore group (Figure 5e). In contrast, the TIDE score was
significantly higher in the high GLMscore group, accompanied with
elevated MDSC and CAF score (Figures 5f–h).

3.4 Immunotherapy response and
chemotherapy sensitivity

The high GLMscore group exhibited a lower OS rate in the
IMvigor 210 cohort, with a significantly higher proportion of
non-responders (Figure 6a). Besides, the GLMscore high group
displayed higher IC50 in Irinotecan, Oxaliplatin and Flurouracil,
indicating worse chemotherapy sensitivity (Figure 6b). Besides, the
high GLMscore group was found without intraTLS according to
the WSI images, while an intraTLS was observed in the low
GLMscore group (Figure 6c). Moreover, the IHC images in tumor
and normal tissues revealed that ASRGL1 and MECP2 were highly
expressed in tumor (Figure 6d).

3.5 Microbiome characteristics and single
cell analysis

The relative abundance of pathogenic microbiota including
Hungatella and Selenomonas was significantly higher in
the GLMscore group (Figure 7a). Besides, the abundance of
Catenibacterium and Cutibacterium was also higher in the
GLMscore group (Figure 7a). According to the single cell analysis
in Zhang’s et al. research, the GLMscore high group exhibited
a higher proportion of SD patients, which indicated a worse
immunotherapy response (Figure 7b). The tumor cells were
further subgroup into tumor high and tumor low utilizing the
GLMscore formula, the SPP1+ and CCL20+ macrophages shared
elevated intercellular communications with tumor high cells
(Figure 7c). The ligand receptor analysis indicated that the potential
signaling pathway linking the macrophages and tumor cells was
the PPIA-BSG (Figure 7d).

4 Discussion

Colorectal cancer (CRC) is a leading cause of cancer incidence
and mortality worldwide, with over 1.9 million new cases and
approximately 940,000 deaths reported in 2020. Global incidence
is projected to rise to 3.2 million new cases by 2040 (Xi and
Xu, 2021). Despite advancements in treatment over the past
decades that have improved overall survival (OS) rates in CRC,
a substantial proportion of patients experience disease recurrence
or exhibit resistance to chemotherapy, highlighting the persistent
challenges in clinical management (Mangone et al., 2022). The
role of glutamine metabolism in CRC has garnered increasing
attention, as altered cellular metabolism profoundly influences
cancer initiation and progression. However, the precise role of
glutamine metabolism in CRC remains controversial. While some
studies suggest that elevated glutamine metabolism promotes CRC
development and metastasis, others, based on large-scale public
databases such as the UK Biobank, have reported an inverse
association between glutamine levels and CRC risk (Rothwell et al.,
2023). Moreover, studies have shown that mutant KRAS alters the
basal metabolism of cancer cells, increasing glutamine utilization
to support proliferation. This alteration in glutamine metabolism is
particularly relevant in colorectal cancer (CRC), where glutamine-
dependent metabolic reprogramming plays a critical role in
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FIGURE 1
The overall workflow of this study.

supporting the rapid proliferation and survival of cancer cells. KRAS
mutations are common in CRC and have been linked to enhanced
glutamine consumption (Najumudeen et al., 2021). Therefore, to
elucidate the specific role of glutamine metabolism in CRC and to
better inform clinical management, the development of a prognostic
model based on glutamine metabolism is warranted. Such a
model could enable precise patient stratification and, through the
exploration of associated biological features, immune infiltration,
and microbiome ecology, provide novel insights and guidance for
clinical treatment.

In our study, we integrated transcriptomic, microbiome, and
single-cell sequencing data from over 2400 CRC patients across

multiple centers to construct a glutamine metabolism-based scoring
model, termed theGLMscore.TheGLMscore, comprising four genes,
demonstrated robust and significant prognostic value for survival in
both the training cohort and seven independent validation cohorts.
We found that patients with high GLMscores exhibited elevated
expression of pathways associated with tumorigenesis, epithelial-
mesenchymal transition(EMT),andangiogenesis,partiallyexplaining
the poorer clinical outcomes observed in this subgroup. Analysis
of the tumor immune microenvironment (TME) revealed that high
GLMscore group possessed increased infiltration of M0 and M2
macrophages, indicative of an immunosuppressive, pro-tumorigenic
TME. Further supporting this, ESTIMATE scores and TIDE scores
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FIGURE 2
The construction and validation of GLMscore. (a), The features selected by the Lasso cox model. (b), The selected features and accordingly
coefficients. (c), Survival analysis of the training dataset (TCGA-CRC). (d,e), Survival analysis of validation cohorts (GSE39582, GSE143985, GSE75316,
GSE28722, GSE38832, GSE39084, GSE41258).
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FIGURE 3
The biological features between GLMscore groups. (a), Heatmap of Hallmark pathways enrichment in GLMscore groups. (b), Heatmap of oncogenic
pathway enrichment analysis in GLMscore groups. (c), Boxplot of oncogenic pathway enrichment analysis between GLMscore groups.

were elevated in the high-GLMscore group, suggesting reduced
immune infiltration and potential resistance to immunotherapy.
Consistently, analysis using the “IOBR” R package (version 0.99.8)

demonstrated significantly increased expression of immune exclusion
and immune suppression pathways in the high GLMscore group. In
the IMvigor210 cohort, a melanoma immunotherapy cohort, patients
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FIGURE 4
(a) Heatmap of immune infiltration in GLMscore groups. (b, c) Stromal and immune scores calculated by ESTIMATE in GLMscore groups. (d)
CIBERSORT deconvolution analysis of immune cell infiltration between GLMscore groups.

with high GLMscores exhibited poorer overall survival (OS) and
a significantly lower proportion of responders to immunotherapy.
Interestingly, studies have highlighted a connection betweenASRGL1
expression and hormone receptor status, establishing a link between
glutamine and amino acid metabolism and hormonal homeostasis
(Zhai et al., 2023). Another crucial gene selected by the GLMscore,
NOS2, plays a critical role in argininemetabolism, converting arginine

into citrulline and nitric oxide (NO). While NOS2 is not directly
involved in glutaminemetabolism, the production ofNO through this
pathway can influence metabolic reprogramming in tumors, which
may indirectly impact glutaminemetabolism bymodulating immune
responses and amino acid availability (Palmieri et al., 2020).

We further investigated tertiary lymphoid structures (TLSs),
ectopic lymphoid aggregates implicated in anti-tumor immunity,
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FIGURE 5
The tumor immunemicroenvironment of GLMscore groups. (a–d), IOBR algorithm results of immune suppression, immune exhaustion, immune
exclusion and the expression of immune checkpoint genes. (e–h), TME score, TIDE score among GLMscore groups.

within the CRC microenvironment. Prior studies have shown that
the presence of intra-TLSs is associated with improved survival
outcomes in CRC (Lei et al., 2024). Analysis of TCGA pathological
WSIs revealed a lack of intra-TLSs in the high GLMscore group,
whereas classical intra-TLS structures were observed in the low
GLMscore group. Consistent with these findings, analysis of drug

sensitivitydata fromtheGDSCdatabaserevealedreducedsensitivity to
three commonchemotherapeutic agents in thehighGLMscoregroup.

Furthermore, analysis of 16S rRNAgene sequencingdata from the
AC-ICAM cohort revealed a significantly higher relative abundance
of several known oncogenic bacteria, includingHungatella (Qin et al.,
2024) and Selenomonas (Bullman et al., 2017), in the high GLMscore

Frontiers in Molecular Biosciences 09 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1599141
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zhang et al. 10.3389/fmolb.2025.1599141

FIGURE 6
Immunotherapy response and drug sensitivity. (a), Prognosis and immunotherapy response prediction in the IMvigor210 cohort. (b), Drug IC50 in
GLMscore groups. (c), Representative WSI images of GLMscore high and low group. (d), IHC images of features selected by the Lasso cox model
expression of normal and tumor tissues.

group. Elevated abundance of Catenibacterium was found to be
associated with colorectal adenomas (Bosch et al., 2022), was
consistent with our study results. Additionally, microbiota with
previously unknown roles in CRC, such as Cutibacterium, was also
significantly more abundant in the high-GLMscore group, suggesting

a potential pathogenic microbiota in CRC. These findings suggest
that an increased abundance of potentially oncogenicmicrobiotamay
contribute to CRC development in the high GLMscore subgroup.

Finally, our study explored the TME characteristics and
immunotherapy response at the single-cell level. We observed a
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FIGURE 7
Microbiome composition and single cell analysis. (a), 16s rRNA microbiome composition between the two GLMscore groups. (b), Single cell analysis of
Zhang et al.’s literature and the prediction of immunotherapy response. (c), Cell-cell communications and ligand-receptor analysis. (d) Ligand
-receptor interactions between macrophage subsets and GLMscore-high tumor cells.

higher proportion of patients with a stable disease (SD) status
in the high GLMscore group compared to the low GLMscore
group. The GLMscore demonstrated strong predictive accuracy for

immunotherapy response, with validation performed in both a single-
cell CRC immunotherapy cohort and an external immunotherapy
cohort. This reinforces the utility of the GLMscore as a reliable
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biomarker for predicting response to immunotherapy in colorectal
cancer (CRC).The validation across two independent cohorts further
supports its robustness and potential clinical applicability. Notably,
the association between GLMscore and immune-related markers
highlights the potential of glutamine metabolism as a key player
in the tumor-immune interaction, which could guide personalized
immunotherapy strategies. Furthermore, inflammatorymacrophages,
such as SPP1+ and CCL20+ macrophages, exhibited increased cell-
cell communication with tumor cells in the high GLMscore group,
potentially mediated by the PPIA-BSG signaling pathway.

In summary, this study integrated multi-omics data to
develop the GLMscore, a novel scoring system for stratifying
CRC patients and guiding clinical treatment decisions. We
comprehensively characterized the biological features, tumor
immune microenvironment, microbial composition, pathological
characteristics, and IHC profiles associated with glutamine
metabolism in CRC, as reflected by the GLMscore. While our
study provides valuable insights, several limitations should be
acknowledged. First, as a multi-center, large-scale retrospective study,
further prospective validation is needed to confirm the role of
glutamine metabolism in CRC. Second, although we integrated
transcriptomic,microbiome, andsinglecell sequencingdata toexplore
the underlying mechanisms, experimental validation is required to
confirm these findings. Third, the microbiome analysis relies on
16S rRNA sequencing from a single cohort, which has limitations,
including a lack of strain-level resolution and functional data. WGS
or metagenomics would offer a more comprehensive view and help
establish causality in CRC development.

In conclusion, our study, centered on the GLMscore, elucidates
the multifaceted role of glutamine metabolism in CRC initiation
and progression. Moreover, we demonstrate the robustness and
accuracy of GLMscore as a prognostic biomarker for survival
and, importantly, its ability to predict response to immunotherapy,
offering valuable insights and guidance for clinical management.

5 Conclusion

This study developed and validated a robust GLMscore for
patient stratification in CRC and comprehensively investigated
the role of glutamine metabolism, including its impact on
biological characteristics, the tumor immune microenvironment,
and microbial composition, supported by pathological and
immunohistochemical (IHC) visualization, offer novel insights for
precision clinical management.
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